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Abstract: As a common and high-concentration heavy metal in the ocean, Cu can induce metal toxicity
and significantly affect the metabolic function of marine organisms. Sepia esculenta is an important
economic cephalopod found along the east coast of China, the growth, movement, and reproduction
of which are all affected by heavy metals. Hitherto, the specific metabolic mechanism of heavy-metal
exposure in S. esculenta is still unclear. In this study, we identified 1131 DEGs through transcriptome
analysis of larval S. esculenta within 24 h of Cu exposure. GO and KEGG functional enrichment
analysis results indicated that Cu exposure may affect purine metabolism, protein digestion and
absorption, cholesterol metabolism, and other metabolic processes in S. esculenta larvae. It is worth
noting that in this study we explore metabolic mechanism of Cu-exposed S. esculenta larvae through
the comprehensive analysis of protein–protein interaction network and KEGG enrichment analysis for
the first time and find 20 identified key and hub genes such as CYP7A1, CYP3A11, and ABCA1. Based
on their expression, we preliminarily speculate that Cu exposure may inhibit multiple metabolic
processes and induce metabolic disorders. Our results lay a foundation for further understanding the
metabolic mechanism of S. esculenta against heavy metals and provide theoretical help for S. esculenta
artificial breeding.

Keywords: Cu; metabolism; protein–protein interaction network; Sepia esculenta; transcriptome

1. Introduction

Recently, the rapid development of heavy industry, shipbuilding, metallurgy, oil
extraction, and other industries has significantly increased heavy metal concentration in
the ocean, especially in coastal areas, seriously damaged the marine environment and
reduced the biodiversity of polluted areas [1–7]. Marine organisms easily accumulate
heavy metals but fin them difficult to degrade [2,4]. Heavy metals enter the organism
through respiration, skin penetration, being eaten, and other ways and accumulate in a
large concentrating, reducing the biological development speed and movement ability and
possibly inducing death [7,8]. Previous studies have shown that when the concentration is
lower than about 10 µg/L, Cu promotes the growth and development of aquatic organism
larvae [9,10]. As an indispensable trace element, Cu regulates ion transport, the synthesis
of functional proteins, hematopoiesis, and other biological processes, and maintains the
growth of organisms [11–13]. For instance, as the key cofactor of many biological processes
and the basic metal of all living cells, Cu regulates energy metabolism, melanin synthesis,
tissue growth, and other processes [14,15]. Meanwhile, Cu is an important component of
Cu/ZnSOD in mollusks, which regulates biological antioxidant reaction and effectively
removes active oxygen species [16,17]. However, organisms can be poisoned when the
accumulation of Cu exceeds the physiological tolerance level, resulting in oxidative damage,
cellular structure destruction, metabolic disorders, physiological disorders, and other
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negative effects [18–20]. In previous studies, Cu exposure was found to inhibit the energy
metabolic process of Larimichthys crocea [21]. Chan et al. indicated that Cu stress significantly
affected lipid metabolism, severely affecting lipid growth and reproduction [22]. Although
metabolic mechanisms after Cu exposure have been widely studied in multiple aquatic
organisms, they have been rarely studied in cephalopods with a Cu concentration in meat
lower than 50 mg/kg (NY5073-2006).

As an important economic cephalopod distributed in the east coast of China, golden
cuttlefish (Sepia esculenta) has rich nutrition and high medicinal value [23]. Because of these
advantages, the S. esculenta has been caught in large quantities in recent years, inducing a
sharp decrease in the wild population [24]. The larvae of S. esculenta are relatively fragile,
and their growth and development are vulnerable to the impact of chemical pollutants in
the ocean [25]. Previous studies have shown that Cu exposure significantly affects metabolic
processes such as nucleotide metabolism and energy metabolism in mollusks [26,27]. As a
result, in order to protect wild species or promote the development of artificial culture, it is
necessary to explore the metabolic mechanisms of S. esculenta larvae exposed to Cu.

RNA-Seq explores the differences between samples at the gene level [1,3,28]. It can
be used not only in model species and higher vertebrates, but has recently also been
used in most mollusks, which promotes the development of mollusk biology [2,29,30].
Recently, RNA-Seq was found to be able to effectively explore the immune, metabolic
and toxicological mechanisms of organisms exposed to heavy metals such as Cu, Cd, and
Cr [31–33]. Hence, the metabolic mechanisms of Cu-exposed S. esculenta can be analyzed
through RNA-Seq.

Thus, in our research, we use functional enrichment and protein–protein interaction
(PPI) network analyses to explore key genes and signaling pathways. Among this, a
comprehensive analysis of the KEGG and PPI network is first used to study metabolic
mechanisms of Cu-exposed S. esculenta larvae. The results show that Cu may inhibit
the metabolism of protein, lipid, and cholesterol in S. esculenta larvae, thus affecting the
development of cells and tissues, and that they may inhibit the production and transport
of energy to inhibit larval growth. Our results have deepened the understanding of the
metabolic mechanism of invertebrates exposed to Cu and promoted the development of
marine environmental toxicology.

2. Material and Methods
2.1. S. esculenta Larvae and Exposure

An adult collected from the Qingdao coast was temporarily raised for a week, and eggs
were laid and collected in flowing seawater at a temperature of 21.5 ± 1.5 ◦C and a salinity
of 30.4 ± 0.3. About four weeks later, larvae were hatched and divided into the control
group (C) and the Cu-exposed group (Cu). According to the relevant research results
from our laboratory on S. esculenta [34,35], 50 µg/L of Cu was produced by dissolution
of CuCl2 × H2O2 powder with 99% AR was used to expose larvae. We collected larvae at
0 h (C_0 h), 4 h (C_4 h and Cu_4 h), and 24 h (C_24 h and Cu_24 h). The larvae samples
were loaded into the sterile tubes after quick freezing in liquid nitrogen and then stored in
liquid nitrogen.

2.2. Sequencing and Transcriptome Analysis

We used TRI reagent to extract total RNA. The equal molar masses of RNA from
three randomly selected larvae in each group were mixed into a replicate, and the process
was repeated three times. The above three replicates were used for transcriptome library
construction. NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (San Diego, CA,
USA) was used to construct sample libraries. First, a sample of mRNA was obtained
by purifying total RNA using poly-T oligo-attached magnetic beads. The mRNA was
then smashed into fragments in a fragmentation buffer. Next, the first-strand cDNA was
synthesized using random hexamers, and the second-strand cDNA was synthesized in
a buffer containing dNTPs, DNA polymerase I, and RNase H. Subsequently, the cDNA
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was purified, end repaired, linked to poly-A, and ligated to an adaptor. Finally, cDNA was
amplified using PCR, and AMPure XP beads were used to purify the products. Larval
samples were sequenced by an Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA).

Reads containing adapters, more than 10% unknown nucleotides, and more than
50% of Q-value ≤ 20 bases were removed. After removing low-quality sequences and
performing mapping, DEGs were identified using DESeq2 [36] with p value ≤ 0.05 and
fold change ≥ 1.5. During the screening process, the identification results were revised for
multiple testing with a parameter FDR < 0.01.

2.3. Gene Function Identify and Network Construction

DAVID v6.8 was used to enrich DEGs into the GO terms and KEGG signaling path-
ways [37]. The reference genome was used as the background gene set and DEGs were
used as a validation set to analyze the differences in metabolic mechanisms within 24 h of
Cu exposure. Then, DEGs were enriched into KEGG pathways and GO terms of biological
process, molecular function, and cellular component (p value ≤ 0.05). Finally, significantly
enriched metabolism-related terms and pathways were identified to explore S. esculenta
larval metabolic mechanisms.

DEGs, enriched in significant metabolism-related KEGG pathways, were used to
construct a PPI network using STRING v11.0 with default parameters [38]. Briefly, protein
sequences were initially supplied to STRING and mapped to its database. Then, proteins
were identified and used to construct the network based on their functions. Finally, the
parameters were adjusted and the proteins that did not interact with other proteins were
removed. Twenty DEGs with high protein interaction numbers were selected and regarded
as key genes for the regulating metabolic processes of S. esculenta larvae. Three DEGs
with the highest protein interaction numbers were defined as the hub genes most likely to
regulate larval metabolism.

2.4. Quantitative RT-PCR Assay

qRT-PCR was used for verifying the accuracy of RNA-Seq [39]. We designed gene-
specific primers using Primer Premier 5.0. Table S1 shows their primer sequences. Before
validation, we screened three reference genes, including GAPDH, β-actin, and 18S, and
determined the stability of their expression level. Finally, we used the most stable β-actin
for qRT-PCR.

2.5. Statistical Analysis

The relative mRNA abundance of key genes verified by qRT-PCR was calculated with
the 2−∆∆CT method [40]. Significance analysis was performed via t test. Letters a, b, and c
indicate significant difference.

3. Results
3.1. Sequencing Quality

Sequencing results show that an average of 44,016,008 raw reads and 43,510,849 clean
reads are sequenced. The averages of Q20 and Q30 are 97.42% and 92.98%, respectively,
and the average of GC of clean reads is 39.76% (Table S2). Raw sequencing reads were
submitted to the Sequence Read Archive in NCBI. The BioProject accession number was PR-
JNA844162; and the BioSample accession numbers were SAMN28794853, SAMN28794854,
SAMN28794855, SAMN28794856, and SAMN28794857.

3.2. DEGs Expression

After the differential expression analysis, 423 (256 up-regulated and 167 down-regulated)
and 775 (408 up-regulated and 367 down-regulated) DEGs were identified at 4 and 24 h,
respectively (Figure 1). Figure 2 shows that a total of 1131 DEGs expression difference
within 24 h exposure, and 67 DEGs are differentially expressed at two time points. DEGs
expression distribution is shown in the heatmap (Figure 3).
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3.3. DEGs Functions

A total of 95 significant GO terms are enriched in this study (Figure 4). Among them,
ion transport, arachidonic acid metabolic process, glucose-6-phosphate transport, glucose
homeostasis, monocarboxylic acid transport, and other significant terms are important for
regulating metabolism. The down-regulation of DEGs enriched in these terms suggests
that Cu inhibits these metabolic processes. Meanwhile, metabolism-related level-2 KEGG
signaling pathways, such as the glutathione metabolism, glycerolipid metabolism, and
lipid metabolism pathways, are enriched (Figure 5), and Cu inhibits them within 24 h of
exposure. A total of 20 level-3 KEGG signaling pathways (Table 1) are also enriched, such
as the protein digestion and absorption signaling pathway, purine metabolism signaling
pathway, cholesterol metabolism signaling pathway, PI3K-Akt signaling pathway, renin
secretion signaling pathway, and ECM–receptor interaction signaling pathway. Among
them, the inhibition of the PI3K-Akt signaling pathway, renin secretion signaling pathway,
and ECM–receptor interaction signaling pathway indicates that Cu destroys the structure
of the extracellular matrix and affects the production and transport of energy. In addition,
Cu inhibits the protein digestion and absorption process, cholesterol metabolism process,
and purine metabolism process.
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Table 1. Metabolic pathways statistics.

Pathways Number of DEGs

ABC transporters 3
Aldosterone synthesis and secretion 3

Apoptosis 4
Carbohydrate digestion and absorption 2

cGMP-PKG signaling pathway 4
Cholesterol metabolism 4

Cortisol synthesis and secretion 2
ECM–receptor interaction 3

GABAergic synapse 2
Insulin secretion 3

Linoleic acid metabolism 3
Metabolic pathways 7

PI3K-Akt signaling pathway 4
Protein digestion and absorption 6

Purine metabolism 3
Renin secretion 3

Retinol metabolism 6
Steroid hormone biosynthesis 6
Thyroid hormone synthesis 2

Vascular smooth muscle contraction 3
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3.4. Key and Hub Genes Identify and Verification

In our research, 40 DEGs in Table 1 are used for PPI network construction (Figure 6).
Table S3 shows relevant parameters. Among the network, three hub genes interacting with
the most genes or involved in the most pathways in Table 2, including CYP7A1, CYP3A11,
and ABCA1, were identified. The above three genes were up-regulated after Cu exposure,
suggesting that some genes are activated and significantly expressed to maintain metabolic
stability after Cu exposure. Additionally, 17 key genes with higher protein interaction
numbers or higher KEGG pathway participation numbers were identified at the same time
(Table 2). The close relationship between the functions of these genes indicates that Cu
may induce changes in part of metabolic networks and affect the metabolic process of
S. esculenta larvae in many ways.
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Table 2. Summary of key DEGs.

Gene Name
(Abbreviation)

Gene Name
(Official Full Name)

Number of Protein–
Protein Interactions

Number of KEGG
Signaling Pathways

CYP7A1 cytochrome P450, family 7, subfamily a, polypeptide 1 12 2
CYP3A11 cytochrome P450, family 3, subfamily a, polypeptide 11 11 3
ABCA1 ATP binding cassette subfamily A member 1 10 2
ABCC7 ATP binding cassette subfamily C member 7 10 1

CACNA1D calcium voltage-gated channel subunit alpha1 D 9 7
CYP3A41A cytochrome P450, family 3, subfamily a, polypeptide 41A 9 3

ABCC1 ATP binding cassette subfamily C member 1 9 1
LRP2 low density lipoprotein receptor-related protein 2 7 2
NPR1 natriuretic peptide receptor 1 4 5

COL12A1 collagen, type XII, alpha 1 4 2
COL6A6 collagen, type VI, alpha 6 4 2
CYP2J6 cytochrome P450, family 2, subfamily j, polypeptide 6 4 1
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The qRT-PCR result indicates that DEGs in Table 2 were single products. The consistent
expression trend of qRT-PCR and RNA-Seq suggests that the results of RNA-Seq are
accurate (Figure 7).
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4. Discussion
4.1. Metabolic Differences in Mollusk Exposed to Cu

Cu has a high accumulation capacity in marine organisms and induces changes in
metabolic function when it accumulates to a certain level [20]. Alamo et al. found that
higher Cu bioaccumulation might inhibit fatty acid metabolism in scallops [41], which is
consistent with the significant down-regulation of DEGs enriched in the arachidonic acid
metabolic process term and linoleic acid metabolism signaling pathway in this study. This
result suggests that the metabolism of fatty acid in larvae may be inhibited. Most DEGs
enriched by glucose-6-phosphate transport term, glucose homeostasis term, and other
metabolic terms are down-regulated, a result which is consistent with previous studies
on clams and oysters [26,27], indicating that energy and nucleotide metabolisms may
be inhibited. The down-regulation of genes in purine metabolism signaling pathway is
consistent with the results found by Zhou et al. in Bathymodiolus platifrons [27]. At present,
the cognition of the effect of heavy metals on the metabolism mechanism of cephalopods is
still in its infancy. This study explores the metabolism of Cu-exposed S. esculenta larvae
and promotes the development of research on the metabolism mechanism of cephalopods.
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4.2. Gene Functions Based on GO

The results of GO enrichment analysis suggest that ion transport, monocarboxylic
acid, and other processes are significantly inhibited in Cu-exposed S. esculenta larvae.
Previous studies have shown that the enrichment of th ion transport term indicated that Cu
exposure might inhibit the transport of Ca2+, Na+, and other metal ions, thereby disrupting
ion homeostasis and inhibiting multiple cellular metabolic processes [42]. Meanwhile,
the down-regulation of DEGs enriched in monocarboxylic acid transport term suggested
that metabolic processes of monocarboxylic acids such as lactate and pyruvate might be
inhibited after Cu exposure [43].

4.3. KEGG Functional Enrichment Analysis

Twenty significant KEGG pathways are enriched, and some of them have been re-
ported to regulate the expression of metabolic genes and the affected metabolic processes
such as lipid metabolism and energy metabolism, indicating that the energy supply system
and tissue growth of S. esculenta larvae exposed to Cu may be significantly affected [44,45].
Among them, purine metabolism, cholesterol metabolism, and protein digestion and ab-
sorption can be identified as the most likely signaling pathways to regulate the metabolism
of Cu-exposed S. esculenta, and their specific functions are deeply explored.

4.3.1. Purine Metabolism

Purines are the most abundant metabolites and are present in all organisms. They are
essential components of DNA and RNA and play integral roles in cellular processes [46]. For
example, they can provide energy and cofactors for proliferation, differentiation, survival,
and other cellular processes [47]. Purine metabolism is an important metabolic process
in regulating the synthesis and decomposition of purines and maintains the stability of
purine content [46]. In addition to cellular processes, purine metabolism regulates energy
metabolism and signal transduction [48]. The expression levels of most genes enriched in
the purine metabolism signaling pathway were significantly down-regulated compared to
control groups within 24 h of Cu exposure in this study. This result is consistent with those
found by Zhou et al. in a study on clams [27]. Additionally, Hadizadeh et al. found that
Cu inhibited purine metabolism by inhibiting the expression of the key enzyme, xanthine
oxidase [49]. Based on previous research results and the down-regulation of GUCY1A2 and
GUCY2E, we preliminarily speculate that Cu may induce purine metabolism disorder
by inhibiting the expression of guanylate cyclase, thus inhibiting the growth of cells
and tissues.

4.3.2. Protein Digestion and Absorption

Proteins are biological macromolecules necessary for biological life activities and these
play key roles in carrier transport, enzyme catalysis, and other physiological processes [50].
Meanwhile, proteins can participate in and regulate biological growth metabolism, energy
metabolism, and other metabolic processes [51,52]. Proteins can be hydrolyzed into amino
acids by specific proteases and transported into tissues and organs, thereby promoting cell
and tissue growth [53]. This process is beneficial to maintaining the stability of biological
metabolic functions, thus promoting biological growth [53,54]. In this study, we found
that two of five genes enriched in protein digestion and absorption signaling pathway
belong to collagen families such as COL6A6 and COL12A1. Additionally, these two genes
have been identified as key genes that may regulate metabolic processes of S. esculenta
larvae after Cu exposure. In previous studies, Hynes and Ricard-Blum found that COL6A6
and COL12A1 play significant parts in growth metabolism regulation and promote the
growth, proliferation, migration, and differentiation of cells by binding to receptors [55].
Their expression levels are significantly down-regulated in this study, indicating that Cu
exposure may inhibit some cellular functions and inhibit growth and metabolic processes.
In conclusion, we preliminarily speculate that Cu exposure might inhibit the protein
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digestion and absorption process of S. esculenta larvae and affect cell growth, proliferation,
and other cellular processes, thereby inhibiting the growth and development of larvae.

4.3.3. Cholesterol Metabolism

Cholesterol is the most abundant steroid of the compounds present in various tis-
sues [56]. It plays a key part in the synthesis of the cell membrane and regulates the
metabolism of bile acid and vitamin D [57]. At the same time, it regulates the metabolism
of organisms, which promotes the synthesis and release of hormones in order to regulate
metabolic processes of fats, carbohydrates, and proteins [58]. Cholesterol metabolism main-
tains cholesterol homeostasis by regulating cholesterol synthesis and conversion, thereby
maintaining the stability of cellular functions and metabolic processes [59]. Previous stud-
ies have shown that LRP1 and LRP2, as key regulators in cholesterol metabolism, play
significant parts in promoting cholesterol synthesis and maintaining cholesterol homeosta-
sis [60]. Both genes are enriched in the cholesterol metabolic signaling pathway in this
study and down-regulated after Cu exposure, suggesting that Cu exposure inhibits choles-
terol metabolism, which is consistent with the results found by Engle et al. [61]. Cu might
disrupt cholesterol homeostasis and inhibit S. esculenta larval metabolic processes such as
lipid and protein metabolism, thus inhibiting the synthesis, growth, and development of
tissues and organs.

4.4. Hub Genes Functional Analysis

CYP7A1, CYP3A11, and ABCA1 are identified as hub genes in this study. They
might play significant roles in regulating the larval metabolism of Cu-exposed S. esculenta.
CYP7A1 and CYP3A11 were significant members of the cytochrome P450 (CYP) family.
Based on previous research results, the CYP family has been identified as a core protein
family that exists in various biological tissues to resist environmental stress [62]. CYPs
were present in almost all eukaryotes. They played significant roles in cellular metabolism
and maintained the cellular homeostasis of organisms [63]. For instance, they regulated
multiple metabolic processes such as vitamin metabolism, lipid metabolism, and cholesterol
metabolism and promoted biological growth and development [64]. Furthermore, they
were involved in and regulated the metabolic processes of environmental pollutants and
carcinogens and metabolized toxic substances into non-toxic or excretory substances, thus
promoting the detoxification reaction [62,64]. Based on previous studies, both genes have
been found regulating bile acid metabolism, cholesterol metabolism, brucine metabolism,
and other metabolic processes in mammals [65,66]. However, hitherto, they have been
rarely studied in mollusks, especially cephalopods, and their functions in mollusks remain
unclear. In this study, CYP7A1 and CYP3A11 were up-regulated after Cu exposure. We
preliminary speculate that they might have promoted S. esculenta larval metabolic processes
such as cholesterol metabolism and lipid metabolism and have induced detoxification
responses against Cu stress. Cholesterol homeostasis was critical for maintaining nor-
mal cellular processes, and excess cholesterol would inhibit cell growth and survival [67].
Previous study has shown that cholesterol efflux was currently the only way to remove
excess cholesterol from cells [67,68]. ABCA1 was a significant transporter regulating this
metabolic process, which mediated the transport of free cholesterol and phospholipids
in cells to maintain intracellular cholesterol balance [68]. Meanwhile, ABCA1 played a
key part in lipid metabolism and the regulation of apolipoprotein, which maintained lipid
homeostasis [69]. ABCA1 was significantly up-regulated after slight down-regulation in
this study, and Cu exposure was speculated to disrupt cholesterol balance. We initially spec-
ulated that ABCA1 might maintain cellular cholesterol homeostasis and normal function
by inducing cholesterol transport. In conclusion, these three genes might play significant
metabolic functions after Cu exposure, such as promoting cholesterol metabolism and
lipid metabolism to maintain cellular homeostasis. At present, the metabolic functions of
these genes in Cu-exposed S. esculenta have not been studied and need to be explored in
subsequent experiences.
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4.5. Other Key DEGs and Pathways Analyses

Unexplored key genes and signaling pathways also play significant roles in regulating
metabolism. For instance, two other identified key genes of CYP family, CYP3A41A and
CYP2J6, were identified in previous studies as regulating lipid metabolism [63,70,71]. Addi-
tionally, ABC transporters’ signaling pathway has been identified as regulating cholesterol
synthesis and transport and regulating cholesterol metabolism [72,73]. These results further
illustrate that S. esculenta larval metabolism has been affected by Cu. Hitherto, metabolic
functions of genes and signaling pathways identified in S. esculenta larvae exposed to Cu
have been unclear and thus now require further exploration.

5. Conclusions

The identification of a large number of DEGs indicated that Cu exposure might affect
larval life processes. The results of functional enrichment and PPI network analyses
suggested that lipid metabolism, cholesterol metabolism, and other metabolic processes
of Cu-exposed S. esculenta might be inhibited. In conclusion, Cu exposure might induce
metabolic disorders and inhibit the growth and development of larvae, and the results
laid a foundation for furthering the understanding of cephalopod metabolism after heavy-
metal exposure.
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