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Abstract: Our current understanding of organophosphorus agent (pesticides and chemical warfare
nerve agents) metabolism in humans is limited to the general transformation by cytochrome P450
enzymes and, to some extent, by esterases and paraoxonases. The role of compound concentrations
on the rate of clearance is not well established and is further explored in the current study. We
discuss the metabolism of 56 diverse organophosphorus compounds (both pesticides and chemical
warfare nerve agent simulants), many of which were explored at two variable dose regimens (high
and low), determining their clearance rates (Clint) in human liver microsomes. For compounds that
were soluble at high concentrations, 1D-NMR, 31P, and MRM LC-MS/MS were used to calculate
the Clint and the identity of certain metabolites. The determined Clint rates ranged from 0.001 to
2245.52 µL/min/mg of protein in the lower dose regimen and from 0.002 to 98.57 µL/min/mg of
protein in the high dose regimen. Though direct equivalency between the two regimens was absent,
we observed (1) both mono- and bi-phasic metabolism of the OPs and simulants in the microsomes.
Compounds such as aspon and formothion exhibited biphasic decay at both high and low doses,
suggesting either the involvement of multiple enzymes with different KM or substrate/metabolite
effects on the metabolism. (2) A second observation was that while some compounds, such as dibrom
and merphos, demonstrated a biphasic decay curve at the lower concentrations, they exhibited only
monophasic metabolism at the higher concentration, likely indicative of saturation of some metabolic
enzymes. (3) Isomeric differences in metabolism (between Z- and E- isomers) were also observed.
(4) Lastly, structural comparisons using examples of the oxon group over the original phosphoroth-
ioate OP are also discussed, along with the identification of some metabolites. This study provides
initial data for the development of in silico metabolism models for OPs with broad applications.

Keywords: LC-MS/MS; NMR; intrinsic clearance rate; cytochrome P450; metabolism; metabolite; toxicity

1. Introduction

Pesticides are widely used in agriculture despite safety restrictions worldwide. One
class of pesticides, organophosphorus compounds (OPs), are synthetic insecticides im-
plemented for pest control and crop protection throughout the world. As a result of the
widespread use of OPs in agriculture, an estimated 385 million accidental acute exposures
to OPs occur every year, leading to around 11,000 fatalities [1]. Additionally, due to the ease
of availability, OP pesticides account for approximately 14–20% of global suicides leading
to 110,000–168,000 deaths [2–4]. OPs have also been optimized for toxicity towards humans
for use as chemical warfare nerve agents (CWNAs), which are generally categorized into
three different classes known as the G-series, V-series, and, most recently, the novichok
agents or A-series [5,6]. The acute toxic effects of CWNA and pesticide poisoning are well
established, with over 700 thousand cases annually [1]. The main mechanism of action in
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acute toxicity is phosphylation of the active site serine in the enzyme acetylcholinesterase
(AChE), leading to several downstream effects, including cholinergic crisis and death,
depending on exposure. The use of CWNAs serves as a concern for general human safety,
as reflected by events such as the use of sarin in the Syrian Arab Republic during the
ongoing conflict [7], but more prevalent is the non-lethal and long-term exposure of OPs,
which can cause delayed neuropathy or long-lasting and cumulative effects, including
depression, muscle control loss, Gulf War syndrome observed in Gulf War veterans [8,9], or
aerotoxic syndrome [10]. Although the primary mechanism of toxicity is well understood,
the metabolism of OPs, especially in humans, has not been investigated as well [11–15].
The involvement of cytochrome P450s (P450s) in OP metabolism has been noted through
multiple metabolic studies as the primary metabolic enzymes contributing to the activation
of phosphorothioate-containing OPs through a desulfuration reaction to form an active
toxic oxon metabolite that contributes to AChE inhibition [16]. P450s have also been shown
to contribute to the metabolic detoxification of OPs, with some compounds undergoing
a dearylation reaction, resulting in a detoxified metabolite [17,18]. Additional evidence
demonstrates that CYP2D6 may serve a direct role in OP metabolism that could potentially
be exploited for treatments in the future [19]. Paraoxonase-1 (PON1) has also been shown
to contribute to OP metabolism by facilitating the hydrolysis of organophosphorus ester
bonds [20,21]. Nonetheless, a comprehensive investigation of the rate of metabolism, espe-
cially one comparing the rates for a structurally diverse set of OPs, has not been performed.
Investigation of the rate of metabolism as it relates to structure and also determining the
primary enzymes responsible for metabolism could lead to preventative treatments de-
signed to deter activation metabolism of OPs or to enhance the metabolism into non-toxic
metabolites for those that do not require activation [15].

The goal of the current study is to determine the metabolic clearance rates of a variety
of structurally diverse OPs for both high- and low-dose exposure regimens in human
liver microsomes (HLMs). HLMs allow for in vitro metabolic testing of OPs in biological
conditions, which over time will metabolize OPs, providing a clearance rate [22]. This
study utilizes both one-dimensional NMR (1H, 31P, and 19F for OPs that contain fluorine) to
explore a high-dose exposure regimen as well as multiple reaction monitoring (MRM) LC-
MS/MS to explore a lower dose exposure regimen to determine the rate of metabolism of a
variety of OPs and identify some of the resultant metabolites. This represents an important
first step to providing the data, enabling the development of computational models for
the prediction of metabolic transformations of OPs and CWNAs in humans, and may
eventually aid in the development of more broad-spectrum treatments for OP poisoning.

2. Materials and Methods

The NMR spectroscopic data were recorded on either a Bruker AVIII 400HD or Avance
NEO 400 MHz NMR spectrometer, and the data were processed using TopSpin 3.2 (Bruker,
Billerica, MA, USA) and MestReNova 14.2 (Mestrelab Research S.L., Compostela, Spain).
A Thermo TSQ Quantiva with Vanquish UPLC (Thermo Fisher Scientific, Waltham, MA,
USA) was used to obtain LC-MS/MS. The LC-MS/MS data were analyzed using Thermo
Scientific Xcalibur 4.3. The clearance rates were calculated using GraphPad Prism 9.2.0.

All organophosphorus compounds (OPs) were purchased in neat form from either LGC
Standards (Manchester, NH, USA) or Sigma-Aldrich (Milwaukee, WI, USA); reduced nicoti-
namide adenine dinucleotide phosphate (NADPH) tetrasodium salt (CAS 2646-71-1) was
from Sigma Aldrich (Milwaukee, WI, USA), deuterated tris(hydroxymethyl)aminomethane
(TRIS, CAS 202656-13-1), deuterated water and deuterated hydrochloric acid (DCl) were
from Cambridge Isotope Laboratories (Tewksbury, MA, USA), TRIS base (CAS 77-86-1)
was from Fisher Scientific (Florence, KY, USA), and ammonium formate (CAS 540-59-
2) was from Sigma Aldrich (Milwaukee, WI, USA). Isotopically labeled OPs, acephate-
acetyl-d3 (Ace-d3), chlorpyrifos-diethyl-d10 (CPy-d10), paraoxon-ethyl-d10 (PE-d10), and
trichlorfon-dimethyl-d (TCP-d6) were also purchased from Sigma Aldrich (Milwaukee, WI,
USA). Chemical warfare nerve agent simulants, 3-cyano-4-methyl-2-oxo-2H-chromen-7-yl
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ethyl methylphosphonate (EMP, coumarin simulant of VX), 3-cyano-4-methyl-2-oxo-2H-
chromen-7-yl cyclohexyl methylphosphonate (CMP, coumarin simulant of cyclosarin),
3-cyano-4-methyl-2-oxo-2H-chromen-7-yl (3,3-dimethylbutan-2-yl) methylphosphonate
(PiMP, coumarin simulant of soman), and ethyl (4-nitrophenyl) dimethylphosphoramidate
(NEDPA, p-nitrophenol simulant of tabun) were generously provided by Dr. Christopher
Hadad in the Department of Chemistry and Biochemistry at OSU, where they were synthe-
sized using previously published procedures [23]. Mixed-gender human liver microsomes
(HLMs, 150-donor pool, lot number ZZQ) were purchased from BioIVT (Hicksville, NY,
USA). Methanol, acetonitrile, and formic acid (Fisher Scientific, Florence, KY, USA) were all
high-performance liquid chromatography (HPLC) grade.

Stock solutions of OPs and CWNA simulants (120 mM, 5 mM, and 250 µM) were
prepared in acetonitrile (AcN) and stored at −80 ◦C when not in use. Stock solutions
of NADPH (20 mM) and deuterated TRIS (120 mM, pH = 7 using deuterated HCl) were
prepared in D2O for NMR or in double-distilled water for LC-MS studies, both stored at
−80 ◦C while not in use. Stock solutions of the internal standards (ISTDs: Ace-d3, CPy-d10,
PE-d10, and TCP-d6) were prepared in AcN at 35.8 mM, 9.2 mM, 11.7 mM, and 25 mM,
respectively. Further, a working solution of 10 ppm of each ISTD was prepared in AcN,
and all ISTD solutions were stored at −80 ◦C when not in use.

For the high dose (NMR) studies, OPs (5 mM) were incubated with HLMs (0.5 mg/mL),
deuterated TRIS buffer (10 mM), and NADPH (6 mM) in deuterated H2O (in a 750 µL total
sample volume) before collecting 1H-, 31P-, and 19F- (based on structure) NMR data across a
minimum of 2.5 days (or until fully metabolized) with spectra collected as fast as possible for
those cleared most rapidly or every two hours for most OPs. The concentration of the HLMs
for the study, 0.5 mg/mL, was chosen based on previously published literature [24–26].
This was followed by the addition of 1.5 mL of AcN to quench the reactions, after which
they were stored at −80 ◦C for future evaluation. The NMR spectroscopic data were
recorded on a Bruker AVANCE-III HD or Avance NEO 400 MHz NMR spectrometer, and
the data were processed using TopSpin 3.2 (Bruker, Billerica, MA, USA) and MestReNova
14.2 (Mestrelab Research S.L., Compostela, Spain) software. 31P data were collected using
the zgpg30 pulse program, which uses a phosphorus pulse flip angle of 30◦ and power-
gated composite pulse decoupling of 1H using the WALTZ16 decoupling sequence with
data collected with a spectral width of 406 PPM, a center at −50 PPM, 32 K complex points,
and 128 scans. 19F data were collected using the zgig pulse program, which uses inverse
gated composite pulse decoupling of 1H using the WALTZ16 decoupling sequence with
data collected with a spectral width of 241 PPM, a center at −100 PPM, 64 K complex
points, and 128 scans. 1H data were collected using the zg30 pulse program, which uses a
proton pulse flip angle of 30◦ with data collected with a spectral width of 20 PPM, a center
at 6.18 PPM, 32 K complex points, and 128 scans. Peak areas in the 31P NMR spectra were
used to estimate the concentrations of OPs (and metabolites) at each time point, which
were further applied to calculate the elimination rate constant (k) and intrinsic clearance
rates (Clint), as explained below. Additionally, the NMR data were analyzed to identify the
metabolites being formed during the experiment to enable the prediction of the various
metabolic pathways the compounds could undergo.

In the low-dose (LC-MS/MS) studies, OPs were separated into seven groups based on
their literature LD50 values [27–30], with eight compounds in each set. The LD50 values
of the simulants were estimated based on their comparison with the corresponding nerve
agents [23,31–35]. The experimental setup was comparable to the high-dose study. Briefly,
the OPs (2 * × LD50) were incubated with the HLMs (0.5 mg/mL), TRIS buffer (10 mM), and
NADPH (1 mM) in 1 mL of H2O at 37 ◦C. Eleven time points (0, 10, 20, 30, 60, 120, 240, 360,
480, 720, and 1440 min) were collected by taking 75 µL of the reaction mixture and halting
metabolism by adding AcN spiked with ISTDs (Ace-d3 (125 ng/mL), CPy-d10 (125 ng/mL),
PE-d10 (75 ng/mL), and TCP-d6 (100 ng/mL)) and storing the samples at −20 ◦C until
further analysis. After the last time point, all samples along with pooled QCs (low, mid, and
high concentrations) and blanks were centrifuged at 1147× g for 30 min at 4 ◦C after which
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the supernatant was removed from the mixture, diluted in H2O, and vortexed for 10 min.
A fresh batch of calibration standards was prepared for each group and processed in the
same manner as described above. The time point samples, QCs, blanks, and calibration
standards were subjected to LC-MS/MS analysis on a reversed-phase UPLC column (CSH
Fluoro-Phenyl column, 1.7 µm particle size, 2.1 mm X 100 mm, Waters, Milford, MA,
USA) on a TSQ Quantiva with a Vanquish UPLC as the front end. All compounds were
detected in positive ion mode using the multiple-reaction monitoring (MRM) setting. A
standard solution of 1 µg/mL, in acetonitrile, for individual OPs was directly infused
into the electrospray ionization source of the MS system while scanning for protonated,
sodiated, or ammoniated ions prior to mass spectrometric parameter optimization. Next,
the optimal collision energies (CEs) and three most intense product ions were selected for
each analyte, where the most intense product ion was used as the quantifier ion (Pdt1), and
the other two product ions (Pdt 2 and Pdt 3) were used as qualifier ions to ensure that the
peak being quantified was indeed the analyte of interest (shown in Table S1). Quantification
of each OP was performed using the linear range of a calibration curve consisting of fifteen
different concentration levels ranging from 0.008 to 6000 ng/mL (shown in Table S1). Water
with 2.5 mM ammonium formate and 0.05% formic acid (FA) and methanol with 2.5 mM
ammonium formate and 0.05% FA were used as mobile phases A and B, respectively, for the
gradient elution. For all compounds, the gradient consisted of 0 to 2.5 min with 99% A/1%
B; 2.5 to 2.51 min 55% A/45% B; 2.51 to 7.51 min linear gradient to 20% A/80% B; 7.51 to
8.5 min 20% A/80% B; 8.5 to 9 min linear gradient to 2% A/98% B; 9 to 12 min 2% A/98% B.
The concentration of each OP at each time point was calculated using the calibration curves
(fitted to a log–log line with R2 = 0.9999 with area ratio versus compound concentration;
area ratio for the calibration curve calculated using the ratio of compound area and ISTD
area; ISTD selected based on the nearest retention time). The concentration was then used
to calculate the elimination rate constant (k, min−1) by plotting the concentration versus
time and fitting it to a non-linear least square regression analysis for both a monophasic
and biphasic decay model with the best-fit model selected using the extra sum-of-squares
F-test whereby the simpler model was selected unless the p-value was less than 0.05 (NMR
and MS data, GraphPad Prism 9.2.0, criteria: probability of p to enter was ≤ 0.05, span
(Y0-plateau for first order decay or (Y0-Plateau) × PercentFast × 0.01 for second-order)
≥ 2 × standard deviation at 95% confidence interval). The following equations were used
to calculate the in vitro half-life (t1/2, min) and intrinsic clearance rate for HLMs (Clint,
µL/min/mg of protein), where V represents the volume of incubation in µL, and A is the
amount of protein added during the incubation in mg.

t1/2 =
ln 2

k
(1)

Clint =
ln 2 × V
t1/2 × A

(2)

3. Results and Discussion

The clearance rate comparison of the high and low-dose regimen studies is summa-
rized in Figure 1. There were seven compounds of the 56 studied that failed the clearance
criteria of the concentration vs. time graph, having a span ≥ 2 times the standard devia-
tion of the concentration measurements, and hence their clearance rates were considered
negligible. For the remaining compounds, most OPs followed a monophasic decay in both
the high and low-dose regimens. Since the clearance rate of any drug is dependent on the
half-life and the elimination rate constant, which is also dependent on the concentration of
the drug at a given time in the plasma (or in this case microsomal solution, Ct = C0.e−kt), it
is expected that the clearance rates between the two studies would not be exactly the same.
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Figure 1. Comparison of the intrinsic clearance rates of OPs in HLMs calculated from data obtained
at low- and high-dose regimen experiments.

Only two OPs, formothion (1, Figure 2) and aspon (5, Figure 2), demonstrated biphasic
metabolism at both dose regimens, with 11 others demonstrating biphasic metabolism
in one of the two-dose regimens (Table S2). The fast clearance rate for four compounds,
chlorpyrifos oxon (CPO), diazinon, fenthion, and isofenphos (2, Figure 2), was too fast
to yield enough points among the selected sample time points to allow for appropriate
fitting; thus, only the slower decay is reported. In line with some literature, one possible
explanation for the biphasic effect is that one of the metabolites is either a substrate (leading
to competitive inhibition) or inhibitor of the same P450 that is metabolizing the OP, thereby
inhibiting the original metabolism [36]. Another plausible explanation could be that there
are multiple P450s acting on the same compound but with different kcat and KM values.
In this scenario, likely the fast clearance rate would be due to an enzyme with both a
higher kcat and KM, thereby leading to fast clearance until the concentration of the OP is
low enough to no longer bind to the enzyme (due to its high KM); then, the remaining
compound would be broken down by another P450 with lower kcat and KM (making it able
to bind and turnover the OP at the lower concentrations but at a slower rate).
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In the case of formothion (1, Figure 2), fast and slower clearance rates of 22.27 µL/min/mg
and 2.623 µL/min/mg were observed in the high-dose studies, which was comparable to
the rates in the low-dose studies of 24.56 µL/min/mg and 3.50 µL/min/mg. Based on the
31P NMR shifts, it was evident that one of the major metabolites formed was another OP
being studied, dimethoate (3, Figure 2), δP 97.61 ppm (Figure S1), which was likely formed
by enzymatic cleavage or hydrolysis and is not metabolized further by HLMs as it is one of
the slowly metabolized compounds at both 5 mM and 33.95 µM. However, a comparison
of the phosphorus spectra of formothion in the presence and absence of HLMs suggested
that all the metabolites observed in the former study were possibly due to hydrolysis as
they were present in the latter as well. Another explanation is that it may be due to the
breakdown of NADPH, although this would require further exploration. There was one
metabolite peak, though minor and unidentified, that was observed at δP 0.92 ppm in the
microsomal incubation experiment that was absent in the hydrolysis study, suggesting this
could be a product of biotransformation.

Among the remaining OPs that demonstrated biphasic metabolism (Table S2), there
was an even split between the study groups, i.e., four compounds showed biphasic curves
in NMR but not in the MS studies and vice-versa. For example, malathion (4, Figure 2), a
broad-spectrum phosphorothioate, was one of the fastest metabolized compounds with
a fast clearance rate of 2245.5 µL/min/mg and a slower rate of 10.09 µL/min/mg at a
lower dose of 0.17 mM, but only a monophasic metabolism of 11.15 µL/min/mg at the
higher 5 mM concentration. Further exploration of the 31P NMR suggested fast metabolism
of malathion, δP 95.89 ppm, occurs within the first 2 h, and the metabolite formed at δP
95.02 ppm (Figure S2b) further breaks down to give some or all the other metabolites ob-
served while exhibiting a biphasic decay at this higher concentration. The major metabolite
for malathion was observed at δP 97.64 ppm, corresponding to O, O-dimethyl dithiophos-
phate [37]. However, this observation is in contrast to previous studies of malathion 4,
where malaoxon (signal around 28.31 ppm) [38], a more toxic and potent inhibitor of
AChE or dimethyl thiophosphate (expected at around δP 27 ppm) [39], were shown to be
the major metabolites of malathion but were absent after three days of HLM incubation
(Figure S2). Several published biotransformation studies of malathion have shown that
the formation of malaoxon is dependent on the concentration of the CYP2C P450 family
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in the HLMs [38,40,41]. Since it was not clear what concentrations of the different CYP2C
enzymes (CYP2C8, CYP2C9, and CYP2C19) were present in the microsomes used for this
study, this could be a possible explanation for the lack of formation of the toxic metabo-
lite of malathion [37,40]. Consequently, it is difficult to establish a clear role for P450s
in metabolizing malathion without further investigating the quantification of individual
P450 isoforms in the HLMs along with data-independent mass spectrometric analysis of
these reactions.

The major challenge for the high-dose studies of the OPs was the solubility of the
OPs at higher concentrations in water. While the simulants were readily water soluble
at high concentrations, many of the OPs had low or no solubility in water at the 5 mM
concentration. Therefore, only 30 of the compounds could be studied in the high-dose
studies by NMR, compared to the 56 compounds studied in the low-dose regimen by
LC-MS/MS. Two other major differences between the two dose regimens were the duration
and temperature of the metabolism studies; for NMR, we collected data for a minimum
of 2.5 days, and samples had to be maintained at room temperature as they were kept
in an autosampler that lacks temperature control (some compounds that did not show
any difference after that were continued for two more days and then arrested) whereas
the LC-MS/MS studies were over a period of 24 h and samples were maintained at 37 ◦C.
Despite the limited number of compounds and time and temperature differences, the high-
dose data were insightful. Of the 30 OPs, only 13 of them were metabolized to less than
30% remaining, and of these 13, 4 compounds demonstrated biphasic metabolism: aspon
(5, Figure 2), EMP (6, Figure 2), TCP (7, Figure 2), and malathion (4, Figure 2). EMP (6,
Figure 2), a coumarin analog of VX, was the only nerve agent simulant that demonstrated a
biphasic metabolism at higher concentrations. The major peak, observed at δP 26.74 ppm
(Figure 3), corresponds to a common metabolite of all of the nerve agent surrogates, ethyl
methylphosphonate, which is formed by cleavage of the P-O bond on the coumarin [42,43],
and contributed to the fast half-life of EMP with a 5.59 µL/min/mg clearance rate. The P-O
bond cleavage may be due to hydrolysis or could be enhanced by paraoxonases or P450
enzymes, such as CYP1A2, CYP3A4, and CYP2C19, which perform dearylation reactions
in humans [15,21,44]. In the 31P NMR spectra of EMP collected in the absence of NADPH,
although peaks at δP 26.74 ppm and 35.76 ppm were observed, they did not increase over
the 24 h period, suggesting enzymatic transformations of EMP. Another easily identified
metabolite observed at δp 30.55 ppm, corresponding to methyl phosphonic acid [45],
could be formed by two pathways: either from ethyl methyl phosphonic acid or another
metabolite at δP 32.71 ppm (Figure 3). Five other metabolites were observed at δP 35.76,
32.71, 32.64, 32.62, and 1.52 as minor metabolites in the 31P NMR spectra (shown in Figure 3).
Further, the peaks at δP 35.76 (unknown metabolite) and 32.71 ppm 3-cyano-4-methyl-2-
oxochromen-7-yl-oxy-methylphosphonate (or metabolite 2, Figure 3) show an increase in
concentration for the first 100 min but decreasing concentration thereafter, suggesting that
these metabolites are also potential substrates for the P450s or other enzymes present in the
microsomes. Due to the lack of more informative data, such as 2D-NMR or high-resolution
mass spectrometry, it is difficult to determine the identity of all the metabolites in this study,
although they could be due to modifications on the coumarin moiety of the compound.
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Figure 3. Top Panel: (A) Stacked 31P-NMR spectra of EMP (6) in HLM over a period of 3 days,
identifying its metabolites and their chemical shifts; (a) EMP chemical shift, δP 32.95 ppm; (b) major
metabolite of EMP, ethyl methylphosphonate at δP 26.74 ppm; (c) δP 30.55 ppm corresponding to
methyl phosphonic acid; (d) metabolite of EMP and substrate for CYPs at δP 32.76 ppm; (e–h) minor
metabolites of EMP. Bottom Panel: (B) Structures of the major metabolites of EMP (4) in the presence
of HLMs identified using 31P-NMR (in D2O; left) and the curves corresponding to the integration of
each peak in the 31P spectrum at each time point (top right) with an expansion of the metabolites
with the lowest concentrations (bottom right).

31P NMR was very useful in identifying some expected metabolites from OP incu-
bations with HLMs, such as diethyl phosphonic acid (δP 0.77 ppm, Figure S3), dimethyl
phosphonic acid (δP 3.02 ppm, Figure S3), O, O-dimethyl dithiophosphate (δP 97.64 ppm,
Figure S3) and phosphoric acid. In some cases, such as mevinphos (MVP, 8, Figure 2) and
phosphamidon (PPM, 9, Figure 2), both NMR and MS identified the presence of configura-
tional isomers, and in each case, the Z and E isomers demonstrated a different metabolic
rate at the low and high doses. These isomers were present in an approximately 2:1 ratio
(determined based on the integration of the 31P NMR signals), which was also consistent
with the ratio of the peak areas of the protonated species in LC-MS/MS data. It was difficult
to assign which isomer corresponded to which peak; however, the phosphorus chemical
shifts and retention times were only sufficient to differentiate the isomers, as I (larger) and II
(smaller) for both OPs. Interestingly, both MVP-I and II were part of the group that did not
meet the clearance criteria (span ≥ 2 × std dev) at the 5 mM concentration, but at 0.50 µM,
both isomers were depleted to < 1% in the microsomes. This could possibly be due to the
lower concentration being closer to the kcat/KM values of the P450 enzymes, while the
higher concentration of PPM inhibits the enzymes, thereby preventing any metabolism
of the OP [36]. We found no literature to support or refute these results. In contrast, in
the case of PPM-I and II, we observed a monophasic metabolism at both the high and low
doses, but the rates were different for the Z and E isomers (observed in a 2.1:1 ratio in both
31P NMR and mass spec). Based on the chemical shifts and retention time, only 20% of
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PPM-I (potentially the Z isomer, the higher peak area assigned based on literature) [28]
was metabolized at both dose levels compared to PPM-II, which was depleted to 20% at
1.42 µM but only to 60% at the 5 mM concentration. This is a good indication that isomeric
differences affect the rate of metabolism in addition to the OP concentration or dose. It
would be interesting to determine which isomer of PPM leads to toxicity in mammals
which is beyond the scope of this study.

The biggest advantage of conducting the low-dose studies was the ability to study so
many different OPs—56 characterized for this study. This enabled us to not only examine
a set of structurally diverse compounds, but also to compare those that had a single
functional group difference. One example discussed above is formothion and dimethoate,
which differ by an aldehyde group, where the former is metabolized, but the latter is not
depleted at all. Another such structural variation is the phosphorothioate versus the oxon
metabolite, with the example of chlorpyrifos (CPy, 10, Figure 2) and chlorpyrifos oxon
(CPO, 11, Figure 2). Based on the MS data, both CPO (5.98 µM) and CPy are metabolized
(6.57 µM) to 0.5% and 28%, respectively. It was evident that CPO had a faster metabolic rate
than CPy, which shows the formation of the former as a metabolite (Figure 4), consistent
with the literature [16,46]. CPy is one of the few pesticides for which the metabolism is well
studied, and several schemes in the presence of P450s have been proposed [46–50]. Other
compounds with a similar metabolism, such as leptophos (12, Figure 2) and leptophos
oxon (13, Figure 2), also demonstrated the phenomenon where the presence of the oxon
metabolite was observed in the phosphorothioate metabolism by the HLMs, as shown
in Figure 4. Due to low or no solubility in deuterated H2O, these compounds were not
studied at the high-dose regimen, except for CPO, which showed very fast metabolism at
the high concentration of 5 mM (Table S2). Conversely, based on the absolute quantification
of the OPs in HLMs after 24 h incubation, the oxon metabolite was observed to be only
a small percent (2% CPy in CPO and 18% leptophos oxon in leptophos) of the parent
organophosphate (panel B in Figure 4), suggesting that the oxon form is definitely a
metabolite of the phosphorothioate, but not the only or most abundant metabolite, thereby
necessitating further exploration of the metabolites formed.
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Figure 4. (A) Metabolism of chlorpyrifos (CPy) and chlorpyrifos oxon (CPO) in HLM at 2 × LD50 con-
centration over 24 h at 2 × LD50 concentration. (B) Graph showing the appearance and disappearance
of the oxon metabolites (leptophos oxon is blue and CPO is red) detected in the runs of the phos-
phorothioate parent OPs during the lower dose mass spectrometric experiments. (C) Metabolism of
leptophos and leptophos oxon in HLM at 2 × LD50 concentration over 24 h at 2 × LD50 concentration.

4. Conclusions

Our current understanding of neurotoxic organophosphorus agents is limited to
metabolism by cytochrome P450 enzymes and, to some extent, metabolism by esterases and
paraoxonases in humans. The role of compound concentrations on metabolite formation
and clearance by these enzymes has not been well established and is further explored in
the current study. Herein, we described the metabolism of 56 diverse OPs (pesticides and
nerve agent simulants), many at two variable doses, high (5 mM) and low (2 × LD50),
by their clearance rates (Clint) in human liver microsomes. Both 1D-NMR and MRM LC-
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MS/MS were used to calculate the Clint, which ranges from 0.001 to 2245.52 µL/min/mg
of protein at the LD50 level and from 0.002 to 98.57 µL/min/mg of protein at the high dose
regimen. Moreover, comparing the two different dose regimens enabled us to not only
identify several metabolites, such as dimethyl dithiophosphonate, diethyl and dimethyl
phosphonic acid, but also demonstrated the impact of structural modifications on the
rate of metabolism. More importantly, the study of different concentrations allowed us
to focus on the effect of concentration on the clearance rates allowing speculation on the
role of KM and kcat in OP degradation in HLMs. Another key observation was the ability
of multiple substrates, in this case, metabolites and OPs, to act on the same or different
enzymes. Though the study was insufficient to comprehensively describe the metabolism
pathways and enzymes involved, it is an important first step towards exploring this area
and understanding the substrate–enzyme interactions. Future studies using untargeted
LC-MS/MS analysis, along with 2D-NMR experiments, will be beneficial for identifying the
metabolites and elucidating the pathways and enzymes involved in the biotransformation
of these OPs in HLMs and/or hepatocytes by the P450s. This study provides preliminary
data to enable the development of in silico models for the metabolism of OPs to predict
the P450s involved in the metabolism of OPs, their clearance rates, likely metabolites, and
possible metabolic pathways for newly emerging OP threats.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13040495/s1, Detailed tables and figures with compound
mass spectrometric and LC parameters, representative calibration, and decay curves at low- (MS) and
high-dose (NMR) regimens, and stacked 31P-NMR spectra of formothion, dimethoate, and malathion
are included in the supporting information.
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