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Abstract: Cognitive dysfunction is a frequent complication of type 2 diabetes mellitus (T2DM),
usually accompanied by metabolic disorders. However, the metabolic changes in diabetic cognitive
dysfunction (DCD) patients, especially compared to T2DM groups, are not fully understood. Due
to the subtle differences in metabolic alterations between DCD groups and T2DM groups, the
comprehensive detection of the untargeted metabolic profiles of hippocampus and urine samples
of rats was conducted by LC–MS, considering the different ionization modes and polarities of the
examined compounds, and feature-based molecular networking (FBMN) was performed to help
identify differential metabolites from a comprehensive perspective in this study. In addition, an
association analysis of the differential metabolites in hippocampus and urine was conducted by
the O2PLS model. Finally, a total of 71 hippocampal tissue differential metabolites and 179 urine
differential metabolites were identified. The pathway enrichment results showed that glutamine
and glutamate metabolism, alanine, aspartate, and glutamate metabolism, glycerol phospholipid
metabolism, TCA cycle, and arginine biosynthesis in the hippocampus of DCD animals were changed.
Seven metabolites (AUC > 0.9) in urine appeared as key differential metabolites that might reflect
metabolic changes in the target tissue of DCD rats. This study showed that FBMN facilitated the
comprehensive identification of differential metabolites in DCD rats. The differential metabolites may
suggest an underlying DCD and be considered as potential biomarkers for DCD. Large samples and
clinical experiments are needed for the subsequent elucidation of the possible mechanisms leading to
these alterations and the verification of potential biomarkers.

Keywords: feature-based molecular networking; metabolomics; diabetic recognition dysfunction;
differential metabolites; comprehensive identification

1. Introduction

In the wake of the widespread changes in lifestyle, diabetes is becoming more and more
prevalent [1]. As a common complication of diabetes, diabetic cognitive dysfunction (DCD)
has received increasing attention [2–4]. At a group level, people with DCD perform worse
in the domains of information processing speed, attention and concentration, executive
functions, and working memory, which negatively impacts their quality of life [5,6].

As is well known, diabetes is a worldwide metabolic disease [7], and the development
of DCD is often accompanied by correlated metabolic changes [8,9]. In recent years, untar-
geted metabolomics has played a critical role in characterizing metabolic alterations and
elucidating underlying mechanisms of neurodegenerative disease [10–13]. Nevertheless,
metabolic disorders in DCD versus T2DM patients have been less extensively described. To
address this, the comprehensive detection of metabolite features is essential, and the study
methods should allow the analysis of the different polarities and MS ionization modes of
molecules [14,15]. More importantly, it is a challenge to identify differential metabolites
comprehensively based on a large amount of information.
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Feature-based molecular networking (FBMN) has been from molecular networking
combined with feature detection methods [16,17]. This workflow has achieved the dis-
crimination of isomers by their retention time when creating molecular networking data
and the evaluation of their compatibility with the in silico annotation of MS/MS spectra,
reducing molecule redundancy and facilitating the annotation of metabolites by matching
their spectra with those in mass spectral libraries and comparing them with those of similar
compounds [16,18]. In recent years, FBMN has been frequently employed in the field of
phytochemical composition and drug metabolism analyses [19–21], while it has been rarely
applied in the identification of differential metabolites in disease states.

The purpose of the present work was to comprehensively identify differential metabo-
lites and characterize the metabolic alterations in DCD rats versus T2DM rats. To acquire
comprehensive metabolic profiles of urine and hippocampal tissue of diabetic rats with
cognitive dysfunction, positive and negative ion modes and reverse-phase (RP) and hy-
drophilic interaction chromatography (HILIC) columns were used in LC-MS analyses,
respectively. Furthermore, FBMN was conducted to fully attribute the metabolites. The
detailed workflow is shown in Figure 1. Finally, 71 differential metabolites in the hippocam-
pus and 179 differential metabolites in the urine of DCD rats were identified. The pathway
enrichment results showed that glutamine and glutamate metabolism, alanine, aspartate,
and glutamate metabolism, glycerophospholipid metabolism, TCA cycle, arginine biosyn-
thesis were changed in the hippocampus of DCD rats. Seven metabolites (AUC > 0.9) in
urine appeared as key differential metabolites that might reflect metabolic changes in the
target tissue of DCD. This work describes a strategy for identifying differential metabolites
in DCD rats, providing a new view for metabolic disturbances in DCD.
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2. Materials and Methods
2.1. Reagents and Materials

LC-MS-grade acetonitrile and formic acid were purchased from Thermo Fisher Sci-
entific (Waltham, MA, USA). The water used for the LC-MS analysis was obtained from
Watsons. The citric acid/sodium citrate buffer (Lot No. A20HR180485) and streptozocin
(STZ, Lot No. O10GS163045) were purchased from Shanghai yuanye Bio-Technology
(Shanghai, China).

2.2. Animal Treatment

Twenty-four male SD rats (6 weeks old, 180 ± 10 g, approval number: SCXK (Beijing,
China) 2019-0010) were housed. The temperature was controlled at 21–25 ◦C, the relative
humidity was 55–65%, and the cycle of day and night was 12 h. The rats adapted to the en-
vironment for 7 days. All experiments were approved by the Ethics Committee for Animal
Care and Treatment at Beijing University of Chinese Medicine (BUCM-4-2022033002-1051).
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Eight rats were fed a normal diet, and 16 rats were fed a high-fat diet (HFD12491). After
5 weeks of HFD feeding, the rats were intraperitoneally injected with STZ (35 mg·kg−1)
dissolved in the citric acid/sodium citrate buffer (0.01 M, pH 4.5), and the control (CON)
group rats were injected with vehicle. Seventy-two hours after the STZ injection, the
rats with a blood glucose value > 16.7 mmol·L−1 were recognized as diabetic rats and
were selected for the subsequent experiments. At the 13th week, the rats were divided
into a CON group, a T2DM group (whose escape latency was not statistically significant
compared with that of the CON group), and a DCD group (whose escape latency was
statistically significant compared with that of the CON group) by Morris water maze
experiments. The flow diagram of animal grouping is shown in Figure 2A.
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T2DM, and DCD groups. (B) Random blood glucose levels; (C) average latency of the rats in the
Morris water maze. (CON = control, T2DM = type 2 diabetes mellitus, DCD = diabetic cognitive
dysfunction, ** p < 0.01, compared with CON group, ## p < 0.01 compared with T2DM group).

2.3. Morris Water Maze Test

The protocol of Morris water maze tests was as follows. The circular swimming pool
used for the tests was 1.2 m in diameter. The water in the maze was made opaque by
a non-toxic black dye and was maintained at 25 ◦C. The tank was divided into 4 equal
quadrants, and the platform located in the third quadrant was immobilized 2 cm under
the water surface. During the experiments, the light source intensity was constant, and
unique geometric figures were placed at the sides of the pool to create visual clues for the
rats. The rats were trained 4 times per day for 5 days. In each trail, the rat was gently
released into the pool from 4 different quadrants. A maximum of 90 s was set for each rat
to find the hidden platform. Once the rat found the platform, it was allowed to stay on it
for 15 s. If the rat failed, it would be guided to the platform and allowed to stay on it for
15 s, and the escape latency of the rat was recorded as 90 s. The whole process of the exper-
iment was traced by a video tracking system (Noldus Information Technology Co., Ltd.,
Wageningen, the Netherlands).

2.4. Sample Preparation
2.4.1. Hippocampus Sample Preparation

Firstly, the hippocampal tissue was thawed at room temperature. Then, precooled
methanol was added to a part of the hippocampal tissue to obtain a 20 mL·g−1 solution,
and the sample was homogenized at 60 Hz for 120 s at 4 ◦C. After centrifuging at 13,600× g
for 15 min at 4 ◦C, 650 µL of the supernatant was taken and dried in nitrogen. The residue
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was subsequently redissolved in 70 µL of 50% methanol and centrifuged at 13,600× g for
10 min at 4 ◦C. The supernatant was stored for the RP analysis. To monitor the stability of
the Q-Exactive Orbitrap MS system, quality control (QC) samples, which were pooled form
10 µL of each sample, were detected after every eight samples. As for the HILIC analysis,
another part of the hippocampal tissue was treated with precooled 50% methanol to obtain
a 20 mL·g−1 solution. Then, the sample was homogenized at 60 Hz for 120 s at 4 ◦C and
centrifuged at 13,600× g for 15 min at 4 ◦C. The supernatant was taken for subsequent
analyses. The QC samples were prepared from 10 µL of each sample and injected after
every eight samples.

2.4.2. Urine Sample Preparation

For the RP analysis, after thawing at room temperature, 100 µL urine was diluted with
100 µL water and vortexed for 30 s. Then, the mixture was centrifuged at 13,600× g for
15 min at 4 ◦C, and the supernatant was collected for LC-MS analysis. The QC samples
were obtained by mixing 10 µL of each sample. In addition, another 100 µL of urine was
added to 400 µL of a methanol–acetonitrile solution (v/v, 1:1). Then, the mixture was
vortexed for 30 s and centrifuged at 13,600× g for 15 min at 4 ◦C. The supernatant was
prepared for the HILIC analysis. The QC samples were prepared by mixing 10 µL of each
sample and lined at regular intervals (every 8 samples).

2.5. Data Acquisition for Untargeted Metabolomics Profiling

The UPLC analysis was conducted by a Vanquish UPLC system (Thermo Fisher
Scientific, Waltham, MA, USA). The chromatographic conditions were as follows.

2.5.1. Chromatographic Conditions for the hippocampus Samples

For the RP analysis, a HSS T3 column (2.1 mm × 100 mm, 1.8 µm, Waters Co., Mil-
ford, MA, USA) was used at 40 ◦C. The mobile phase consisted of 0.1% formic acid–
water (v/v) (A) and 0.1% formic acid–acetonitrile (v/v) (B). The solvent program was set
as follows: 0–1 min, 1% B; 1–4 min, 1–20% B; 4–6.5 min, 20–50% B; 6.5–8 min, 50–98% B;
8–10 min, 98% B; 10–10.1 min, 98–1% B; 10.1–13 min, 1% B. The flow rate was set at
0.4 mL·min−1, and the injection volume was 5 µL. For HILIC detection, a BEH amide
column (2.1 mm × 100 mm, 1.7 µm, Waters Co., Milford, MA, USA) was used at 40 ◦C. The
mobile phase A was composed of water with 10 mM ammonium formate and 0.125% formic
acid, the mobile phase B was composed of acetonitrile modified by the addition of 10 mM
ammonium formate and 0.125% formic acid and followed at a rate of 0.4 mL·min−1 with a
13 min gradient: 0–2 min, 95% B; 2–7.7 min, 95–70% B; 7.7–9.5 min, 70–40% B; 9.5–10.5 min,
40–30% B; 10.5–11 min, 30–95% B; 11–13 min, 95% B. The flow rate was set to 0.3 mL·min−1,
and the injection volume was 3 µL.

2.5.2. Chromatographic Conditions of the Urine Samples

For the RP analysis, the mobile phase A was 0.1% formic acid–water (v/v), while
the mobile phase B was acetonitrile. The solvent gradient was set as follows: 0–4 min,
1% B; 4–12 min, 1–50% B; 12–16 min, 50–98% B; 16–18 min, 98% B; 18–18.1 min, 98–1% B;
18.1–20 min, 1% B. The oven temperature was kept at 40 ◦C, the flow rate was set to
0.3 mL·min−1 and the injection volume was 5 µL. For the HILIC analysis, the mobile phase
A was composed of water with 10 mM ammonium formate and 0.1% formic acid (v/v), the
mobile phase B was composed of acetonitrile/water (95/5, v/v) with 10 mM ammonium
formate and 0.1% formic acid (v/v). A gradient run was set up as follows: 0–2 min, 95% B;
2–4.5 min, 95–85% B; 4–7.5 min, 85–75% B; 7.5–8.5 min, 75–70% B; 8.5–9.5 min, 70–40% B;
9.5–10 min, 40–30% B; 10–10.5 min, 30–95% B; 10.5–12 min, 95% B. The flow rate was kept
at 0.3 mL min−1 with 40 ◦C, and the injection volume was 3 µL.
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2.5.3. MS Conditions

The MS parameters of both hippocampus samples and urine samples were similar.
Data-dependent acquisition in ESI positive and negative ionization modes using the Q-
Exactive Orbitrap MS (Thermo Fisher Scientific, Waltham, MA, USA) was performed.
The acquisition settings were as follows: spray voltage, 3.5 kV or −2.8 kV; capillary
temperature, 275 ◦C; auxiliary gas heater, 350 ◦C; sheath gas, 40 (Arb, arbitrary unit);
auxiliary gas, 10 (Arb), and mass range, 70–1050 Da (hippocampus samples) or 60–900 Da
(urine samples).

2.6. Metabolomics Data Analysis

The raw data were denoised, identified, aligned, and normalized by Progenesis QI
software (Waters Co., Milford, MA, USA). The raw data were converted into a data ma-
trix including tR-m/z ion pairs, sample names, and peak intensifiers and then imported
into the multivariate statistical software SIMCA-P 14.0 (Umetrics AB, Umea, Sweden)
to perform an orthogonal partial least-squared discriminant analysis (OPLS-DA) analy-
sis. Besides, the data processed by QI software were be imported into the Global Nat-
ural Products Social Molecular Networking (GNPS) website (https://gnps.ucsd.edu/,
accessed on 25 October 2022) for FBMN and visualized via Cytoscape software. In ad-
dition to GNPS, the HMDB database (http://www.hmdb.ca/, accessed on 30 October
2022), mzcloud (https://www.mzcloud.org/, accessed on 30 October 2022), CFM-ID 4.0
(https://cfmid.wishartlab.com/, accessed on 30 October 2022), and ClassyFire website
(http://classyfire.wishartlab.com/, accessed on 5 November 2022) were used to char-
acterize differential metabolites. Metabolic pathway analysis was performed using the
MetaboAnalyst website (https://www.metaboanalyst.ca/, accessed on 15 November 2022)
and KEGG database (https://www.genome.jp/kegg/, accessed on 15 November 2022).

Statistical analysis was conducted on SPSS 22.0 (SPSS, IBM, New York, NY, USA).
The statistical differences between two groups were compared by the Student’s t-test, and
the statistical differences between multiple groups were compared by one-way ANOVA.
Particularly, Student’s t-test and ANOVA analysis were conducted for normally distributed
values, and the Mann–Whitney test was used for non-parametric values.

3. Results and Discussion
3.1. Establishment of the DCD Rat Model

T2DM was induced by intraperitoneal injection of STZ (35 mg·kg−1) in SD rats after
5 weeks of high-fat feeding. Then, the diabetic rats were fed a high-fat diet for another
8 weeks. Finally, 13 surviving diabetic rats were subjected to Morris water maze experi-
ments, and 6 rats with cognitive impairment were screened out by escape latency analysis.
As shown in Figure 2B,C, the levels of blood glucose in diabetic rats were higher compared
with those of normal rats, and there was a significant difference in escape latency between
the DCD group and the T2DM group (p < 0.01). The prolonged escape latency indicated
a decline in cognitive ability in the DCD rats [9]. Finally, a total of six DCD rats were
obtained, and the success rate was only ~46%.

3.2. Altered Metabolic Profiles of Hippocampal Tissue and Urine in Rats with DCD

In order to obtain comprehensive metabolic profiles, hippocampus samples and urine
samples were analyzed with HILIC and RP columns, respectively, and data using both
positive and negative ion modes were collected. After preprocessing by the QI software,
the metabolic profiles were analyzed using the OPLS-DA model. The results showed an
obvious separation between the T2DM and DCD groups for both hippocampus samples and
urine samples (Figure 3), indicating that diabetic cognitive dysfunction led to significant
metabolic changes.

https://gnps.ucsd.edu/
http://www.hmdb.ca/
https://www.mzcloud.org/
https://cfmid.wishartlab.com/
http://classyfire.wishartlab.com/
https://www.metaboanalyst.ca/
https://www.genome.jp/kegg/
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tissues in positive (A) and negative ion modes (B) using the HILIC column; OPLS-DA score plots
of hippocampal tissues in positive (C) and negative ion modes (D) using the RP column; OPLS-DA
score plots of urine in positive (E) and negative ion modes (F) using the HILIC column; OPLS-DA
score plots of urine in positive (G) and negative ion modes (H) using the RP column.

3.3. Identification of Differential Metabolites Based on FBMN

The VIP values of the OPLS-DA model were calculated, then the parameters VIP > 1
and p < 0.05 were used as a threshold to screen differential features. The feature data
processed by QI were uploaded to the GNPS website. Based on the similarity principle
of MS/MS spectrometry of features [22], FBMN was performed and subsequently visual-
ized via Cytoscape software (Figure 4A, Supplementary Materials Figures S1–S4), where
differential features were highlighted (red for differential features).
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the magnitude of the cosine score, FBMN: feature-based molecular networking).

The richness and complexity of metabolite information make it difficult to annotate
differential metabolites. For the sake of identifying differential metabolites, FBMN through
the GNPS platform, HMDB database, and ClassyFire website was carried out. In addition
to online matching known metabolites with mass spectral libraries through the GNPS
platform, FBMN can also allow the attribution of unknown metabolites by comparison with
known metabolites based on similarity cosine scoring of the MS/MS spectra. For example,
as shown in Figure 4B, to annotate the unknown feature with m/z 388.0611, the adjacent
known metabolite in FBMN (m/z 303.0835, similarity cosine value with the feature with
m/z 388.0611 of 0.745) was firstly identified as N-acetylaspartylglutamic acid on the online
database. Next, m/z 388.0611 was assigned to the class of dipeptides by ClassyFire according
to their common characteristic fragments with m/z of 58.0298, 96.0091, 128.0353, 146.0459,
155.0462, 285.0725, 303.0832 [23,24]. Finally, 71 differential metabolites were identified in
the hippocampus, among which No. 61–71 were classified by FBMN based on ClassyFire
(Supplementary Materials Table S1); in addition, 179 urine differential metabolites were
obtained, and No.166–179 were described using taxonomies or ontologies by FBMN and
ClassyFire (Supplementary Materials Table S2). The clustering heat maps of the peak area
of differential metabolites are shown in Figure 5A,B which represent the metabolic changes
between DCD rats and T2DM rats visually. The “living data” concept of GNPS that the
data can be continuously reanalyzed allows the identification of more metabolites [25,26].
As GNPS matures, these molecules will be identified, which allows investigating more
differential metabolites characteristic of DCD.



Metabolites 2023, 13, 538 8 of 13Metabolites 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Heatmaps of differential metabolites in hippocampus (A) and urine samples (B); (C) met-
abolic pathway analysis of differential metabolites in hippocampal tissue and urine; (D) changes in 
the key pathways. 

3.4. Enrichment of the Metabolic Pathways 
To identify the key metabolic pathways of DCD, the differential metabolites were 

imported to MetaboAnalyst for pathway enrichment. As shown in Figure 5C, glutamine 
and glutamate metabolism, alanine, aspartate, and glutamate metabolism, glycerophos-
pholipid metabolism, TCA cycle, arginine biosynthesis, whose impact values were higher 
than 0.1, were enriched in the hippocampus. For urine, 11 metabolic pathways appeared 
as the key pathways, including taurine and hypotaurine metabolism, glutamine and glu-
tamate metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, arginine bio-
synthesis, alanine, aspartate, and glutamate metabolism, phenylalanine metabolism, argi-
nine and proline metabolism, pyruvate metabolism, alanine metabolism, TCA cycle, and 
glycolysis/gluconeogenesis. In contrast, as the target tissue of cognitive impairment, the 
hippocampal tissue is more intuitively the target of metabolic changes. In summary, glu-
tamine and glutamate metabolism, alanine, aspartate, and glutamate metabolism, TCA 
cycle, arginine biosynthesis were the metabolic pathways identified in both hippocampus 

Figure 5. Heatmaps of differential metabolites in hippocampus (A) and urine samples (B);
(C) metabolic pathway analysis of differential metabolites in hippocampal tissue and urine;
(D) changes in the key pathways.

3.4. Enrichment of the Metabolic Pathways

To identify the key metabolic pathways of DCD, the differential metabolites were im-
ported to MetaboAnalyst for pathway enrichment. As shown in Figure 5C, glutamine and
glutamate metabolism, alanine, aspartate, and glutamate metabolism, glycerophospholipid
metabolism, TCA cycle, arginine biosynthesis, whose impact values were higher than 0.1,
were enriched in the hippocampus. For urine, 11 metabolic pathways appeared as the
key pathways, including taurine and hypotaurine metabolism, glutamine and glutamate
metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, arginine biosynthe-
sis, alanine, aspartate, and glutamate metabolism, phenylalanine metabolism, arginine
and proline metabolism, pyruvate metabolism, alanine metabolism, TCA cycle, and gly-
colysis/gluconeogenesis. In contrast, as the target tissue of cognitive impairment, the
hippocampal tissue is more intuitively the target of metabolic changes. In summary, glu-
tamine and glutamate metabolism, alanine, aspartate, and glutamate metabolism, TCA
cycle, arginine biosynthesis were the metabolic pathways identified in both hippocampus
and urine, suggesting that there may be a potential relationship between hippocampus
and urine.
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Glutamate is the main excitatory neurotransmitter for the activation of the N-methyl-
D-aspartic acid receptor (NMDAR) [27]. When excessive glutamate is released or astrocyte
dysfunction occurs, glutamate accumulates in the synaptic cleft or even spills over, resulting
in the overactivation of extrasynaptic NMDAR, which may lead to synaptic plasticity
impairment and excitotoxicity [28–31]. This study found elevated levels of glutamate and
2-oxoglutarate in the hippocampal tissue of DCD rats, suggesting that neurotoxicity and
impaired synaptic plasticity caused by glutamate accumulation might lead to DCD.

As is known to all, the TCA cycle plays an important role in the energy metabolism of
organisms [32,33]. The carbon chain degradation products of sugars, fats, proteins, and
nucleic acids will eventually enter the TCA cycle and will be discharged from the body as
CO2 [34,35]. The metabolic intermediates of the TCA cycle are also critical precursors of
compound biosynthesis [36,37], which are crucial for maintaining homeostasis in cells. In
this study, the levels of malic acid, fumaric acid, and aconite acid increased significantly,
demonstrating that the energy metabolism in DCD rats was disturbed.

Arginine metabolism is related to the development of AD [38–40]. Arginine is con-
verted to citrulline with the generation of NO by the action of endothelial nitric oxide
synthase (eNOS) [41,42]. Generally, increased levels of citrulline are accompanied by in-
creased levels of NO [43]. Studies have shown that NO can act as a neurotransmitter,
mediating excitatory amino acids and synaptic transmission, and the production and ex-
cessive release of NO can directly lead to neurotoxicity [44–46]. Elevated citrulline levels
in the hippocampal tissue suggest that the diabetic cognitive impairment might be due to
neurotoxicity mediated by NO.

3.5. Integrated Analysis of Key Differential Metabolites in the Hippocampus and Urine of Rats
with DCD

As the target tissue of cognitive dysfunction, metabolic alterations in the hippocampal
tissue are of great significance to elucidate the underlying mechanism, while urine is
the analyte of first choice for metabolomics research due to its easy access and abundant
metabolites. In order to further explore the potential biomarkers of urine related to those in
the hippocampal tissue in rats with DCD, a model of O2PLS was constructed. The model
shows excellent performance in the integrated analysis of multiple metabolomics data, and
its estimated values are close to the actual parameters in both low- and high-dimensional
data [47]. The top 25 loading metabolites in urine and hippocampal tissue are shown in
Figure 6A. To explore the relationship between the metabolites in hippocampal tissue and
urine, Spearman correlation analysis with correlation coefficient ≥ 0.6 and p ≤ 0.05 as
threshold was conducted. The results showed that the metabolites in the hippocampal
tissue had a strong correlation with those in urine. For example, glutamate, which acts as a
neurotransmitter in the brain [30], was negatively correlated with citrulline, ophthalmic
acid, o-cresol sulfate, (2E,6E)-nona-2,6-dienoic acid, (E,E)-2,4-hexadienedial, N-methylene,
and ethenamine and was positively correlated with desaminotyrosine and valylasparagine
in urine. Inosine, which has been proven to display neuroprotective, anti-inflammatory,
and antioxidant effects in the brain [48–50], was negatively correlated with cytosine, diethyl
L-malate, and N-phenylaspartic acid in urine (shown in Figure 6B). This suggests that
metabolic changes in urine may reflect those in the target tissues of DCD to a certain extent,
and it is significant to illustrate the associations of metabolic alterations that occur in urine
and hippocampal tissue.

The diagnostic value of urine metabolites associated with those of hippocampus
was evaluated by the ROC curve (shown in Figure 6C). AUC > 0.9 was recognized as
diagnostic. According to this standard, (E,E)-2,4-hexadienedial, (2E,6E)-nona-2,6-dienoic
acid, o-cresol sulfate, ophthalmic acid, indole-3-acetyl-glutamine, N2,N5-diacetylornithine,
and N-methylene ethenamine appeared as key differential metabolites that could reflect
the metabolic changes in the hippocampus. However, due to the small number of samples,
the capacity was limited, so clinical experiments with large samples should be conducted
for subsequent verification.
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Figure 6. (A) Loading plot of the O2PLS model showing differential metabolites in hippocampal
tissue and urine; (B) correlation plot illustrating the top 25 loading metabolites in hippocampal tissue
and urine based on Spearman analysis, (the metabolites in urine are shown on the abscissa, and
metabolites in the hippocampus on the ordinate, positive correlation is shown in orange, negative
correlation in green, ** indicates p-value < 0.01 with |r| ≥ 0.6, * indicates p-value < 0.05 with
|r| ≥ 0.6, and the size and depth of the circles indicate the magnitude of the correlation); (C) ROC
analysis of the top 25 loading urine metabolites.

With the prevalence of diabetes, DCD has attracted more and more attention. However,
the issue of how to control DCD is still pending. Specifically, the molecular mechanisms of
DCD have not been understood, and there is little information about the biomarkers of the
disease. Since metabonomics research on the target sample of DCD is beneficial to uncover
the molecular mechanisms of this dysfunction and the urine sample is the first choice to
screen biomarkers, the analysis of differential metabolites in urine of DCD rats that could
reflect the metabolic changes in the hippocampus is of great significance. The integration
of metabonomics and FBMN will make the identification of differential metabolites more
comprehensive and play an important role in the revelation of possible mechanisms and
potential biomarkers.
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4. Conclusions

Our study indicates that FBMN facilitates the identification of differential metabolites
based on the comprehensive detection of untargeted metabolic profiles in DCD rats. Totally,
71 hippocampus differential metabolites and 179 urine differential metabolites in DCD rats
were identified. Glutamine and glutamate metabolism, alanine, aspartate, and glutamate
metabolism, TCA cycle, and arginine biosynthesis appeared as the critical pathways in the
hippocampal tissue of DCD rats. Seven metabolites (AUC > 0.9) in urine appeared as key
differential metabolites that might reflect metabolic changes in the target tissue in DCD
rats. The identification and analysis of differential metabolites allowed the description of
metabolic alterations in DCD rats, providing new insights for the diagnosis and molecular
mechanism of this disease. Large samples and clinical experiments are needed for the
subsequent elucidation of the possible mechanisms underlying this condition and the
verification of potential biomarkers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13040538/s1, Figure S1: FBMN of the hippocampal tissue
by the HILIC column; Figure S2: FBMN of the hippocampal tissue in positive ion mode by the RP
column; Figure S3: FBMN of urine by the HILIC column; Figure S4: FBMN of urine by the RP column;
Table S1: Differential metabolites in hippocampal tissue; Table S2: Differential metabolites in urine.
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36. Nissen, J.D.; Pajęcka, K.; Stridh, M.H.; Skytt, D.M.; Waagepetersen, H.S. Dysfunctional TCA-Cycle Metabolism in Glutamate
Dehydrogenase Deficient Astrocytes. Glia 2015, 63, 2313–2326. [CrossRef]

37. Jo, S.L.; Yang, H.; Lee, S.R.; Heo, J.H.; Lee, H.W.; Hong, E.J. Curcumae Radix Decreases Neurodegenerative Markers through
Glycolysis Decrease and TCA Cycle Activation. Nutrients 2022, 14, 1587. [CrossRef] [PubMed]

38. Zhang, Y.Q.; Tang, Y.B.; Dammer, E.; Liu, J.R.; Zhao, Y.W.; Zhu, L.; Ren, R.J.; Chen, H.Z.; Wang, G.; Cheng, Q. Dysregulated
Urinary Arginine Metabolism in Older Adults With Amnestic Mild Cognitive Impairment. Front. Aging Neurosci. 2019, 11, 90.
[CrossRef]

39. Wiesinger, H. Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog. Neurobiol. 2001, 64, 365–391.
[CrossRef]

40. Yi, J.; Horky, L.L.; Friedlich, A.L.; Shi, Y.; Rogers, J.T.; Huang, X. L-arginine and Alzheimer′s disease. Int. J. Clin. Exp. Pathol. 2009,
2, 211–238.

41. Virarkar, M.; Alappat, L.; Bradford, P.G.; Awad, A.B. L-arginine and nitric oxide in CNS function and neurodegenerative diseases.
Crit. Rev. Food Sci. Nutr. 2013, 53, 1157–1167. [CrossRef]

42. Bescós, R.; Sureda, A.; Tur, J.A.; Pons, A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012,
42, 99–117. [CrossRef] [PubMed]

43. Bahadoran, Z.; Mirmiran, P.; Kashfi, K.; Ghasemi, A. Endogenous flux of nitric oxide: Citrulline is preferred to Arginine. Acta
Physiol. 2021, 231, e13572. [CrossRef] [PubMed]

44. Tewari, D.; Sah, A.N.; Bawari, S.; Nabavi, S.F.; Dehpour, A.R.; Shirooie, S.; Braidy, N.; Fiebich, B.L.; Vacca, R.A.; Nabavi, S.M. Role
of Nitric Oxide in Neurodegeneration: Function, Regulation, and Inhibition. Curr. Neuropharmacol. 2021, 19, 114–126. [CrossRef]
[PubMed]

45. Vincent, S.R. Nitric oxide neurons and neurotransmission. Prog. Neurobiol. 2010, 90, 246–255. [CrossRef] [PubMed]
46. Tripathi, M.K.; Kartawy, M.; Amal, H. The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric,

neurological, and neurodegenerative disorders. Redox Biol. 2020, 34, 101567. [CrossRef]
47. Chen, P.; Guo, Y.; Jia, L.; Wan, J.; He, T.; Fang, C.; Li, T. Interaction Between Functionally Activate Endometrial Microbiota and

Host Gene Regulation in Endometrial Cancer. Front. Cell Dev. Biol. 2021, 9, 727286. [CrossRef]
48. Teixeira, F.C.; Soares, M.S.P.; Blödorn, E.B.; Domingues, W.B.; Reichert, K.P.; Zago, A.M.; Carvalho, F.B.; Gutierres, J.M.; Gonçales,

R.A.; da Cruz Fernandes, M.; et al. Investigating the Effect of Inosine on Brain Purinergic Receptors and Neurotrophic and
Neuroinflammatory Parameters in an Experimental Model of Alzheimer′s Disease. Mol. Neurobiol. 2022, 59, 841–855. [CrossRef]

49. Nascimento, F.P.; Macedo-Júnior, S.J.; Lapa-Costa, F.R.; Cezar-Dos-Santos, F.; Santos, A.R.S. Inosine as a Tool to Understand and
Treat Central Nervous System Disorders: A Neglected Actor? Front. Neurosci. 2021, 15, 703783. [CrossRef]

50. Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 2007, 87, 659–797. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3389/fendo.2019.00570
http://doi.org/10.1002/glia.22895
http://doi.org/10.3390/nu14081587
http://www.ncbi.nlm.nih.gov/pubmed/35458149
http://doi.org/10.3389/fnagi.2019.00090
http://doi.org/10.1016/S0301-0082(00)00056-3
http://doi.org/10.1080/10408398.2011.573885
http://doi.org/10.2165/11596860-000000000-00000
http://www.ncbi.nlm.nih.gov/pubmed/22260513
http://doi.org/10.1111/apha.13572
http://www.ncbi.nlm.nih.gov/pubmed/33089645
http://doi.org/10.2174/18756190MTA2pMjApy
http://www.ncbi.nlm.nih.gov/pubmed/32348225
http://doi.org/10.1016/j.pneurobio.2009.10.007
http://www.ncbi.nlm.nih.gov/pubmed/19853011
http://doi.org/10.1016/j.redox.2020.101567
http://doi.org/10.3389/fcell.2021.727286
http://doi.org/10.1007/s12035-021-02627-z
http://doi.org/10.3389/fnins.2021.703783
http://doi.org/10.1152/physrev.00043.2006

	Introduction 
	Materials and Methods 
	Reagents and Materials 
	Animal Treatment 
	Morris Water Maze Test 
	Sample Preparation 
	Hippocampus Sample Preparation 
	Urine Sample Preparation 

	Data Acquisition for Untargeted Metabolomics Profiling 
	Chromatographic Conditions for the hippocampus Samples 
	Chromatographic Conditions of the Urine Samples 
	MS Conditions 

	Metabolomics Data Analysis 

	Results and Discussion 
	Establishment of the DCD Rat Model 
	Altered Metabolic Profiles of Hippocampal Tissue and Urine in Rats with DCD 
	Identification of Differential Metabolites Based on FBMN 
	Enrichment of the Metabolic Pathways 
	Integrated Analysis of Key Differential Metabolites in the Hippocampus and Urine of Rats with DCD 

	Conclusions 
	References

