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Abstract: As the Urtica dioica L. whole plant’s essential oil has presented significant multiple activities,
it was therefore evaluated using the GC–MS technique. This essential oil was investigated for its
antioxidant, phytotoxic, and antibacterial activities in vitro. The GC–MS analysis data assisted in
the identification of various constituents. The study of the essential oil of U. dioica showed potential
antioxidant effects and antibacterial activity against the selected pathogens Escherichia coli -ATCC
9837 (E. coli), Bacillus subtilis-ATCC 6633 (B. subtilis), Staphylococcus aureus-ATCC6538 (S. aureus),
Pseudomonas aeruginosa-ATCC 9027 (P. aeruginosa), and Salmonella typhi-ATCC 6539 (S. typhi). The
library of 23 phytochemicals was docked by using MOE software, and three top virtual hits with
peroxiredoxin protein [PDB ID: 1HD2] and potential target protein [PDB ID: 4TZK] were used;
hence, the protein–ligand docking results estimated the best binding conformations and a significant
correlation with the experimental analysis, in terms of the docking score and binding interactions
with the key residues of the native active binding site. The essential oil in the silico pharmacokinetic
profile explained the structure and activity relationships of the selected best hits, and their additional
parameters provided insight for further clinical investigations. Therefore, it is concluded that the
U. dioica essential oil could be a potent antioxidant and antibacterial agent for aromatherapy through
its topical application, if further tested in a laboratory and validated.

Keywords: Urtica dioica L. essential oil; GC–MS; phytochemical analysis; antioxidant activities;
antibacterial activities
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1. Introduction

The genus Urtica is associated with the family “Urticaceae” in the division of An-
giosperms, which present peculiar flowering characteristics which have been known for
a long time, and are also utilized as traditional medicine and are significant as food [1].
The closest associates of this genus are the stinging nettle Urtica dioica L. (U. dioica) and the
small nettle U. urens L., which are native to Asian, African, European, and North American
areas [2]. U. dioica L., commonly known as the common nettle, is a persistent plant that
grows in moderate and humid wilderness ranges across the world [3]. It possesses pointed
leaves and grows from 1 to 1.4 m high. The isolation, purification, and characterization of
antimicrobial plant-derived compounds remains a stimulating research field, particularly
in the drug development field for multi-drug resistant bacteria [4,5].

U. dioica is extensively recycled as a traditional medicine for the management of
allergies [6], stone formation, anemia, rashes [7], hypertension [8], antiarthritic and an-
tirheumatic effects [9], antidandruff, galactagogue, hemostatic, and anti-ulcer activity,
stomachache and liver dysfunction, and anti-inflammatory [10,11], antihyperglycemic [10],
antioxidant, acute diuretic, natriuretic, and hypotensive effects [12]. It has been used in the
traditional therapy of antifungal agents [13].

The chemical constituents of the U. dioica plant also exhibit anticancer and anti-
diabeties mellitus (anti-DM) properties. Existing knowledge suggests that U. dioica pos-
sesses fatty acids, sterols, lignans, carotenoids, plastocyanins, glycoproteins, lectins, polysac-
charides, terpenes, and flavonoids as its main phytoconstitutents [14]. The identification of
essential oils is an interesting component of phytochemical investigation [15–17].

As the plant U. dioica in its crude form and its various constituents exhibited biological
potential, we intended to perform a gas chromatography–mass spectrometry (GC–MS)
analysis of U. dioica’s essential oil, and to evaluate its antioxidant, phytotoxic, and anti-
bacterial potential. For the validation of the experimental results, we followed in silico
techniques, such as molecular docking (MD) and ADMET, to highlight each ligand’s
behavior with respect to specific selected proteins.

In this study, the U. dioica plant’s oil revealed potential antioxidant and antimicrobial
activities, potentially for first time while using GC–MS-derived bioactive compounds
from the U. dioica plant’s oil. The most significant outcome of this study was to reveal
the phytotoxic effect of the oil for the first time. In this study, another objective was to
accomplish the docking interaction of the compounds with proteins, using in silico methods
and mutagenesis experiments, which are in the pipeline to be performed in upcoming
studies. 1HD2 is an extensively studied antioxidant enzyme, and 4TZK is used in several
studies to test antibacterial effects.

2. Materials and Methods
2.1. Sampling

Our research was conducted to collect samples in a suitable season from a specific area,
where the plant growth is good and available. According to the sampling plans, the whole
U. dioica plant was collected in March 2019 from the Dardarez Landidak regions of Bannu
(Latitude: 32◦59′9.9996′′ N and Longitude: 70◦36′14.9904′′ E), KPK, Pakistan. The plant
was identified by Dr. Faizan Ullah, Assistant Professor, Department of Botany, University
of Science and Technology Bannu, Bannu, Pakistan.

2.2. Extract Preparation

The whole plant material was dried in a shady area, ground well, and then soaked
in 80% aq. methanol (MeOH) for one week. The soaked material was evaporated by
using a rotary evaporator to obtain a dark, gummy residue. The gummy material was
initially extracted with n-hexane to remove the fatty materials. The defatted MeOH extract
was suspended in water, and then the aqueous fraction was further fractionated with
dichloromethane (DCM), ethyl acetate (EtOAc), and butanol. The DCM fraction was
preceded further by column chromatography and the essential oil part was passed through
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gas chromatography (GC) and gas chromatography mass spectrum (GC–MS) instruments,
and the components were identified.

2.3. Gas Chromatography–Mass (GC–MS) Spectrum Analysis

The essential oil component of the dichloromethane fraction of the U. dioica was
analyzed through a GC–MS Agilent 6890N Network GC system, combined with an Agilent
5973 Network Mass Selective Detector (GC–MS) instrument, under computer control. The
injector temperature was set at 220 ◦C for 5 min. At a split ratio of 1:10. 1 µL, a volume of
1000 ppm of the essential oil solution (GC Grade n, hexane, scharlau, chemia, Barcelona,
Spain) was injected. Initially, the column was maintained at 50 ◦C for 2 min and then
increased to 150 ◦C, at which it was held isothermal for 5 min, and a second rmp (200 per
minutes) was applied to 220 ◦C and held isothermal for 10 min. The total run time was
120 min. Thus, it was maintained between 180 ◦C and 230 ◦C, respectively. The MS was
performed in the electron ionization mode (70 eV) [18].

2.4. Antioxidant Activity

The antioxidant activity was estimated with a DPPH assay [19,20]. The DPPH solution
was set via dissolving 3.2 mg in 100 mL of 82% methanol, and then 2.8 mL of the DPPH
solution was added to the glass vial and monitored with the addition of 0.2 mL of the
test sample solution, leading to the final concentration of 1 µg/mL, 5 µg/mL, 10 µg/mL,
25 µg/mL, 50 µg/mL, and 100 µg/mL. Ascorbic acid was used as a standard. The process
was performed under dark conditions at fixed room temperature for 1 h, the discoloration
was measured at 517 nm in triplicate by using a UV spectrophotometer (Deuterium lamp,
Shimadzu, Japan), and the radical scavenging capacity was expressed as a percentage effect
(E%) and estimated by using the following equations.

%Scavenging =
Absorption o f control − absorption o f f raction

Absorption o f control
× 100

2.5. Phytotoxic Activity

The phytotoxic activity was estimated with the application of a modified protocol
of Lemna minor L. [15]. Inorganic E-medium was prepared by mixing the appropriate
inorganic constituents into 1 L of distilled water, and the pH was accustomed at 5.5–5.6 by
adding KOH solution and autoclaved at 121 ◦C for 15 min. The essential oil served as a
stock solution. A total of three sterilized flasks for each concentration were inoculated with
1000 µL, 100 µL, and 10 µL of the stock solution for 500, 50, and 5 ppm, respectively. Each
flask, medium (20 mL), and essential oil, each encompassing a rosette of three fronds of the
Lemna minor L., were added. In total, two supplemented flasks, one with the standard drug
(Paraquat) and the other with the E-medium, were served as positive and negative controls,
respectively. All the flasks were wrought with cotton and were reserved in the growth
cabinet for seven days. The number of fronds per flask was calculated and noted at day
seven. The results were interpreted by considering the growth regulation as a percentage
and considered with reference to the negative control.

%Growth regulation = 100 − Number o f f ronds in test sample
Number o f f ronds in negative control

× 100 (1)

2.6. Antibacterial Activity

To understand the antibacterial effect, Microplate Alamar Blue Assay was used [21,22].
Mueller–Hinton medium was used for the growth of the organism. This is a non-selective,
non-differential, microbiological growth medium. It contained beef extract, acid casein
hydrolysate, starch, and agar. The beef extract and casein acid hydrolysate provided
nitrogen, vitamins, carbon, amino acids, sulfur, and other essential nutrients. The
inoculation adjustment was done to a 0.5 McFarland turbidity index. The essential oil
samples were mixed in pure DMSO with a 1:1 ratio [23]. The media were poured into all
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the wells that did not contain any test samples. The reaction mixture was a total of 200 µL
and 96-well microtiter plates were used. In the end, about 5 × 106 cells were added in
each well of the controls, as well as the tests. The plate was wrapped with paraffin film
and was incubated for about 20 h. After incubation, the suggested dye, Alamar Blue, was
distributed in each well, and the plate was well shaken at 80 RPM in an incubator with
a shaking mode for about 3 h. The plate was covered with aluminum and essential oil
while the shaking was carried out in the shaking incubator. The color of the Alamar Blue
dye changing from blue to pink showed the growth of certain bacterial strains such as
Escherichia coli -ATCC 9837 (E. coli), Bacillus subtilis-ATCC 6633 (B. subtilis), Staphylococcus
aureus-ATCC6538 (S. aureus), Pseudomonas aeruginosa-ATCC 9027 (P. aeruginosa), and
Salmonella typhi-ATCC 6539 (S. typhi). The absorbance of each well was monitored in the
ELISA reader at a 570–600 nm wavelength.

2.7. Computational Analysis
2.7.1. Selection of Protein Targets and Chemical Compounds

In pharmaceutical research and computer-aided drug design (CADD), one of the most
significant computational techniques is called MD [24,25]. The fundamental requirement
of protein–ligand MD protocols is to find the probable binding geometries of a suspected
ligand with a known three-dimensional structure and a target protein [26]. This may be
accomplished by comparing the structures of both the hypothetical ligand and the targeting
protein. The 2D structures of the phytochemical dataset were sketched with the ChemDraw
application for further analysis [27] (Table 1). In this study, we targeted the peroxiredoxin
protein [PDB ID: 1HD2] [28] and the potential selected macromolecule [PDB ID: 4TZK] [29]
for the MD analysis, in order to check its correlation with the experimental analysis of the
whole Urtica dioica L. plant’s essential oil compounds.

Table 1. Phytochemical compounds identified from U. dioica essential oil of DCM fraction.

Name of Compound Mass/RT
(min) % Area Molecular

Formula
Fragments

Ions Structure

Nonanoic acid, 9-oxo-,
ethyl ester 200/33.69 2.32 C11H20O3 41,55,88,29,43,101,83,

60,157,155
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Table 1. Cont.

Name of Compound Mass/RT
(min) % Area Molecular

Formula
Fragments

Ions Structure

β-Himachalenoxide 220/36.39 0.45 C15H24O 110,220,95,192,43,41,
69,109,151,93
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Table 1. Cont.

Name of Compound Mass/RT
(min) % Area Molecular

Formula
Fragments

Ions Structure
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E, E, Z-1, 3,
12-Nonadecatriene-5,
14-diol

294/99.40 8.39 C15H26O2 55,95,81,41,67,69,96,
83,43,57
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tion of hydrogen atoms and an Amber14 force field scheme, and a realistic scheme with 
chiral constraints was applied, as were geometrical constraints for extra energy control of 
the potent bounded conformers. The surfaces and maps panel module was used to man-
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2.7.2. Molecular Docking (MD) and Interaction Analysis

MD is a suitable molecular modeling procedure, which is significantly based on the
searching and ranking of poses to generate an MD score scheme, and the best binding
configurations that are estimated from a best-docked complex, which help to explore the
binding interactions of a protein–ligand; therefore, it could be useful to understand the
molecular functions of a ligand that is confined within the active residual region of the
selected enzyme [30,31]. For MD purposes, 5 compounds were used, and the selected
proteins’ three-dimensional structures (PDB ID: 1HD2 and 4TZK), in .pdb format, were
downloaded from the PDB and prepared in a molecular operating environment (MOE)
software [32,33]. The water molecules from the ligand that was already bound to the
selected enzyme molecule were detached, and for the heteroatoms, 3D protonation was
performed to prepare its structure for the MD procedure. In each protein structure, an active
site was acknowledged, and PRO40, THR44, PRO45, LEU116, PHE120, GLY46, CYS47,
ARG127, and THR147 residues were selected for the active residual region of the 1HD2
protein, while GLY14, ILE15, ILE16, ALA22, PHE41, ALA190, ALA191, GLY192, PRO193,
ILE194, MET147, ASP148, PHE149, MET155, VAL65, GLN66, THR17, SER20, ILE21, HIS93,
SER94, ILE96, GLY97, PHE98, MET99, MET103, LEU63, ASP64, GLY104, ILE122, PRO156,
ALA157, TYR158, MET161, LYS165, THR196, ALA198, MET199, ILE202, LEU207, ALA211,
ILE215, and LEU218 residues were selected for the active site of the 4TZK protein. A
structural optimization was also applied by notable estimations, such as the addition of
hydrogen atoms and an Amber14 force field scheme, and a realistic scheme with chiral
constraints was applied, as were geometrical constraints for extra energy control of the
potent bounded conformers. The surfaces and maps panel module was used to manage
the surface’s structural transparency and resulted in evidence of important amino acids in
the selected region of the enzyme selected as the initial deigned conformer. A database of
23 phytochemicals that was retrieved from the experimental analysis was created in the
MOE software, in order to perform MD simulations, and the database was saved with an
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.mdb extension for next-level analysis. The enhancement and estimations of binding-free
energies (∆G) were evaluated with the application of a scoring function (GBVI/WSA dg)
to screen the top-ranked poses that were performed [34]. Pi, hydrogen, and hydrophobic
interactions as the consistent scoring pattern were established in the form of an MD score of
the correct binding poses [35]. The database of the docked complex, which was generated
in the MOE, was visualized for a detailed understanding of the mode of the binding
interactions of the ligands in the selected active site of the target protein.

2.7.3. Pharmacokinetic/ADMET Profile Estimation

The selected best-docked compounds were used for the estimations of the ADMET
(absorption, distribution, metabolism, excretion, and toxicity) properties in order to justify
the drug-like assumptions, as this is considered to be an essential criterion for the drug-like
screening of chemical libraries [24,36]. For the purpose of the ADMET profile estimation of
the selected potential hits, SwissADME [37] and Datawarrior tools [38] were used.

3. Results and Discussion

The study showed a GC–MS analysis of the isolated essential oils of U. dioica
(Figures 1 and 2). The GC–MS chromatogram showed various peaks, which, upon comparison
with data from the literature, were identified as nonanoic acid, 9-oxo- ethyl ester, caryophyllene
oxide, limonen-6-ol-pivalate, β-himachalenoxid, 4-tert-butyltoluene, α-bisabolol, cholestan-
3-ol,2-methylene-, (3β, 5α), benzenepropanol 2,4,6-trimethyl, Z-(13,14-epoxy)tetradec-11-
en-1-ol acetate, hexadecanoic acid, ethyl ester, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, 2-
pentadecanone, 6,10,14-trimethyl, hexadecanoic acid, methyl ester, 9,12-octadecadienoic acid,
ethyl ester, ethyl 9,12,15-octadecatrienoate, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl)
ester, 16-hentriacontanone, Z-5-methyl-6-heneicosen-11-one, 18-pentatriacontanone, E,E,Z-
1,3,12-nonadecatriene-5,14-diol, 9-octadecenoic acid (Z), 9-octadecenyl ester, (Z), and tricyclo
[20.8.0.0(7,16)] triacontane, 1(22),7(16)-diepoxy. The identification of these compounds was
made by the comparison of their retention time and the mass spectra of those stored in
the computer library and published literature. The mass, retention time, % area, molecular
formula, fragment ions, and their structures, are hereby summarized in Table 1.

The mass spectrum of the identified compounds is presented in Figures 3–5.
In the antioxidant assay (Table 2), concentrations were taken in (µg/mL), starting from

50, 100, 150, 200, and 1000 and shows the IC50 values in Figure 6. The values of the essential
oil that were obtained are 39.3, 40.5, 42.7, 45.9, and 63.3, while the values of the standard
drug (ascorbic acid) are 70.5, 73.7, 77.8, 79.4, and 87.4, based on increasing concentrations.
The U. dioica essential oil showed significant DPPH scavenging activity, as compared to
the standard’s ascorbic acid. The essential oil of U. dioica, at low concentration, showed
no growth inhibition, while at higher concentration, it showed inhibition power. Similar
activity was reported by Kukri et al., using crude extract [39]. In a recent study conducted
by Chaqroune and Taleb (2022), the findings showed significant antioxidant effects of
the essential oil. The methanol and ethanol were used as solvents for extraction [40,41].
These findings may correlate to this study, as essential oils have the potential to be used as
antioxidant agents.

In the phytotoxic assay (Table 3), the concentrations were taken in µg/mL, start-
ing from 10, 100, 250, 500 and 1000 µg/mL. The concentration of the standard drug
(0.015 µg/mL) was used. The percentage of the growth inhibition of the essential oil
showed 26% and 62.5% at the concentrations of 500 and 1000 µg/mL, respectively, while at
other concentration levels, showed a 0% result.
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Figure 3. Representing the mass spectrum of Nonanoic acid, 9-oxo-, ethyl ester with RT= 33.692 (a), Caryophyllene oxide with retention time (RT) =35.706 (b), Limonen-
6-ol, pivalate with RT = 36.06 (c), β- Himachaleoxide with RT = 36.39 (d), 4-tert-Butyltoluene with RT = 36.853 (e), α-Bisabolol with RT = 37.276 (f), Cholestan-3-ol,
2-methylene-, (3β, 5α) with RT = 36.325 (g), Benzenepropanol, 2, 4, 6-trimethyl- with RT =36.942 (h), and Z-(13,14-Epoxy) tetradec-11-en-1-ol acetate with RT = 36.613 (i).
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Figure 4. Representing the mass spectrum of Hexadecanoic acid, ethyl ester with RT = 41.613 (a), 3, 7, 11, 15 -Tetramethyl-2-hexadecen-1-ol with RT = 41.140
(b), 2-Pentadecanone, 6, 10, 14-trimethyl- with RT = 41.303 (c), Hexadecanoic acid, methyl ester with RT = 43.470 (d), 9,12-Octa decadienoic acid, ethyl
ester with RT = 54.297 (e), Ethyl 9,12,15-octadecatrienoate with RT = 54.767 (f), 1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester with RT = 80.831 (g),
16-Hentriacontanone with RT = 91.164 (h), and Z-5-Methyl-6-heneicosen-11-one with RT = 92.799 (i).
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acid (Z)-, 9-octadecenyl ester, (Z) - with RT = 103.82 (c), and Tricyclo [20.8.0.0(7, 16)] triacontane, 1(22), 7(16)-diepoxy- with RT = 104.247 (d).
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Table 2. Antioxidant activity of U. dioica essential oil.

Conc. (µg/mL) %Scavenging
(Essential Oil) IC50 (Essential Oil) %Scavenging

(Ascorbic Acid)

50 35.3 ± 1.8 70.5 ± 2.3
100 40.5 ± 1.9 71.7 ± 3.1
150 42.7 ± 2.1 470.4 72.9 ± 2.0
200 45.9 ± 1.7 73.4 ± 2.4
1000 63.3 ± 1.8 87.4 ± 3.0
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Figure 6. Equation to determine the IC50 values of essential oil.

Table 3. Phytotoxic activity of U. dioica essential oil.

Conc. (µg/mL) Essential Oil Control %Growth Inhibition Std. Drug Conc.
(µg/mL)

10 24 24 0

0.015
100 24 24 0
250 24 24 0
500 17 24 26
1000 09 24 62.5

Table 4 contains the antibacterial results against five bacteria, E. coli, B. subtilis, S. aureus,
S. aeruginosa, and S. typhi. Although the essential oil did not respond to the concentration
of 250 µg/mL, it started to exhibit antibacterial activity against E. coli and B. subtilis at
the concentration of 500 µg/mL, with an inhibition zone diameter of 10 ± 0.25 mm and
12 ± 0.32 mm. The antibacterial activity exhibited by the essential oil of U. dioica against
the tested bacterial strains, E. coli, B. subtilis, S. aureus, S. aeruginosa, and S. typhi, showed
good antibacterial activity (1000 µg/mL) as compared to the reference drug, ofloxacin
(0.25 µg/mL). These findings concluded that the U. dioica essential oil could be used as a
potential antibacterial agent for aromatherapy or topical applications against E. coli and
B. subtilis. In addition, previous studies have also been reported on the antibacterial
effects of U. dioica extract against selected pathogens [42,43]. The antibacterial activities
of essential oils against the group of bacteria (E. coli, B. subtilis, and S. aureus) has been
proven by Zeroual et al., 2021 [44]. Similarly, the current findings also showed a significant
outcome against E. coli, B. subtilis, S. aureus, S. aeruginosa, and S. typhi bacteria.
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Table 4. Antibacterial activity of Urtica dioica essential oil against selected bacteria strains.

Bacteria

U. dioica Essential Oil Control
(Ofloxacin) 0.25 µg/mL250 µg/mL 500 µg/mL 1000 µg/mL

Inhibition Zone Diameter (mm)

E. coli 0 10 ± 0.25 32 ± 1.4 92.47 ± 2.3
B. subtilis 0 12 ± 0.32 35 ± 1.3 91 ± 3.1
S. aureus 0 0 25 ± 1.2 94 ± 2.4
P. aeruginosa 0 0 26 ± 1.1 94 ± 3.1
S. typhi 0 0 20 ± 1.5 95 ± 2.3

Computational Analysis

The MD investigations of the selected ligands with two target proteins were performed
by MOE software. The binding energies of the selected ligands within the best binding
pose were studied and it was observed that four ligands presented good results in terms of
their binding interactions and binding energies in kcal/mol. A total of two best- bounded
ligands in the vicinity of the active binding site of both the target proteins are shown in
Figures 7–10. The library of the 23 compounds was docked, and the three top virtual
hits, with the antioxidant protein [PDB ID: 1HD2] [28] and antibacterial protein [PDB ID:
4TZK] [29] from the MD results, significantly presented a correlation with the experimental
analysis of the whole Urtica dioica L. plant’s essential oil compounds. Hence, the two-
dimensional interaction plots and three-dimensional presentation of the hydrogen binding
pocket are shown in Figures 7–10.
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Figure 8. Hydrogen bonding capacity of top three scored docked ligands CID_ 22287839 (a),
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Table 5 presents the summary of the interaction analysis, the binding energies of
the best-bounded conformation of the ligands with the target proteins in kcal/mol,
and the interaction plot of top three best-docked ligands. 9-Octadecenoic acid (Z)-,
9-octadecenyl ester, (Z) [CID_22287839] presented the best-bounded conformation at
−6.1991 kcal/mol, 18-Pentatriacontanone [CID_10440] presented the best-bounded confor-
mation at −5.7512 kcal/mol, and Z-(13, 14-Epoxy) tetradec-11-en-1-ol acetate [CID_5363633]
presented the best-bounded conformation at−5.2222 kcal/mol, within the active site of the
antioxidant protein [PDB ID: 1HD2] and in the vicinity of 4Å (Figures 7 and 8). Each color
presents the type of interacting residues, and the hydrogen bonds are highlighted in each
figure. In the interaction plot of the top three best-docked ligands, 18-Pentatriacontanone
[CID_10440] presented the best-bounded conformation at −8.2366 kcal/mol, Ethyl 9,
12, 15-octadecatrienoate [CID_5367460] presented the best-bounded conformation at
−7.8228 kcal/mol, and 9, 12-Octadecadienoic acid, ethyl ester [CID_22371644] presented
the best-bounded conformation at −7.7674 kcal/mol, within the active site of the antibac-
terial protein [PDB ID: 4TZK] and in the vicinity of 4Å (Figures 9 and 10).

The reported in silico applied protocols highlighted the standing of the ADMET profile
for the short-listing of large chemical libraries, in order to justify the potential drug-like
hits that can be tolerable in the design and development of novel drugs [34]. The ADMET
justifications with the SwissADME and Datawarrior tools validated the properties of the
selected hits, such as molecular weight (MW), partition coefficient/lipophilic parameters
(logP values), hydrogen bond acceptor (HBA), hydrogen bond donor (HDB), total polar
surface area (TPSA), molar refractivity (MR), and rotatable bond (RB), which are vital drug-
like characteristics that are considered for the selected hits. As preliminary drug discovery
protocols, they endorse estimations of drug-likeness, water solubility, pharmacokinetics,
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and toxicity estimations, along with medicinal chemistry perceptions, as highlighted for
the selected potential hits in Table 6.

Table 5. Summary of interaction analysis of the two best virtual hits.

Ligand Name Binding Energy
(Kcal/mol)

Binding Interaction

Interacting Residues Interaction
Type

Bond
Distance

Bond Energy
(Kcal/mol)

Antioxidant protein [PDB ID: 1HD2]

9-Octadecenoic acid (Z)-,
9-octadecenyl ester, (Z)
[CID_22287839]

−6.1991 O2–NH2 ARG 124 (A) H-acceptor 3.15 −2.0

18-Pentatriacontanone
[CID_10440] −5.7512 O1–NZ LYS 49 (A) H-acceptor 2.92 −6.4

Z-(13, 14-Epoxy)
tetradec-11-en-1-ol acetate
[CID_5363633]

−5.2222 O1–NH2 ARG 124 (A) H-acceptor 3.05 −0.5

Antibacterial protein [PDB ID: 4TZK]

18-Pentatriacontanone
[CID_10440] −8.2366 O1–OH TYR 158 (A) H-acceptor 2.93 −2.3

Ethyl 9, 12,
15-octadecatrienoate
[CID_5367460]

−7.8228 O2–NZ LYS 165 (A) H-acceptor 3.16 −1.1

9, 12-Octadecadienoic acid,
ethyl ester
[CID_22371644]

−7.7674 O2–N GLY 96 (A) H-acceptor 3.33 −1.8

Not all the physicochemical properties of the virtual hits are in the acceptable range,
and have some violations of Lipinski [42] and Veber’s [43] theory of drug-likeness because
of a large MW. The lipophilicity and water solubility class also presented very good
outcomes for Z-(13, 14-Epoxy) tetradec-11-en-1-ol acetate, Ethyl 9, 12, 15-octadecatrienoate,
and 9, 12-Octadecadienoic acid, ethyl ester. The gastrointestinal drug absorption (GI-
DA) [44] and blood–brain barrier (BBB) permeability [44] were also calculated for the
selected five hits. The CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 inhibitory
potential was estimated, and it was observed that Z-(13, 14-Epoxy) tetradec-11-en-1-ol
acetate, Ethyl 9, 12, 15-octadecatrienoate, and 9, 12-Octadecadienoic acid, ethyl ester is
CYP1A2 and CYP2C9 inhibitors, although both compounds, 9-Octadecenoic acid (Z)-, 9-
octadecenyl ester, (Z) and 18-Pentatriacontanone are P-glycoprotein (P-gp) substrates. The
Log Kp (skin permeation) values were high for all the hits, and the PAINS alert and Brenk
alert that were supported by the medicinal chemistry parameter evaluation [30] showed
minor violations, which provides suggestions to improve the structures’ functionality and
activity before moving a drug to the next phase of development. Synthetically, all the hits
were highly accessible, with high scores, although minor toxicity was presented for one hit,
Z-(13, 14-Epoxy) tetradec-11-en-1-ol acetate. Hence, the selected hits presented moderate
drug-like activities.
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Table 6. Computational protocols applied for ADMET profile.

Chemical
Parameters

9-Octadecenoic Acid
(Z)-, 9-Octadecenyl

Ester, (Z)
18-Pentatriacontanone

Z-(13, 14-Epoxy)
tetradec-11-en-1-ol

Acetate
Ethyl 9, 12,

15-Octadecatrienoate
9, 12-Octadecadienoic

Acid, Ethyl Ester

Physicochemical Properties

Molecular weight
(MW) (g/mol) 532.92 506 268.39 306.48 308.50

Rotatable bonds 32 32 13 15 16

Hydrogen bond
acceptors (HBA) 2 1 3 2 2

Hydrogen bond
donors (HBD) 0 0 0 0 0

Molar Refractivity
(MR) 175.50 170.56 78.81 98.12 98.59

Total polar surface
area (TPSA) (Å)

26.30 17.07 38.83 26.30 26.30

Bioavailability
Score 0.17 0.17 0.55 0.55 0.55

Lipophilicity

Log Po/w (iLOGP) 8.73 8.68 3.44 4.82 5.01

Water Solubility

Class Insoluble Insoluble Soluble Moderatley soluble Moderatley soluble

Pharmacokinetics

GI absorption Low Low High High High

BBB permeant No No Yes No No

P-gp substrate Yes Yes No No No

CYP1A2 inhibitor No No Yes Yes Yes

CYP2C19 Inhibitor No No No No No

CYP2C9 inhibitor No No Yes Yes Yes

CYP2D6 inhibitor No No No No No

CYP3A4 inhibitor No No No No No

Log Kp (skin
permeation) (cm/s) 1.61 2.51 −4.74 −3.44 −2.79

Toxicity estimation

Mutagenic No No Yes No No

Tumorigenic No No Yes No No

Reproductive
effects No No No No No

Irritant effects No No Yes No No

Medicinal chemistry-related properties

PAINS No No No No No

Brenk 1 t: isolated_alkene No
3: Three-

membered_heterocycle,
isolated_alkene

1: isolated_alkene 1: polyene

Synthetic
accessibility 5.29 4.57 3.60 3.26 3.53

4. Conclusions

The present study was conducted on U. dioica essential oil, which resulted in the iden-
tification of 22 bioactive compounds. For this identification, a GC–MS analysis was carried
out. However, this study was not conducted with an individual compound. The whole
U. dioica plant’s essential oil revealed potential antioxidant and antimicrobial activities in
this study, potentially for the first time using the GC–MS-derived bioactive compounds of
the U. dioica plant’s essential oil. The most significant outcome of this study was to reveal
the phytotoxic effect of these essential oils for the first time. Moreover, future research could
surely contribute to the selection of an individual compound obtained from the essential
oil of U. dioica. The MD investigations assisted the experimental studies with respect to the
protein–ligand binding conformation representations, in terms of the binding affinity and
docked score, and helps in understanding the mechanism, while the ADMET estimation
helps to justify the drug-like characteristics. Hence, these hits are recommended for clinical
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investigations, and it is expected that, in drug development, our results on antioxidant
and antibacterial hits could surely contribute to the selection of significant drug candidates
obtained from the essential oil of U. dioica.
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