
 

 
 

 

 
Metabolites 2023, 13, 444. https://doi.org/10.3390/metabo13030444 www.mdpi.com/journal/metabolites 

Article 

Baseline Tyrosine Level Is Associated with Dynamic Changes 

in FAST Score in NAFLD Patients under Lifestyle Modification 

Hwi Young Kim 1,†, Da Jung Kim 2,†, Hye Ah Lee 3, Joo-Youn Cho 4,5,*,‡ and Won Kim 6,*,‡ 

1 Department of Internal Medicine, College of Medicine, Ewha Womans University,  

Seoul 07985, Republic of Korea 
2 Metabolomics Core Facility, Department of Transdisciplinary Research and Collaboration,  

Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea 
3 Clinical Trial Center, Ewha Womans University Medical Center, Seoul 07985, Republic of Korea 
4 Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and 

Hospital, Seoul 03080, Republic of Korea 
5 Department of Biomedical Sciences, Seoul National University College of Medicine,  

Seoul 03080, Republic of Korea 
6 Department of Internal Medicine, Seoul National University College of Medicine and Seoul Metropolitan 

Government Boramae Medical Center, Seoul 07061, Republic of Korea 
† These authors contributed equally to this work. 
‡ These authors contributed equally to this work. 

* Correspondence: joocho@snu.ac.kr (J.-Y.C.); drwon1@snu.ac.kr (W.K.); Tel.: +82-2-740-8286 (J.-Y.C.);  

+82-2-870-2233 (W.K.) 

Abstract: Noninvasive risk stratification is a challenging issue in the management of patients with 

nonalcoholic fatty liver disease (NAFLD). This study aimed to identify multiomics-based predictors 

of NAFLD progression, as assessed by changes in serial FibroScan-aspartate aminotransferase 

(FAST) scores during lifestyle modification. A total of 266 patients with available metabolomics and 

genotyping data were included. The follow-up sub-cohort included patients with paired laboratory 

and transient elastography results (n = 160). The baseline median FAST score was 0.37. The PNPLA3 

rs738409 genotype was significantly associated with a FAST score > 0.35. Circulating metabolomics 

significantly associated with a FAST score > 0.35 included SM C24:0 (odds ratio [OR] = 0.642; 95% 

confidence interval [CI], 0.463–0.891), PC ae C40:6 (OR = 0.477; 95% CI, 0.340–0.669), lysoPC a C18:2 

(OR = 0.570; 95% CI, 0.417–0.779), and tyrosine (OR = 2.743; 95% CI, 1.875–4.014). A combination of 

these metabolites and PNPLA3 genotype yielded a c-index = 0.948 for predicting a FAST score > 0.35. 

In the follow-up sub-cohort (median follow-up = 23.7 months), 47/76 patients (61.8%) with a baseline 

FAST score > 0.35 had a follow-up FAST score ≤ 0.35. An improved FAST score at follow-up was 

significantly associated with age, serum alanine aminotransferase, and tyrosine. In conclusion, base-

line risk stratification in NAFLD patients may be assisted using a multiomics-based model. Partic-

ularly, patients with increased tyrosine may benefit from an earlier switch to pharmacologic ap-

proaches. 

Keywords: steatosis; steatohepatitis; nonalcoholic steatohepatitis; risk stratification; prediction; 

multiomics; genomics; metabolomics; weight change; outcome 

 

1. Introduction 

The prevalence of nonalcoholic fatty liver disease (NAFLD) is estimated at ~25% 

worldwide [1]. A subset of these patients will develop nonalcoholic steatohepatitis 

(NASH), a subset at an elevated risk of disease progression and thereby subject to new 

pharmacotherapies [2]. Because NASH is estimated to affect up to 20% of individuals with 

NAFLD, a large number of NASH patients could eventually develop advanced liver dis-

ease, or even require liver transplantation [3]. 
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A liver biopsy has been the gold standard for the diagnosis of NASH [4]. However, 

the need for alternative noninvasive tests or biomarkers has been growing owing to the 

imperfect nature of biopsy, which considers the invasiveness, risk of complications, cost, 

sampling error, and inter-/intra-observer variability [5]. Furthermore, identification of pa-

tients with high-risk NASH (NAFLD activity score ≥ 4 and significant [≥F2] liver fibrosis) 

has been a pressing issue in clinical trial eligibility because those patients are considered 

to be at greatest risk of disease progression and liver-related morbidity and mortality [2,6]. 

In that context, the FibroScan-aspartate aminotransferase (FAST) score has been devel-

oped recently for noninvasive identification of high-risk NASH based on aspartate ami-

notransferase (AST), liver stiffness measurement (LSM), and a controlled attenuation pa-

rameter (CAP) [7]. In addition, multiomics approaches have been widely investigated for 

genotype–phenotype correlation, the development of biomarkers, and the identification 

of therapeutic targets [8]. 

Although there are various ongoing clinical trials, no pharmacologic agent has been 

approved for NASH yet, and lifestyle modification is the mainstay of management for 

most patients with NAFLD [9]. To date, there are limited data on integrative methods for 

a noninvasive risk stratification of NAFLD and early identification of individuals who 

may benefit from lifestyle modification. Filling in these knowledge gaps could provide 

tailored practical information on noninvasive risk stratification of NAFLD and early ap-

plication of upcoming pharmacotherapies. Hence, we aimed to explore multiomics-based 

predictors of baseline risk stratification and NAFLD progression based on changes in the 

serial FAST scores during lifestyle modification in a real-world setting. 

2. Methods 

2.1. Study Participants 

We constructed a single-center prospective cohort of Korean patients with NAFLD 

who had been referred to our liver clinic since October 2016 (see Supplementary Meth-

ods). Patients were either referred by their primary care providers or referred from inter-

departmental consultations inside our institution. The following exclusion criteria were 

applied: (i) age <18 years, (ii) hepatitis B or C virus infection, (iii) presence of other chronic 

liver diseases (e.g., autoimmune hepatitis, primary biliary cholangitis or primary scle-

rosing cholangitis, drug-induced liver injury or steatosis, Wilson’s disease, and hemochro-

matosis), (iv) excessive alcohol consumption (>30 g/day in men and >20 g/day in women) 

[4], and (v) diagnosis of malignancy. 

This was a retrospective analysis from our prospectively enrolled cohort. A total of 

423 NAFLD patients were enrolled between October 2016 and December 2020. Of these, 

266 patients with available metabolomics and genotyping data were included in the cross-

sectional analysis. All study participants were consulted for dietary and exercise educa-

tion at baseline according to practice guidelines (see Supplementary Methods). A subset 

of patients was identified with one or more follow-up visit(s) until the closure date for 

data analysis (31 March 2022), and those with paired laboratory and vibration-controlled 

transient elastography (VCTE) results (n = 160, “follow-up sub-cohort”) were included in 

the longitudinal analysis. 

The present study was conducted in accordance with the ethical guidelines of the 

World Medical Association’s Declaration of Helsinki and was approved by the institu-

tional review board of Ewha Womans University Mokdong Hospital (approval no.: 

EUMC 2016–07–052; approval date: 8-30-2016). Written informed consent was obtained 

from each participant in the cohort. 
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2.2. Baseline Clinical and Laboratory Assessments 

Initial assessments included anthropometric measurements, routine laboratory tests, 

body composition analysis, and VCTE. Body composition was assessed using bioelectrical 

impedance analysis (InBody 720 body composition analyzer, InBody, Seoul, Korea) (see 

Supplementary Methods). VCTE procedures were performed after fasting for at least 3 h 

using the FibroScan 502 Touch device equipped with both M and XL probes (Echosens, 

Paris, France). Study participants were placed in the supine position with their right arm 

fully abducted. Upon obtaining 10 valid measurements, final values of CAP (dB/m) and 

LSM (kPa) were recorded as the median values of 10 consecutive valid measurements. 

LSM values were considered unreliable when the interquartile range (IQR)/median was 

higher than 30% [10]. All VCTE procedures were performed by research personnel who 

were trained and certified by Echosens and who were blinded to the clinical and labora-

tory details of the participants at the time of the examination. 

2.3. Metabolomics and Genotyping 

Targeted metabolomics were assessed using a Triple Quadrupole 6500 plus system 

(AB Sciex, Framingham, MA, USA), which consists of a SHIMADZU Nexera (Shimadzu 

Corporation, Kyoto, Japan) ultra-high performance liquid chromatography coupled with 

a hybrid triple quadrupole/linear ion trap mass spectrometer. A total of 180 metabolites 

were quantified using an Absolute IDQ®p180 kit (BIOCRATES Life Science AG, Innsbruck, 

Austria). The kit allowed the concurrent high-throughput detection and quantification of 

metabolites in plasma samples. Genotyping was performed for several known risk alleles 

for NAFLD as follows: PNPLA3 rs738409 C>G, TM6SF2 rs58542926 C>T, SREBF2 rs133291 

C>T, MBOAT7-TMC4 rs641738 C>T, and HSD17B13 rs72613567 adenine insertion (A-INS) 

single-nucleotide polymorphisms (see Supplementary Methods). 

2.4. Statistical Analysis 

The statistical significance of differences between groups was evaluated using the 

independent t-test or Mann–Whitney U test for continuous variables and the chi-square 

test for categorical variables. Relevant risk factors for the outcome were explored with 

logistic regression analysis using baseline clinical characteristics, metabolomics, and gen-

otyping data (see Supplementary Methods). To identify significantly different metabo-

lites, p-values were adjusted for multiple testing using the Benjamini–Hochberg proce-

dure for conceptualizing the false discovery rate (FDR). Multiple logistic regression was 

used to investigate the independent factors determining the risk groups according to the 

FAST score. A multivariable model was constructed through stepwise selection among 

candidate risk factors with p < 0.05 in the univariable analysis. Model performance was 

presented using the concordance index (c-index) and their 95% confidence intervals were 

estimated using 1000 bootstrap samples. Hosmer–Lemeshow goodness-of-fit tests were 

conducted as calibration statistics. 

For the follow-up sub-cohort, the mean difference in changes in clinical parameters 

according to the level of weight change during the follow-up period was tested using an 

analysis of covariance (ANCOVA). Additionally, among patients with baseline a FAST 

score > 0.35, a multiple logistic regression model and mediation analysis were performed 

to evaluate the determining factors associated with a categorical change in the FAST score 

to a low risk (≤0.35). ANCOVA and mediation analysis were assessed by adjusting for sex, 

age, follow-up duration, baseline weight, and baseline clinical parameters. 

All statistical tests were two-sided with p < 0.05 as the threshold for statistical signif-

icance. The SAS 9.4 (SAS Institute, Cary, NC, USA) and R 3.6.2 software packages (R Foun-

dation for Statistical Computing, Vienna, Austria) were used for all statistical analyses. 
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3. Results 

3.1. Baseline Characteristics 

The baseline FAST score was 0.37 (IQR, 0.14–0.53). Compared with patients with a 

lower FAST score (≤ 0.35, n = 126 [47.4%]), patients with a higher score (>0.35, n = 140 

[52.6%]) showed higher BMI, waist circumference, glycometabolic parameters, liver injury 

markers, CAP (305 vs. 271 dB/m), and LSM (7.7 vs. 4.6 kPa), and more frequently had 

metabolic syndrome (65.0% vs. 42.9%) and sarcopenia (38.6% vs. 20.7%); all p-values <0.05 

(Table 1). There was no significant difference in the minor allele frequency of each geno-

type between the two groups (FAST score ≤ 0.35 vs. > 0.35; Table 1). 

Table 1. Baseline characteristics. 

  Total (N = 266) 
FAST ≤ 0.35 

(n = 126, 47.4%) 

FAST > 0.35 

(n = 140, 52.6%) 
p 

Age  49.6 ± 14.3 50.3 ± 12.7 49.1 ± 15.7 0.478 

Sex (male)  158 (59.4%) 77 (61.11%) 81 (57.8%) 0.589 

BMI (kg/m2)  27.2 ± 3.6 26.1 ± 3.1 28.3 ± 3.8 <0.001 

Waist circumference (cm)  93.4 ± 9.9 91.5 ± 8.9 95.4 ± 10.5 0.002 

Metabolic syndrome  145 (54.5%) 54 (42.9%) 91 (65.0%) 0.001 

Hypertension  83 (31.2%) 33 (26.19%) 50 (35.71%) 0.094 

Diabetes  61 (22.93%) 17 (13.39%) 44 (31.43%) 0.001 

Dyslipidemia  37 (13.9%) 21 (16.67%) 16 (11.43%) 0.228 

AST (IU/L)  38 (26–60) 26 (21–32) 56.5 (43.5–76) <0.001 

ALT (IU/L)  52 (31–94) 31 (20–48) 88 (57–120.5) <0.001 

GGT (IU/L)  44 (27–72) 32 (22–52) 59 (36–89) <0.001 

Glucose (mg/dL)  103 (96–115) 100 (95–108) 105.5 (97.5–123) 0.002 

Cholesterol (mg/dL)  195.8 ± 45.5 200 ± 47.97 191.99 ± 42.87 0.149 

TG (mg/dL)  142.5 (100–201) 129 (84–186) 152 (113–213.5) 0.005 

HDL (mg/dL)  47.2 ± 12.2 49.7 ± 13.2 44.9 ± 10.8 0.002 

LDL (mg/dL)  122.7 ± 40.2 124.5 ± 43.4 121.0 ± 37.1 0.484 

Insulin (μIU/mL)  11.9 (7.9–18.9) 9.1 (6.4–13.8) 15.3 (10.4–25.8) <0.001 

Uric acid (mg/dL)  5.9 ± 1.5 5.8 ± 1.4 6.0 ± 1.6 0.261 

FFA (mmol/L)  819.1 ± 314.5 774.8 ± 339.3 858.8 ± 286.1 0.048 

WBC (103/µL)  6.73 ± 1.72 6.37 ± 1.68 7.05 ± 1.70 0.002 

Hemoglobin (g/dL)  14.7 ± 1.6 14.7 ± 1.5 14.7 ± 1.7 0.981 

Platelet (103/µL)  244.3 ± 64.0 245.8 ± 55.8 244.9 ± 69.1 0.910 

Serum creatinine (mg/dL)  0.91 ± 0.18 0.92 ± 0.19 0.90 ± 0.17 0.237 

HOMA-IR  3.2 (2.0–5.4) 2.3 (1.6–3.6) 4.2 (2.8–7.2) <0.001 

SMI_wt  28.0 ± 3.9 28.8 ± 3.6 27.2 ± 4.0 0.001 

Sarcopenia  74 (29.8%) 25 (20.7%) 49 (38.6%) 0.002 

Fat%  32.4 ± 7.9 30.6 ± 7.7 34.1 ± 7.7 <0.001 

Handgrip strength (kg)  34.8 ± 10.9 35.1 ± 10.7 34.4 ± 11.1 0.688 

TSH (mIu/L)  2.1 (1.3–3.1) 2.1 (1.4–3.2) 2.1 (1.3–3.1) 0.695 

Free T4 (ng/dL)  1.3 (1.2–1.4) 1.3 (1.2–1.4) 1.3 (1.1–1.4) 0.093 

HbA1c  5.9 (5.5–6.6) 5.8 (5.3–6.2) 6.0 (5.6–6.9) 0.009 

CAP (dB/min)  289.3 ± 43.5 271.4 ± 39.6 305.4 ± 40.6 <0.001 

LSM (kPa)  6.2 (4.6–8.6) 4.6 (3.8–6.1) 7.7 (6.1–10.2) <0.001 

FAST score  0.37 (0.14–0.53) 0.14 (0.09–0.25) 0.52 (0.43–0.64) <0.001 

PNPLA3 rs738409 C/C 61 (23.3%) 36 (28.8%) 25 (18.3%) 0.129 

 C/G 130 (49.6%) 58 (46.4%) 72 (52.5%)  

 G/G 71 (27.1%) 31 (24.8%) 40 (29.2%)  
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TM6SF2 rs58542926 C/C 222 (84.7%) 108 (86.4%) 114 (83.2%) 0.534 

 C/T 39 (14.9%) 17 (13.6%) 22 (16.1%)  

 T/T 1 (0.4%) 0 (0%) 1 (0.7%)  

MBOAT7 rs641738 C/C 154 (59.3%) 75 (60.5%) 79 (58.1%) 0.729 

 C/T 95 (36.5%) 45 (36.3%) 50 (36.8%)  

 T/T 11 (4.2%) 4 (3.2%) 7 (5.1%)  

SREBF2 rs133291 C/C 84 (32.1%) 39 (31.2%) 45 (32.9%) 0.950 

 C/T 142 (54.2%) 69 (55.2%) 73 (53.3%)  

 T/T 36 (13.7%) 17 (13.6%) 19 (13.9%)  

HSD17B13 rs72613567 −/− 137 (52.3%) 69 (55.2%) 68 (49.64%) 0.665 

 −/A 103 (39.3%) 46 (36.8%) 57 (41.61%)  

 A/A 22 (8.4%) 10 (8%) 12 (8.76%)  

The continuous variables are expressed as the means ± standard deviations (normally distributed) 

or medians (interquartile ranges) (not normally distributed), and the differences between groups 

were evaluated using an independent t-test or Mann–Whitney U test, respectively. Categorical data 

were expressed as the number (%), and the differences between groups were determined using the 

χ2 test. Abbreviations: BMI, body mass index; AST, aspartate aminotransferase; ALT, alanine ami-

notransferase; GGT, γ-glutamyl transpeptidase; TG, triglyceride; HDL, high-density lipoprotein; 

LDL, low-density lipoprotein; FFA, free fatty acid; WBC, white blood cell; HOMA-IR, homeostasis 

model assessment of insulin resistance; SMI_wt, weight-adjusted skeletal muscle index; fat%, fat 

percentage; TSH, thyroid stimulating hormone; HbA1c, glycated hemoglobin; CAP, controlled at-

tenuated parameter; LSM, liver stiffness measurement; FAST, FibroScan-aspartate aminotransfer-

ase. 

3.2. Risk Factors for Higher FAST Score (>0.35) at Baseline 

In univariable analysis, significant risk factors for a higher FAST score (>0.35) in-

cluded the following (Table 2): higher values of BMI, waist circumference, ALT, GGT, fast-

ing blood glucose, insulin, WBC, HOMA-IR, and fat%; lower values of HDL-cholesterol 

and SMI_wt; and the presence of metabolic syndrome and diabetes. Among genotypes, 

only PNPLA3 rs738409 was significantly associated with a higher FAST score. 

Table 2. Clinical characteristics and genetic risk factors associated with high-risk NASH (FAST score 

> 0.35). 

Variable OR 95% CI p 

Age 0.99 0.98–1.01 0.482 

Sex (male) 1.14 0.70–1.87 0.590 

BMI 1.20 1.11–1.30 <0.001 

Waist circumference 1.04 1.02–1.07 0.003 

Metabolic syndrome 1.57 1.27–1.93 <0.001 

Hypertension 1.57 0.93–2.65 0.095 

Diabetes 2.94 1.58–5.48 0.001 

Dyslipidemia 0.65 0.32–1.30 0.220 

ALT 1.06 1.05–1.08 <0.001 

GGT 1.02 1.01–1.03 <0.001 

Glucose 1.02 1.01–1.04 0.002 

Cholesterol 1.00 0.99–1.00 0.151 

TG 1.00 1.00–1.00 0.101 

HDL 0.97 0.95–0.99 0.002 

LDL 1.00 0.99–1.00 0.483 

Insulin 1.10 1.06–1.14 <0.001 

WBC 1.28 1.09–1.50 0.003 

HOMA-IR 1.45 1.27–1.66 <0.001 
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SMI_wt 0.90 0.84–0.96 0.001 

Fat% 1.06 1.03–1.10 0.001 

PNPLA3 (ref. C/C)    

C/G 2.02 1.09–3.88 0.034 

G/G 2.10 1.01–4.37 0.047 

linear (per 1 risk allele) 1.35 0.96–1.91 0.089 

C/G+G/G vs. C/C 1.81 1.01–3.24 0.045 

TM6SF2 (ref. C/C)    

C/T 1.30 0.65–2.60 0.464 

linear (per 1 risk allele) 1.33 0.69–2.56 0.398 

C/T, T/T vs. C/C 1.28 0.65–2.53 0.474 

MBOAT7 (ref. C/C)    

C/T 1.06 0.63–1.76 0.838 

T/T 1.66 0.47–5.91 0.433 

linear (per 1 risk allele) 1.14 0.75–1.74 0.546 

C/T, T/T vs. C/C 1.10 0.67–1.81 0.695 

SREBF2 (ref. C/C)    

C/T 0.89 0.51–1.56 0.695 

T/T 1.06 0.48–2.34 0.879 

linear (per 1 risk allele) 0.97 0.67–1.40 0.864 

C/T, T/T vs. C/C 0.93 0.55–1.56 0.776 

HSD17B13 (ref. −/−)    

Heterozygous −/A 1.26 0.75–2.10 0.382 

Homozygous A/A 1.22 0.49–3.01 0.669 

Abbreviations: NASH, nonalcoholic steatohepatitis; FAST, FibroScan-aspartate aminotransferase; 

BMI, body mass index; ALT, alanine aminotransferase; GGT, γ-glutamyl transpeptidase; TG, triglyc-

eride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; WBC, white blood cell; HOMA-

IR, homeostasis model assessment of insulin resistance; SMI_wt, weight-adjusted skeletal muscle 

index; fat%, fat percentage. 

In Table 3, circulating metabolites had significant correlations with a higher FAST 

score (>0.35), as seen with sphingomyelin (SM [OH] C22:2, odds ratio [OR] = 0.53, 95% 

confidence interval [CI] 0.41–0.70, PFDR = 0.001; SM C24:0, OR = 0.59, 95% CI 0.45–0.77, PFDR 

= 0.003; and SM C16:0, OR = 0.59, 95% CI, 0.45–0.77, PFDR = 0.004), phosphatidyl choline 

(PC ae C40:6, OR = 0.56, 95% CI 0.43–0.74, PFDR = 0.003; PC ae C38:0, OR = 0.58, 95% CI 

0.44–0.76, PFDR = 0.004; and lysoPC a C18:2, OR = 0.61, 95% CI 0.47–0.80, PFDR = 0.004), and 

tyrosine (OR = 1.56, 95% CI 1.19–2.03, PFDR = 0.013). 

Table 3. Metabolites that were significantly associated with high-risk NASH (FAST score > 0.35). 

Variable OR 95% CI 
Raw p–

Value 
Rank 

BH Adjusted p–

Value 

SM (OH) C22:2 0.53 0.41–0.709 5.76193E–06 1 0.001198481 

SM (OH) C16:1 0.57 0.43–0.74 3.95722E-05 2 0.004115505 

PC ae C40:6 0.56 0.43–0.74 4.39683E-05 3 0.003048471 

SM C16:0 0.59 0.45–0.77 7.63941E-05 4 0.003972496 

PC ae C38:0 0.58 0.44–0.76 9.78989E-05 5 0.004072592 

SM C24:0 0.59 0.45–0.77 9.88366E-05 6 0.003426335 

PC ae C40:5 0.57 0.43–0.76 0.000114559 7 0.003404043 

PC aa C38:0 0.60 0.46–0.78 0.000149 8 0.003874005 

SM C24:1 0.60 0.46–0.78 0.000155451 9 0.003592655 

SM (OH) C22:1 0.60 0.46–0.79 0.000179669 10 0.003737106 
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SM C16:1 0.61 0.47–0.79 0.000194861 11 0.003684646 

PC ae C38:6 0.61 0.47–0.79 0.000200649 12 0.003477909 

PC ae C36:2 0.61 0.47–0.79 0.000220253 13 0.003524049 

LysoPC a C18:2 0.61 0.47–0.80 0.000289073 14 0.004294803 

PC aa C36:6 0.62 0.48–0.81 0.000311757 15 0.004323034 

PC ae C40:4 0.60 0.46–0.80 0.000394197 16 0.005124564 

PC aa C36:5 0.62 0.48–0.82 0.000557316 17 0.006818923 

Tyrosine 1.56 1.19–2.03 0.00108511 18 0.012539053 

PC aa C42:4 1.99 1.30–3.04 0.001440041 19 0.01576466 

PC ae C38:5 0.66 0.51–0.86 0.001646602 20 0.017124665 

DCA 1.57 1.18–2.08 0.001794496 21 0.017774053 

GLCA 2.06 1.30–3.27 0.002110225 22 0.019951219 

LCA 1.89 1.26–2.83 0.002162058 23 0.019552522 

PC ae C36:1 0.68 0.52–0.87 0.002786416 24 0.024148943 

SM (OH) C14:1 0.68 0.53–0.88 0.003112874 25 0.025899116 

TUDCA 3.10 1.46–6.58 0.003205053 26 0.025640423 

PC ae C36:5 0.68 0.53–0.88 0.003436294 27 0.026472192 

LysoPC a C18:1 0.68 0.52–0.89 0.004346437 28 0.032287817 

GCDCA 1.59 1.16–2.19 0.0044439 29 0.031873489 

SM C18:1 0.69 0.54–0.99 0.004463313 30 0.030945637 

PC aa C36:0 0.70 0.54–0.90 0.005357294 31 0.035945714 

SM C18:0 0.70 0.54–0.90 0.006127907 32 0.039831397 

GDCA 1.59 1.14–2.22 0.006191177 33 0.039023178 

LysoPC a C17:0 0.69 0.52–0.90 0.00685643 34 0.041945216 

Abbreviations: NASH, nonalcoholic steatohepatitis; FAST, FibroScan-aspartate aminotransferase; 

OR, odds ratio; CI, confidence interval; BH, Benjamini–Hochberg; SM, sphingomyeline; PC, phos-

phatidylcholine; lysoPC, lysophosphatidylcholine; DCA, deoxycholic acid; GLCA, glyco-lithocholic 

acid; LCA, lithocholic acid; TUDCA, tauro-ursodeoxycholic acid; GCDCA, glyco-chenodeoxycholic 

acid; GDCA, glyco-deoxycholic acid. 

In multiple logistic regression analysis (Table 4), relevant risk factors for a higher 

FAST score were identified as follows: age, ALT, HOMA-IR, sarcopenia, PNPLA3 geno-

type (dominant model), PC ae C40:6, lysoPC a C18:2, SM C24:0, and tyrosine. The multi-

omics-based prediction model (Model 3, c-index = 0.948; 95% CI 0.927–0.978; p for Hos-

mer–Lemeshow = 0.190) and the clinico-genomic model (Model 2, c-index = 0.933; 95% CI 

0.906–0.964; P for Hosmer–Lemeshow = 0.209) yielded a higher predictive performance 

compared to the metabolomics-based model (Model 1, c-index = 0.782; 95% CI 0.734–0.838; 

P for Hosmer–Lemeshow = 0.246) (p < 0.001). 

Table 4. Multiple logistic regression analysis on risk factors for high-risk NASH (FAST score > 0.35). 

  Model 1   Model 2   Model 3  

OR 95% CI p OR 95% CI p OR 95% CI p 

PC ae C40:6 0.48 0.34–0.67 <0.001    0.61 0.35–1.04 0.071 

lysoPC a C18:2 0.57 0.42–0.78 <0.001    0.72 0.43–1.20 0.201 

SM C24:0 0.64 0.46–0.89 0.008    0.57 0.35–0.92 0.022 

Tyrosine 2.74 1.88–4.01 <0.001    2.07 1.14–3.78 0.018 

Sex    1.03 0.44–2.43 0.945 1.30 0.50–3.39 0.591 

Age    1.05 1.02–1.09 0.002 1.04 1.00–1.08 0.035 

ALT    1.07 1.05–1.10 <0.001 1.07 1.05–1.09 <0.001 

HOMA-IR    2.94 1.20–7.21 0.019 2.14 0.84–5.49 0.113 

Sarcopenia    3.14 1.30–7.59 0.011 3.85 1.45–10.26 0.007 

PNPLA3    1.53 0.59–3.94 0.384 1.83 0.62–5.40 0.272 
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Note. Model 1 used metabolomics data; Model 2 used clinical + genomics data; Model 3 used clinical 

+ metabolomics + genomics data. Abbreviations: NASH, nonalcoholic steatohepatitis; FAST, Fi-

broScan-aspartate aminotransferase; OR, odds ratio; CI, confidence interval; SM, sphingomyeline; 

PC, phosphatidylcholine; lysoPC, lysophosphatidylcholine; ALT, alanine aminotransferase; 

HOMA-IR, homeostasis model assessment of insulin resistance. 

3.3. Follow-Up Sub-Cohort (n = 160) 

A total of 160 patients who were followed up more than twice with at least one fol-

low-up VCTE during the study period comprised the follow-up sub-cohort. During a me-

dian follow-up of 23.7 months (IQR, 13.2–33.8), weight loss > 5% between baseline and the 

last visit was observed in 30 patients (18.7%), weight loss ≤ 5% was observed in 75 patients 

(46.9%), and weight gain was observed in 55 patients (34.4%). Figure 1 depicts the changes 

in the FAST score (≤ 0.35 vs. 0.35–0.67 vs. ≥ 0.67) according to the level of weight change 

under lifestyle modification. Low-risk patients at baseline (FAST ≤ 0.35, n = 84) mostly 

remained in the same category at follow-up (79, 94.0%). However, 47 out of 76 patients 

(61.8%) with a baseline FAST score > 0.35 were classified as low-risk NASH (FAST score ≤ 

0.35) at follow-up (Table S1). 

 
(A) (B) (C) 

Figure 1. Changes in the FAST score during follow-up. Distribution of changes in the FAST score 

between baseline and the last follow-up, according to the levels of weight change under lifestyle 

modification (≥5% weight loss (A), <5% weight loss (B), and weight gain (C)). 

Significant differences in terms of changes in skeletal muscle mass, fat%, ALT, GGT, 

FAST score, and LSM were observed among the three subgroups according to the extent 

of weight change (all p < 0.05; Table S2). Multiple logistic regression analysis of the follow-

up sub-cohort showed that age, ALT, and tyrosine were significantly associated with a 

shift in the FAST score toward a low-risk score (≤0.35) from a baseline level of >0.35, re-

gardless of baseline weight or weight changes during follow-up (Table 5). 

Table 5. Multiple logistic regression analysis on the predictors of NASH resolution defined as fol-

low-up FAST score ≤ 0.35 following lifestyle modification in patients with baseline FAST score > 

0.35. 

  Model 1   Model 2  
 OR 95% CI p OR 95% CI p 

PC ae C40:6 2.54 0.91–7.07 0.074 2.47 0.81–7.53 0.111 

LysoPC a C18:2 0.97 0.40–2.36 0.940 0.98 0.38–2.54 0.973 

SM C24:0 1.10 0.44–2.79 0.835 1.25 0.41–3.80 0.693 
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Tyrosine 0.36 0.15–0.88 0.025 0.36 0.13–0.97 0.044 

Sex 0.86 0.20–3.76 0.836 0.31 0.05–2.07 0.227 

Age 0.92 0.86–0.98 0.010 0.88 0.81–0.97 0.007 

ALT 0.97 0.95–0.99 0.001 0.96 0.94–0.99 0.002 

HOMA-IR 0.84 0.11–6.55 0.867 1.26 0.13–11.99 0.841 

Sarcopenia 0.42 0.10–1.84 0.247 0.90 0.13–6.23 0.915 

PNPLA3 0.93 0.13–6.65 0.938 0.98 0.11–8.61 0.983 

Baseline weight    0.93 0.86–1.01 0.099 

Weight change (ref.: 

weight loss <5%) 
      

weight loss ≥ 5%    6.25 0.55–70.64 0.138 

weight gain    0.65 0.12–3.46 0.612 

c–index 0.845 (95% CI 0.815-0.989) * 0.861 (95% CI 0.858-1.000) * 

Note. Model 1 used baseline clinical characteristics and multiomics data; Model 2: Model 1 + weight 

change. P values for Hosmer–Lemeshow test were 0.207 for Model 1, and 0.783 for Model 2, respec-

tively. * Using bootstrap resampling (times = 1000). Abbreviations: NASH, nonalcoholic steatohep-

atitis; FAST, FibroScan-aspartate aminotransferase; OR, odds ratio; CI, confidence interval; SM, 

sphingomyeline; PC, phosphatidylcholine; lysoPC, lysophosphatidylcholine; ALT, alanine ami-

notransferase; HOMA-IR, homeostasis model assessment of insulin resistance. 

In the mediation analysis, in patients with a baseline FAST score > 0.35, weight gain 

was associated with an increase in serum ALT (β = 3.154, 95% CI 1.283–5.026, p = 0.001). A 

follow-up FAST score ≤ 0.35 showed a significant inverse relationship with an increase in 

serum ALT (β = −0.083, 95% CI −0.127–−0.039, p < 0.001). The indirect effect of ALT as a 

mediator on the association between changes in weight and a shift toward a FAST score ≤ 

0.35 was statistically significant (Table S3). 

4. Discussion 

The present exploratory study demonstrated that the combination of clinical (age, 

ALT, HOMA-IR, and sarcopenia), metabolomic (sphingolipids, glycerophospholipids, 

and tyrosine), and genomic (PNPLA3 genotype) biomarkers accurately predicted a higher 

FAST score (>0.35). In the follow-up sub-cohort, predictors of a shift of the FAST score 

toward a low-risk score (≤0.35) following lifestyle modification included a younger age 

and lower baseline levels of serum ALT and tyrosine. Mediation analysis suggested that a 

downward shift in the FAST score in association with weight change might be mediated 

by the mitigation of hepatic inflammation. 

Identification of patients at high risk of disease progression is a challenging issue [2]. 

Given the inherent limitations of liver biopsy, noninvasive tests (NITs) have been devel-

oped for routine practice and sustainable clinical care pathways. However, longitudinal 

changes in those NITs following certain treatments remain to be elucidated because those 

NITs were derived and validated in cross-sectional settings [11]. In the current study, at 

baseline, 47.4% of participants were classified as low-risk (FAST ≤ 0.35), 10.1% of partici-

pants were classified as high-risk (FAST ≥ 0.67), and 42.5% of participants were classified 

as in the gray zone (0.35 < FAST < 0.67). The FAST score demonstrated a good diagnostic 

performance for high-risk NASH in the derivation cohort as well as in the external vali-

dation cohorts [7]. However, an independent external validation study by Puri et al. in-

volving 199 United States veterans reported a lower positive predictive value (0.26) of an 

upper cut-off (0.67) to rule in, compared with the original study, along with a high pro-

portion of the gray zone (35.5%) [12]. Given that the diagnostic performance of biomarkers 

depends on different clinical settings, the major implication of the FAST score in the pre-

sent study could be the confirmatory exclusion of patients with high-risk or fibrotic NASH 

based on the lower cut-off [13]. Another concern in relation to the FAST score seems to be 
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its inherently high dependency on AST levels, considering that most patients with ad-

vanced liver fibrosis on biopsy present with normal aminotransferase levels [14]. Thus, 

experts recommend paying attention to the LSM per se to minimize the risk of the under-

estimation of patients with advanced fibrosis, suggesting sequential testing in case of high 

LSM despite being below a low-risk cut-off [15]. Given the low baseline LSM value (me-

dian, 4.6 kPa; IQR, 3.8–6.1) in patients with a FAST score ≤ 0.35 in our real-life cohort (Table 

1), the utilization of a lower cut-off (0.35) as an exclusion of high-risk NASH seems justi-

fiable. Thus, we dichotomized study participants according to the lower cut-off (0.35) to 

distinguish probable low-risk patients from patients falling in the gray zone or high-risk 

NASH patients who would benefit from further testing or enrollment in clinical trials. In 

addition, since most low-risk patients remained low risk at follow-up (94%) in the follow-

up sub-cohort, we attempted to identify the predictors of a downward shift in the risk 

group, in which patients in the gray zone and high-risk patients became the low-risk 

group after follow-up. 

In the present study, univariable analysis showed that only the PNPLA3 rs738409 

genotype was significantly associated with a FAST score > 0.35. Among the 34 metabolites 

which met the FDR-adjusted threshold for a significant association with a higher FAST 

score, the top four metabolites panel based on the stepwise regression included sphin-

golipids, glycerophospholipids, and amino acids. A model combining clinical (age, sex, 

ALT, HOMA-IR, and sarcopenia), genomic (PNPLA3 rs738409), and metabolomic (PC ae 

C40:6, lysoPC a C18:2, SM C24:0, and tyrosine) parameters achieved the highest c-index 

(0.948) for the prediction of high-risk NASH. Low concentrations of certain glycerophos-

pholipids (acyl-alkyl PC or PC ae) and sphingolipids were characteristic of NAFLD in 

previous studies, suggesting the increased turnover and size of adipocytes, which neces-

sitate high PC amounts for cell membrane production in the pathogenesis of NAFLD [16]. 

Sphingolipids and PCs are both biochemically related phospholipids and key components 

of the cell membrane, which explains a significant inverse relationship with a higher FAST 

score (>0.35) or low likelihood of high-risk NASH, as our results indicated. In addition, 

lysophosphatidylcholines (lysoPCs) were associated with liver fat content as the hallmark 

of NAFLD in a Finnish study [17]. Subsequent evidence was added regarding lysoPC a 

C18:2 as a marker of impaired glucose tolerance [18], obesity [19], and type 2 diabetes [20]. 

In our results, lysoPC a C18:2 was inversely associated with a FAST score > 0.35. Given 

that lysoPCs are formed by the oxidation of PCs in phospholipid-containing cell mem-

branes or low-density lipoprotein (LDL) [21], this inverse relationship might result from 

an increased breakdown of lipid from metabolically active tissues, which is in line with 

previous studies [18,20]. 

Alterations in circulating amino acids have been documented in patients with 

NAFLD, including increases in branched chain amino acids or aromatic amino acids [22]. 

The altered hepatic amino acid composition implies the role of amino acids as adaptive 

response mechanisms to lipotoxicity in progressive NAFLD [23]. Specifically, tyrosine has 

been reported to be a marker of development of insulin resistance, upregulated in 

NAFLD/NASH patients, and positively correlated with total and LDL cholesterol [24–26]. 

Decreased gene expression of amino acid transporters, such as SLC16A10, was suggested 

to be a potential mechanism for the elevation of tyrosine levels in NASH patients [24], 

which could not be verified due to lack of sufficient liver samples. Although the mecha-

nism of tyrosine dysregulation in NAFLD remains to be elucidated, the blood tyrosine 

level has been arguably identified as a potential biomarker for NAFLD [27], which might 

also be the marker of risk stratification for fibrotic NASH, in agreement with our results. 

Furthermore, tyrosine was the only significant metabolite in the prediction of a FAST score 

≤ 0.35 at follow-up in patients with a baseline FAST score > 0.35. A recent Finnish study 

suggested that an exercise-related decrease in fasting plasma glucose and improved car-

diorespiratory fitness might be derived by the increased tyrosine level in the adipose tis-

sue, given tyrosine is a catecholamine precursor which plays a vital role in athletic perfor-
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mance and lipolysis [28]. Our results might also reflect the similar role of tyrosine in pa-

tients undergoing lifestyle modification, which requires further validation. Lastly, in the 

mediation analysis, the significant indirect effect of serum ALT on weight changes and 

outcomes (e.g., FAST score at follow-up) is in line with previous reports in which benefi-

cial effects of lifestyle modification result from the amelioration of hepatic inflammation 

with or without an improvement in fibrosis according to the extent of weight loss [29]. 

However, ALT change was the only statistically significant mediator in the relationship 

between weight change and the follow-up FAST score in the mediation analysis. This find-

ing suggests that the mediation analysis was possibly not able to capture certain beneficial 

effects of lifestyle modification on other pathophysiologic aspects of NAFLD/NASH, such 

as metabolic comorbidities. One possible explanation would be the insufficient follow-up 

duration (median 23.7 months) and/or number of study participants. In addition, sarco-

penia was not significantly associated with the outcome, unlike previous reports, possibly 

because of the relatively low proportion of high-risk (FAST ≥ 0.67) patients (10.1%) [30,31]. 

This study has several limitations. First, and most importantly, a liver biopsy was 

performed in only a subset of patients, which raises the possibility of misclassification bias 

and precluded an external validation of the FAST score or comparison with other nonin-

vasive tests, using histologic data as a gold standard. However, performing a biopsy in 

the entire study participants would be unethical given the substantial proportion of the 

low-risk group (FAST ≤ 0.35). Instead, we focused on the following questions: who would 

be in the low-risk group and who would not, given that there are no widely approved 

pharmacological agents against NASH and virtually all patients with NAFLD should un-

dergo lifestyle modification. In that context, the dichotomous categorization into low-risk 

vs. gray zone + high-risk according to the lower cut-off (0.35) seems reasonable consider-

ing the low LSM values in the low-risk group, instead of using three categories without 

reference to the histological data. Second, 39.9% (106/266) of the entire cohort were lost to 

the follow-up, which might have affected the results of the present study by way of the 

Hawthorne effect [32]. In addition, the relatively short duration of the follow-up (2 years) 

might have affected the lower frequency of progression in the FAST score in the follow-

up sub-cohort. However, lifestyle modification was presumed to be implemented strictly, 

given that the low-risk FAST score was maintained in 94% of the follow-up sub-cohort, 

which reduces concerns in relation to compliance bias. Third, the observational nature of 

this study might preclude the assessment of causality, mechanistic links, and roles of the 

identified risk factors. 

In conclusion, the present study suggests the potential usefulness of a multiomics-

based risk categorization based on glycerophospholipids (PC ae C40:6, lysoPC a C18:2), 

sphingolipids (SM C24:0), and amino acids (tyrosine) at baseline as well as at follow-up 

after lifestyle modification. Despite the aforementioned limitations, our results provide 

solid data on the dynamic change of paired NITs and would facilitate the development of 

a risk stratification strategy before and after lifestyle modification if properly validated. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/metabo13030444/s1, Supplementary Methods [4,33–46]; Ta-

ble S1: longitudinal changes in patient distribution according to the FAST score at baseline and at 

follow-up; Table S2: changes in parameters according to weight change during follow-up; Table S3: 

mediation analysis of anthropometric and clinical parameters in the relationship between weight 

change during follow-up and a FAST score ≤ 0.35 at follow-up among subjects with baseline level > 

0.35; Figure S1: area under the receiver operating characteristic curve of the multiomics-based model 

for the prediction of a FAST score > 0.35. 
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