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Abstract: In the United States, besides the US territory Puerto Rico, Hawai‘i is the only state that grows
commercial coffee. In Hawai’i, coffee is the second most valuable agricultural commodity. Health
benefits associated with moderate coffee consumption, including its antioxidant capacity, have been
correlated to its bioactive components. Post-harvest techniques, coffee variety, degree of roasting, and
brewing methods significantly impact the metabolites, lipids, minerals, and/or antioxidant capacity
of brewed coffees. The goal of our study was to understand the impact of roasting and brewing
methods on metabolites, lipids, biogenic amines, minerals, and antioxidant capacity of two Hawai‘i-
grown coffee (Coffea arabica) varieties, “Kona Typica” and “Yellow Catuai”. Our results indicated that
both roasting and coffee variety significantly modulated several metabolites, lipids, and biogenic
amines of the coffee brews. Furthermore, regardless of coffee variety, the antioxidant capacity of
roasted coffee brews was higher in cold brews. Similarly, total minerals were higher in “Kona Typica”
cold brews followed by “Yellow Catuai” cold brews. Hawai‘i-grown coffees are considered “specialty
coffees” since they are grown in unique volcanic soils and tropical microclimates with unique flavors.
Our studies indicate that both Hawai‘i-grown coffees contain several health-promoting components.
However, future studies are warranted to compare Hawai‘i-grown coffees with other popular brand
coffees and their health benefits in vivo.
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1. Introduction

Coffee is one of the most popular drinks worldwide and is a widely consumed bever-
age. During 2022–2023, global coffee consumption is expected to reach over 168.7 million
60 kg (132 lb.) bags [1], and it is forecasted that the global production will be 172.8 mil-
lion bags in the 2022–2023 growing season [2]. In the United States, it is estimated that
more than 157 million cups of coffee are consumed per day, making the United States the
world’s leading coffee consumer [3]. The health benefits of coffee, including its antioxidant
properties, are associated with its complex array of bioactive chemicals, the most influen-
tial being alkaloids (caffeine and trigonelline), phenolic compounds (chlorogenic acids),
and diterpenes (cafestol and kahweol). Epidemiological studies have reported several
health benefits of coffee such as reducing the risk of metabolic syndrome (MetS), type
2 diabetes (T2D), cardiovascular disease (CVD), various types of cancer, kidney stones,
liver disease, Parkinson’s disease, gout, and neurological disorders [4–7]. Moderate coffee
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consumption may also confer protective effects against overall mortality [8–13]. However,
a few studies indicate that drinking more than four to nine cups of coffee per day may
have some detrimental health effects such as increasing plasma cholesterol or triglyceride
levels, and decreasing bone density in women [6,14–16]. Consuming large amounts of
caffeinated coffee can also have negative effects on health such as increased blood pres-
sure, anxiety, or difficulty falling asleep [17]. Abrupt cessation of caffeine consumption
may induce withdrawal symptoms such as headache, fatigue, and/or depression. Coffee
consumption during pregnancy is associated with adverse birth outcomes and neonatal
health including lower infant birth weight [18–28]. Similarly, biogenic amines identified in
coffee brews, resulting from amino acid decarboxylation, can be toxic to humans at high
concentrations [29]. Inconsistencies observed in the health benefits of coffee may possibly
be associated with differences in the chemical compositions of coffee [30–36].

It has been demonstrated that differences in coffee metabolites and caffeine lev-
els [36,37] are influenced by their geographic origins or environment [38–44], post-harvest
processing [30,33,45–48], instant versus fresh ground coffees [49,50], degrees of roast-
ing [33,51–53], and/or types of brewing methods [31,33,36,49,54–56]. Different coffee
metabolites not only impart flavors [38,57,58] or aromas [59–63], but also determine thera-
peutic impact by influencing antioxidant potential [34,64–67]. Prospective epidemiological
studies conducted among populations of Hawai‘i indicate that a moderate level of coffee
consumption (one to three cups per day) was associated with a lower risk of T2D, chronic
liver diseases, dementia, and Parkinson’s disease [68–71]. In contrast, drinking more than
nine cups of coffee per day was positively associated with increased serum cholesterol
among several population-based studies, including Japanese men in Hawai‘i [14,15].

Besides the US territory Puerto Rico, Hawai‘i is the only state in the United States that
grows commercial coffee. In Hawai’i, coffee is the second most valuable agriculture com-
modity after seed crops [72,73]. In 2021, unroasted coffee was valued at USD 102.91 million,
and its roasted value was more than USD 148.48 million [74]. In 2022, annual revenue for
the US coffee industry was estimated at USD 90.27 billion [75]. Hawai’i-grown coffees
account for less than 1% of total global coffee production. However, they are considered
specialty coffees since they are grown in unique volcanic soils and tropical microclimates
with unique flavors [76]. The main varieties of coffee grown in Hawai‘i are “Kona Typ-
ica” and “Yellow Catuai”, which represent two major Coffea arabica botanical varieties of
“Typica” and “Bourbon” used worldwide.

Metabolomic profiles of coffees brewed by different methods have been reported [33,36].
However, studies on the effect of roasting conditions on coffee metabolites are limited [33].
The antioxidant capacities and mineral contents of several coffee varieties and the impact
of roasting conditions have also been reported [64,77–83]. Green coffee beans (grounds)
are generally not brewed for consumption. Only roasted coffee grounds are brewed for
consumption worldwide. Roasting generates the flavor of coffee. Green coffee brews
would not be considered “coffee” since they do not taste like the “coffee” brewed from
roasted grounds. Overall, no studies have addressed the lipidomic profiles of brewed
coffee from roasted beans, while only one study evaluated selected biogenic amines in
brewed coffee [29]. To date, one study has identified metabolites from spent grounds of
Hawai‘ian Kona coffee [84]. However, variability in metabolites, lipids, biogenic amines,
mineral contents, or antioxidant capacity of Hawai‘i-grown coffee (Coffea arabica) has yet to
be elucidated.

The primary objective of our study was to identify the impact of roasting and brewing
methods on global metabolites, lipids, and biogenic amines in the two Hawai‘i-grown
coffee varieties, “Kona Typica” and “Yellow Catuai”. Drip filter paper, drip filter mesh
and French press are the most widely used methods for brewing roasted coffee. For
our initial investigation, to evaluate the differences in metabolites, lipids, and biogenic
amines among brews of roasted and green coffee beans, we used the above three brewing
methods of coffee preparation. However, to understand the effects of different methods
of brewing roasted coffee, we also included the cold brewing method, which is gaining
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popularity worldwide and has been reported to provide more beneficial compounds than
other brewing methods [85,86]. The secondary objective of our study was to evaluate the
influence of brewing methods on the antioxidant capacity and mineral contents of these two
Hawai‘i-grown coffees. Brewing green coffee bean grounds is also not common. Therefore,
we analyzed the minerals and the antioxidant capacity of brews prepared only from roasted
coffee grounds.

2. Materials and Methods

Green coffee beans, 50 lbs. each, of “Kona Typica” (purchased from Waialua Coffee
and Cacao Estate, Oahu, Honolulu, HI, USA) and “Yellow Catuai” (purchased from Kaua’i
Coffee Company, Kaua’i, Kalaheo, HI, USA) were stored at room temperature. “Kona
Typica” is also grown in Kaua’i, and “Yellow Catuai” is grown in Kona and on Oahu.
Although metabolite differences are noted based on genetic variety, geographic location
can also make a difference [38–44,46]. For ease of readership and future study reference,
we will refer to “Kona Typica” as Waialua and “Yellow Catuai” as Kaua’i coffee.

2.1. Green Coffee Grounds

Nylon bags filled with green coffee were dunked in liquid nitrogen for three to five
seconds in order to freeze the green coffee beans. The frozen, dried green coffee beans
were ground using a “Santos burr grinder” (Sao Paulo, Brazil). Grounds were collected
in a jar, and larger grounds that did not pass completely through were discarded. Green
coffee grounds were brewed using the drip filter paper, drip filter mesh and French press
methods described below.

2.2. Coffee Roasting

Prime-grade green beans were further cleaned by hand to remove any defective green
beans and roasted using the electric, programmable rotating drum type “Has Garanti
roaster” (Model HSR 1 kg (92.2 lbs.), Turkey), at 230 ◦C temperature for about 13 min, until
coffee reached a medium roast color according to the “Roast Color Classification System”
(Agtron 55-65, SCAA, Long Beach, CA, USA), and cooled at room temperature. Coffee
beans were ground using the “Santos coffee grinder” (Burr type, Santa Fe Springs, CA,
USA) to a size for paper filter brewing. For each type of brewing method, three roasted
batches were mixed thoroughly and pooled as one sample. To understand inter-roasting
variability, a total of six batches were roasted, providing two pooled samples for preparing
the different brews.

2.3. Drip Filter Paper (FP) Method

Two tablespoons (Tbsp) of coffee grounds with six fluid ounces (fl oz) of room-
temperature tap water was brewed in the “Toastmaster” coffee machine (Star International
Holdings group of brands, Star manufacturing, Smithville, TN, USA) using the “Total
Home #4 Cone Style paper Filter” (CVS Pharmacy, Honolulu, HI, USA). After brewing
was completed, the hot plate was turned off, and the coffee was cooled in the pot for
15 min. Cooled coffee brews were aliquoted into 50 mL tubes and stored at −80 ◦C until
lyophilization.

2.4. Drip Metallic Filter Mesh (FM) Method

Six fl oz of room-temperature tap water with two Tbsp of coffee grounds was brewed
in the “Black and Decker Brew ‘N Go” (San Diego, CA, USA) coffee machine, which
contains a metallic (steel) mesh filter. After brewing was completed, coffee was cooled
in “Brew ‘N Go cup” for 15 min, aliquoted into 50 mL tubes, and stored at −80 ◦C until
lyophilization.
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2.5. French Press (FrP) Method

Six fl oz of boiling water with two Tbsp of coffee grounds was set to steep for 15 min in
the “Bodum Brazil 3 cup French Press Coffee Maker 12 oz” (Bodum incorporation, Triengen,
Switzerland). The ground coffee beans were pressed with a perforated plunger plate and
then cooled for 20 min in the brewing container. The coffee brew was then aliquoted into
50 mL tubes and stored at −80 ◦C until lyophilization.

2.6. Cold Brew (CB) Method

A damp, reusable “Toddy Filter” (fabric-like, compostable filter made from tree-free
specialized material by Toddy, LLC (Loveland, CO, USA) ) was placed in the bottom of
the “Toddy Cold Brew System” (Toddy, LLC, Loveland, CO, USA). One fl oz of room-
temperature tap water and 4 Tbsp of roasted coffee grounds were added to the system. An
additional three fl oz of water was gently added to the mixture and left to sit for 5 min.
Another batch of four Tbsp of grounds and three fl oz of water was carefully added. The
grounds were lightly pressed down to ensure all grounds were wet. The system was
covered with foil and kept to steep for 24 h. After steeping, the coffee was measured and
2 times the amount of water was added to dilute the concentrate. Ten-milliliter aliquots
were distributed, frozen, and stored in a −80 ◦C freezer until lyophilization. Samples were
lyophilized in a Martin Christ Alpha 2-4 LD plus (Christ, Osterode am Harz, Germany) for
24 h, pooled, and then stored in a −80 ◦C freezer until analysis.

2.7. Brewed Coffee Omics (Global Metabolites, Lipids, and Biogenic Amines)

Roasted coffee grounds were brewed by drip filter paper, drip filter mesh, French
press, and cold brew methods. Green coffee bean grounds were brewed by drip filter paper,
drip filter mesh, and French press methods. Metabolomics, lipidomics, and analysis of
biogenic amines were conducted at the Fiehn Laboratory, NIH West Coast Metabolomics
Center. Global metabolites (targeted and untargeted) were analyzed using an automated
liner exchange cold injection system gas chromatography time of flight mass spectrometer
(ALEX-CIS GCTOF MS) as described previously [87–91]. In brief, 10 mg brewed coffee
samples were extracted with 1 mL of 3:3:2 acetonitrile (ACN):isopropanol (IPA):water
by vortexing for 10 s and shaking for 6 min at 4 ◦C. After centrifugation at 14,000 RCF
(relative centrifugal force) for 2 min, the supernatant was aliquoted into 475 µL aliquots,
dried, and stored until further analysis. Half of the dried sample was derivatized with
10 µL of 40 mg·mL−1 of methoxyamine in pyridine and shaken at 30 ◦C for 1.5 h. Ninety-
one microliters of N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) + fatty acid
methyl esters (FAMEs) was added to each sample and further shaken at 37 ◦C for 0.5 h
to complete derivatization. Then, 0.5 µL derivatized samples were injected on a 7890A
gas chromatogram (GC) coupled with a time of flight mass spectrometer (TOF; LECO
Corporation, St. Joseph, MI, USA) using a splitless method onto a RESTEK RTX-5SIL MS
column with an Intergra-Guard at 275 ◦C with a helium flow of 1 mL.min−1. The GC oven
was set at 50 ◦C for 1 min and then ramped to 330 ◦C at the rate of 20 ◦C.min−1 and held
for 5 min. The transfer line was set to 280 ◦C and the EI ion source was set to 250 ◦C. The
MS parameters collect data from 85 m/z to 500 m/z at an acquisition rate of 17 spectra/s.

Lipids were determined using the charged surface hybrid column electrospray method
using a quadrupole time of flight mass spectrometer and tandem mass spectrometry (CSH-
ESI QTOF MS/MS) as described previously [92,93]. In brief, 10 mg brewed coffee samples
were vortexed with LCMS grade methanol (225 µL) and methyl tert-butyl ether (MTBE,
750 µL) and extracted by shaking for 6 min at 4 ◦C as previously described [90,93]. Samples
were then vortexed with LCMS-grade water (188 µL). After centrifugation at 14,000 RCF
(relative centrifugal force) for 2 min, the polar and non-polar layers were separated, dried,
and stored until further analysis. Free fatty acids (FFAs); mono-, di-, and triglycerides (TGs);
cholesteryl ester (CE); phospholipids (PLs); and sphingolipids (SLs) were analyzed by CSH-
ESI QTOF MS/MS. Data were collected in both positive electrospray ionization (ESI) and
negative ESI mode. Peaks were annotated by comparing MS/MS spectra and accurate
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masses of the precursor ion to spectra provided in the Fiehn Laboratory’s LipidBlast spectral
library [94,95]. To profile biogenic amines, samples were analyzed using the hydrophilic
interaction chromatography electrospray method, using a quadrupole time of flight mass
spectrometer and tandem mass spectrometry (HILIC-ESI QTOF MS/MS) as described
previously [90,93]. Data were collected in both positive and negative ESI modes and
processed using MS-DIAL and MS-FLO programs as described [96].

2.8. Mineral and Metal Analysis of Brewed Coffee

The brewed coffees were lyophilized and sent to the Agricultural Diagnostic Service
Center (ADSC), College of Tropical Agriculture and Human Resources (CTAHR), for
analysis. The minerals analyzed included boron (B), calcium (Ca), copper (Cu), iron
(Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), phosphorus (P), potassium
(K), sodium (Na), and Zinc (Zn). The metals that were analyzed included arsenic (As),
cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), selenium (Se), and vanadium (Va).
Three independent brews for each type of coffee and each brewing method were analyzed
in triplicate.

Minerals and metals were analyzed by the standard EPA 3050B method (https://www.
epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf, accessed on 5 January
2023) with slight modifications. In brief, 0.5 g lyophilized brewed coffee samples were used
for analysis. Samples were digested with 3. 5 mL of concentrated nitric acid (15.8 N) for
about 10 min at 110 ◦C. The samples were then mixed with 100 mL of ddH2O, incubated
on a shaker, filtered through Whatman 42 filter paper, and analyzed on an Avio 560
Max Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES, Perkin Elmer,
Waltham, MA, USA).

2.9. Antioxidant Capacity of Brewed Coffee

The antioxidant activity of brews prepared from roasted coffee grounds was analyzed
using a commercial ORAC Antioxidant Assay Kit, Cat# AOX-2-RB(Zen-Bio, Inc., Research
Triangle Park, North Carolina). The ORAC is a kinetic assay that measures fluorescein
decay and antioxidant protection over time. It is an assay that is regularly used to mea-
sure the total antioxidant capacity of biological fluids, cells, and tissues as well as dietary
supplements, therapeutics [97], and food extracts [98]. In this assay, the substrate 2,2′-
azobis-2-methyl-propanimidamine dihydrochloride (AAPH) generates a peroxyl radical
(ROO-) which is formed upon thermal homolysis at 37 ◦C. This peroxyl radical oxidizes
fluorescein, which thereby produces a non-fluorescent product. The principle of the as-
say relies on the hydrogen atom transfer (HAT) mechanism of antioxidants to suppress
oxidative degradation of the signal and measures the subsequent fluorescent activity vs.
reaction time [99]. ORAC measures the inhibition of the peroxyl radical-induced oxidation
as carried out by antioxidant compounds in coffee. The fluorescent measurements were
expressed relative to the initial reading (excitation/emission at 485 nm/528–538 nm). Three
independent brews for each type of coffee and each brewing method were analyzed in
triplicate at four different concentrations of 1:100, 1:200, 1:500, and 1:750. Time course
reactions of fluorescein decay from AAPH were measured using a 96-well plate reader
(Perkin Elmer Wallac 1420 Victor2) and plate reading software (Wallac 1420).

Raw data from the ORAC assays were exported from the Wallac 1420 software to Excel
and were normalized according to the following equation: AUC = 0.5 + (F1/F0) + (F2/F0)
+ . . . + 0.5 (F30/F0), where F0 = initial fluorescence reading at time = 0 min and F1, F2,
etc., are the fluorescence readings at different time points. The area under the curve (AUC)
values were generated using GraphPad Prism 7.0 for Mac OS X, version 7.0e. The net AUC
was determined by subtracting the AUC of the blank from that of the coffee sample. A
Trolox standard curve was generated using the net AUC vs. µM Trolox, in accordance with
the one site-specific binding model (GraphPad Prism 7, GraphPad Software, CA, USA).
Trolox equivalencies were determined by the one-site specific equation (Michaelis–Menten),
as determined by the following equation: Y= Bmax * X/(Kd + X), where X is the equivalent
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Trolox concentration for coffee, Y is the net AUC for each coffee dilution, and Vmax and
Kd are values from the Trolox standard curve. The ORAC data are represented as Trolox
equivalences (TEs) of coffee. Three independent experiments were performed in replicates
of six (n = 18).

2.10. Statistical Data Analysis

All coffee metabolites, lipids, and biogenic amines (known and unknown) were ana-
lyzed by univariate analysis using the parametric t-test to compare the mean differences
of two groups. The one-way analysis of variance (ANOVA) was followed by Holm–Sidak
correction for multiple comparisons. The known metabolites were further subjected to
multivariate analysis using MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/docs/
Publications.xhtml, accessed between 6 September and 20 October 2022) [31]. Data were
normalized to sample median, log10 transformed and Pareto scaled. Principal component
analysis (PCA) was used to observe clustering trends and exclude outliers. A discriminant
model was created by further subjecting the data to partial least squares discriminant analy-
sis (PLS-DA). One thousand permutation tests were performed to check model validity and
potential over-fitting of the PLS-DA model and visualized using a validation plot. Known
metabolites, lipids, and biogenic amines in each category were used to build the PLS-DA
models. After validation of the PLS-DA model, data were further analyzed by orthogonal
partial least squares discriminant analysis (OPLS-DA) to identify discriminant metabolites,
lipids, and biogenic amines and distinguish between categories at false discovery rate
(FDR) < 0.05.

Data for mineral and metal contents and ORAC assays are expressed as a mean ± standard
deviation of triplicate or quadruplet values. Statistical significance was assessed using
GraphPad Prism 7.0. Data were analyzed using either a two-tailed unpaired t-test or one-
way ANOVA followed by Tukey’s test. p values < 0.05 were considered to be significant.

3. Results

A total of 442 metabolites tentatively assigned as global metabolites (139 known and
303 unknown), 1617 metabolites tentatively assigned as positive ESI lipids (80 known and
1537 unknown), 2862 metabolites tentatively assigned as negative ESI lipids (40 known and
2822 unknown), and 1747 metabolites tentatively assigned as biogenic amines (47 known
and 1700 unknown) were detected in both coffee varieties.

3.1. Differences in Global Metabolites, Lipids, and Biogenic Amines among the Green and Roasted
Coffee Varieties of “Kona Typica” (Waialua) and “Yellow Catuai” (Kaua’i) Brews

Univariate analysis indicated that 92 metabolites tentatively assigned as global metabo-
lites (36 known and 54 unknown) were significantly different between the green varieties of
Kaua’i and Waialua coffee (p < 0.05, supplement file 1). Similarly, 32 metabolites tentatively
assigned as lipids (positive ESI; 4 known and 28 unknown), 103 metabolites tentatively
assigned as negative ESI lipids (10 known and 93 unknown), and 132 metabolites tenta-
tively assigned as biogenic amines (9 known and 123 unknown) were significantly different
between the green varieties of Kaua’i and Waialua coffee (p < 0.05, supplement file 1).

Kaua’i green coffee brews contained higher amounts of 2-hydroxybutanoic acid (14.64-fold),
LPC (18:0; 37.97-fold), chlorogenic acid (18:34-fold), and N6,N6,N6-Trimethyllysine (12.53-fold)
as compared to Waialua green coffee brews (p < 0.05, supplement file 1). Orthogonal
projections to latent structures discriminant analysis (OPLS-DA) score plots for green
varieties of Kaua’i and Waialua coffee are represented in Figure 1 as determined by
multivariate analysis.

https://www.metaboanalyst.ca/docs/Publications.xhtml
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Figure 1. OPLS-DA score plots for brews of Kaua’i green (KG, n = 3) and Waialua green (WG, n = 3)
coffees for known (A) global metabolites, (B) positive ESI mode lipids, (C) negative ESI mode lipids,
and (D) biogenic amines.

Brews of the roasted coffees also demonstrated differences in 134 metabolites ten-
tatively assigned as global metabolites (44 known and 89 unknown), 145 metabolites
tentatively assigned positive ESI lipids (5 known and 140 unknown), 146 metabolites
tentatively assigned as negative ESI lipids (12 known and 134 unknown), and 433 metabo-
lites tentatively assigned as biogenic amines (15 known and 418 unknown) which were
significantly different among Kaua’i and Waialua coffees (p < 0.05, supplement file 2).

Among the known compounds, galactinol, pyrogallol, uracil, phosphatidyl choline
(PC) (34:1), PC (34:2), PC (36:2), PC (16:0), PE (38:2), PE (36:1), PC (38:2), PC (36:4), PC (36:2),
PC (36:1), PC (35:4), PC (34:1), and DL-Indole-3-lactic acid were more than 2-fold higher
in roasted Kaua’i coffee brews as compared to the roasted Waialua coffee brews (p < 0.05,
supplement file 2). The OPLS-DA score plots for roasted Kaua’i and Waialua coffee brews
are represented in Figure 2.
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Figure 2. OPLS-DA score plots for brews of roasted Kaua’i coffee (KR, n = 3) and roasted Waialua
coffee (WR, n = 3) for known (A) global metabolites, (B) positive ESI mode lipids, (C) negative ESI
mode lipids, and (D) biogenic amines.
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3.2. Influence of Roasting on Metabolites, Lipids, and Biogenic Amines of “Kona Typica” (Waialua)
and “Yellow Catuai” (Kaua’i) Coffee Brews

As expected, roasting significantly increased caffeine and reduced chlorogenic acid
in both coffee varieties (Figures 3A and 3B, respectively). Similar effects of roasting on
caffeine and chlorogenic contents of coffee have been reported by others [100]. Roasted
Kaua’i coffee contained significantly high amounts of pyrogallol (Figure 3C, p < 0.05)
compared to Waialua coffee. Overall differences in Kaua’i and Waialua coffee varieties as
well as the effect of medium roasting conditions are noted in Figure 3D–G which depict
hierarchal clustering (heatmaps) of all identified and unidentified metabolites for the green
and roasted coffee brews: (C) global metabolites, (D) positive ESI lipid profiles, (E) negative
ESI lipid profiles, and (G) biogenic amines.

Roasted Kaua’i coffee brews demonstrated significant differences in 102 known and
209 unknown metabolites tentatively assigned as global metabolites, 119 metabolites ten-
tatively assigned as positive ESI mode lipids (5 known and 114 unknown), 678 metabo-
lites tentatively assigned as negative ESI mode lipids (8 known and 670 unknown), and
1132 metabolites tentatively assigned as biogenic amines (38 known and 1094 unknown) as
compared to the green Kaua’i coffee brews (p < 0.05, supplement file 3). Figure 4 compares
relative changes in selected metabolites, lipids, and biogenic amines of green and roasted
Kaua’i coffee brews (adjusted p value (FDR) < 0.05).

Similarly, 312 metabolites tentatively assigned as global metabolites (103 known and
209 unknown), 105 metabolites tentatively assigned as positive ESI mode lipids (5 known
and 100 unknown), 697 metabolites tentatively assigned as negative ESI mode lipids
(7 known and 690 unknown), and 1129 metabolites tentatively assigned as biogenic amines
(38 known and 1091 unknown) were significantly different in roasted Waialua coffee brews
as compared to the green Waialua coffee brews (p < 0.05, supplement file 4). Figure 4
depicts comparative selected box plots of known metabolites (Figure 4A–E), positive ESI
lipids (Figure 4F–J), negative ESI lipids (Figure 4K–O), and biogenic amines (Figure 4P–T)
as analyzed using MetaboAnalyst 5.0 (supplement file 5).
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Figure 3. Effect of roasting on caffeine (A), chlorogenic acid (B), and pyrogallol (C), analyzed using
GraphPad Prism 7.0. Values are mean ± SD (n = 8). a,b Mean values with common letters do not
differ (p < 0.05). Heatmaps of Kaua’i and Waialua coffee for known global metabolites (D), positive
ESI mode lipids (E), negative ESI mode lipids (F), and biogenic amines (G).
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Figure 4. Relative changes of selected known metabolites (A–E), positive ESI lipids (F–J), negative ESI
lipids (K–O), and amines (P–T) in green (n = 3) vs. roasted (n = 8) coffees (p < 0.05).
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3.3. Influence of Brewing Methods on Metabolites, Lipids, and Biogenic Amines of “Kona Typica”
(Waialua) and “Yellow Catuai” (Kaua’i) Coffee Brews

A total of six batches were roasted from each coffee variety. Three roasted batches were
pooled into one sample, and the procedure was repeated twice to understand inter-roasting
variability. Each variety of roasted coffee was brewed twice by four different brewing
methods (n = 2 for each method). Known metabolites, lipids, and biogenic amines for both
coffee types were compared for each brewing method by volcano plots using GraphPad
Prism 7.0. For example, the cold brew of roasted Kaua’i coffee was compared with the
cold brew of roasted Waialua coffee. Unpaired data were analyzed using parametric t-
tests. The threshold for p value comparison was set at p < 0.05 and corrected for multiple
comparisons using the Holm–Sidak method. No significant differences were noted among
both coffee varieties brewed by the same brewing method. Therefore, data from both
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coffee varieties were combined for each brewing method (n = 4) and were analyzed using
MetaboAnalyst 5.0.

Twenty-two metabolites tentatively assigned as global metabolites (11 known and
11 unknown) were significantly different in the four types of coffee brews as determined
by one-way ANOVA followed by Fisher’s least significant difference method (Fisher’s
LSD, adjusted p value (FDR) p < 0.05; supplement file 6). Interestingly, brewing methods
significantly affected levels of several lipids. About 891 (49 known and 842 unknown)
metabolites tentatively assigned as positive ESI mode lipids and 1447 (12 known and
1435 unknown) metabolites tentatively assigned as negative ESI mode lipids were signif-
icantly different in each type of brew (p < 0.05, supplement file 6). Selected significant
metabolites (Figure 5A–D), positive ESI mode lipids (Figure 5E–H), and negative ESI mode
lipids (Figure 5I–L) are depicted in Figure 5 below. Among the metabolites tentatively
assigned as biogenic amines, only nine unknown amines were significantly different in the
four types of brews (p < 0.05, supplement file 6).
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Figure 5. Relative changes of selected known metabolites (A–D) and positive (F–H) and negative
(I–L) ESI mode lipids in different coffee brews are depicted (n = 4, p < 0.05). TG, triacylglycerol; LPC,
lysophosphatidylcholine; FA, fatty acid; PE, phosphatidylethanolamine.
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Mineral 

Average RDA, 
AI, and UL in 

Males and 
Females in 

mg/day (19-70 
years) 

Minerals in 8 oz of Kaua’i Coffee (mg) Minerals in 8 oz of Waialua Coffee (mg) 

French Press 
(K-FrP) 

Filter Paper 
(K-FP) 

Filter Mesh 
(K-FM) 

Cold Brew 
(K-CB) 

French 
Press (W-

FrP) 

Filter Paper 
(W-FP) 

Filter Mesh 
(W-FM) 

Cold Brew (W-
CB) 

P (mg.day−1) 1 
700 * 

1250 ** 
5.721 ± 0.26 a 3.352 ± 0.42 a 4.524 ± 1.46 a 12.128 ± 1.30 b 

5.511 ± 0.004 
a 

4.315 ± 0.13 a 4.572 ± 0.45 a 14.074 ± 1.36 b 

K (mg.day−1) 2 
2600 * 
4700 ** 

110.395 ± 9.70 
a,b 

79.83 ± 7.16 a 
108.60 ± 33.17 

a,b 

137.26 ± 16.88 
b 

112.26 ± 2.57 
a,b 

101.65 ± 3.42 a,b 
112.74 ± 8.60 

a,b 
171.61 ± 17.77 c 

Ca (mg.day−1) 1 
1000 * 
1300 ** 2.883 ± 0.19 a 2.116 ± 0.23 a 2.363 ± 0.80 a 5.711 ± 0.56 b 

2.299 ± 0.10 
a 

2.032 ± 0.18 a 1.946 ± 0.12 a 6.871 ± 0.36 c 

Mg (mg.day−1) 
1 

310–320 * 
400–420 * 

11.17 ± 1.28 a 7.31 ± 0.14 b 8.69 ± 2.26 a,b 16.78 ± 0.97 c 
8.92 ± 0.18 

a,b 
7.45 ± 0.42 b 7.562± 0.65 b 18.61 ± 1.73 c 

Na (mg.day−1) 
2 

2300 * 7.00 ± 0.008 a 5.384 ± 0.20 a 5.977 ± 1.63 a 8.773 ± 0.23 b,c 
6.654 ± 0.05 

a,b 
5.92 ± 0.13 a 6.309 ± 0.86 a 9.99 ± 1.26 c 

Fe (mg.day−1) 1 
18 * 
8 * 

0.0084 ± 0.0011 
a,d 

0.0073 ± 
0.0007 d 

0.01 ± 0.002 a,d 0.017 ± 0.001 b 
0.011 ± 
0.0008 a 

0.011 ± 0.00001 
a,d 

0.012 ± 0.001 
a 

0.029 ± 0.003 c 

Mn (mg.day−1) 
2 

2.3 ** 0.056 ± 0.004 a 
0.036 ± 0.008 

a 
0.05 ± 0.02 a 0.156 ± 0.03 b 

0.057 ± 
0.0004 a 

0.046 ± 0.003 a 0.05 ± 0.003 a 0.252 ± 0.009 c 

Zn (mg.day−1) 
1 

8 * 
11 * 

0.006 ± 0.0002 a 
0.004 ± 0.001 

a 
0.006 ± 0.001 a 0.014 ± 0.003 b 

0.006 ± 0.001 
a 

0.004 ± 0.00002 
a 

0.007 ± 0.003 
a,b 

0.023 ± 0.006 c 

Cu (μg.day−1) 1 0.9 ** 0.005 ± 0.0001 a 
0.004 ± 
0.0004 a 

0.006 ± 0.001 a 0.009 ± 0.001 a 
0.005 ± 
0.0001 a 

0.006 ± 0.001 a 
0.006 ± 0.001 

a 
0.034 ± 0.023 b 

B (mg.day−1)  
3 

1.5 0.042 ± 0.003 a,c 
0.035 ± 0.003 

a,b 
0.048± 0.01 a.c 0.025 ± 0.003 b 

0.044 ± 
0.0008 a,c 

0.048 ± 0.003 a,c 0.052± 0.003 c 0.039 ± 0.004 a 

1 Recommended dietary allowance (RDA); 2 adequate intake (AI); 3 tolerable upper intake level (UL); 
K-, Kaua’i; W-, Waialua; FrP, French press; FP, filter paper; FM, filter mesh; CB, cold brew. Sourced 
from * the Dietary Guidelines for Americans 2020–2025, ** FDA.gov (accessed 10 November 2022). 

An 8 oz cup of cold brew Kaua’i coffee contained 5.19%, 13.73%, 1.66%, 13.79%, 
1.79%, 0.44%, 22.85%, 0.45%, and 3.15% of the RDA for P, K, Ca, Mg, Na, Fe, Mn, Zn, and 
Cu, respectively. All RDA values were calculated based on recommended values (Na-
tional Academy of Sciences, 2019). The amounts of minerals in cold brew Kaua’i coffee 
were in the order of K > Mg > P > Na > Ca > Mn > B > Fe > Zn > Cu. For all other brews of 
Kaua’i coffee, the order of mineral abundance was K > Mg > Na > P > Ca > Mn > B > Fe > 
Zn = Cu. In general, except for boron, Kaua’i coffee brewed by filter paper method had 
the lowest mineral contents, followed by filter mesh < French press < cold brew. 

Mineral contents in brewed Waialua coffee also showed similar trends to those ob-
served in Kaua’i coffee (Table 1). An 8 oz cup of cold brew Waialua coffee contained 6.03%, 
17.16%, 1.99%, 15.29%, 1.99%, 0.75%, 37.05%, 0.74%, and 11.83% of the RDAs for P, K, Ca, 
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An 8 oz cup of cold brew Kaua’i coffee contained 5.19%, 13.73%, 1.66%, 13.79%, 
1.79%, 0.44%, 22.85%, 0.45%, and 3.15% of the RDA for P, K, Ca, Mg, Na, Fe, Mn, Zn, and 
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2.299 ± 0.10 
a 

2.032 ± 0.18 a 1.946 ± 0.12 a 6.871 ± 0.36 c 

Mg (mg.day−1) 
1 

310–320 * 
400–420 * 

11.17 ± 1.28 a 7.31 ± 0.14 b 8.69 ± 2.26 a,b 16.78 ± 0.97 c 
8.92 ± 0.18 

a,b 
7.45 ± 0.42 b 7.562± 0.65 b 18.61 ± 1.73 c 

Na (mg.day−1) 
2 

2300 * 7.00 ± 0.008 a 5.384 ± 0.20 a 5.977 ± 1.63 a 8.773 ± 0.23 b,c 
6.654 ± 0.05 

a,b 
5.92 ± 0.13 a 6.309 ± 0.86 a 9.99 ± 1.26 c 

Fe (mg.day−1) 1 
18 * 
8 * 

0.0084 ± 0.0011 
a,d 

0.0073 ± 
0.0007 d 

0.01 ± 0.002 a,d 0.017 ± 0.001 b 
0.011 ± 
0.0008 a 

0.011 ± 0.00001 
a,d 

0.012 ± 0.001 
a 

0.029 ± 0.003 c 

Mn (mg.day−1) 
2 

2.3 ** 0.056 ± 0.004 a 
0.036 ± 0.008 

a 
0.05 ± 0.02 a 0.156 ± 0.03 b 

0.057 ± 
0.0004 a 

0.046 ± 0.003 a 0.05 ± 0.003 a 0.252 ± 0.009 c 

Zn (mg.day−1) 
1 

8 * 
11 * 

0.006 ± 0.0002 a 
0.004 ± 0.001 

a 
0.006 ± 0.001 a 0.014 ± 0.003 b 

0.006 ± 0.001 
a 

0.004 ± 0.00002 
a 

0.007 ± 0.003 
a,b 

0.023 ± 0.006 c 

Cu (μg.day−1) 1 0.9 ** 0.005 ± 0.0001 a 
0.004 ± 
0.0004 a 

0.006 ± 0.001 a 0.009 ± 0.001 a 
0.005 ± 
0.0001 a 

0.006 ± 0.001 a 
0.006 ± 0.001 

a 
0.034 ± 0.023 b 

B (mg.day−1)  
3 

1.5 0.042 ± 0.003 a,c 
0.035 ± 0.003 

a,b 
0.048± 0.01 a.c 0.025 ± 0.003 b 

0.044 ± 
0.0008 a,c 

0.048 ± 0.003 a,c 0.052± 0.003 c 0.039 ± 0.004 a 

1 Recommended dietary allowance (RDA); 2 adequate intake (AI); 3 tolerable upper intake level (UL); 
K-, Kaua’i; W-, Waialua; FrP, French press; FP, filter paper; FM, filter mesh; CB, cold brew. Sourced 
from * the Dietary Guidelines for Americans 2020–2025, ** FDA.gov (accessed 10 November 2022). 

An 8 oz cup of cold brew Kaua’i coffee contained 5.19%, 13.73%, 1.66%, 13.79%, 
1.79%, 0.44%, 22.85%, 0.45%, and 3.15% of the RDA for P, K, Ca, Mg, Na, Fe, Mn, Zn, and 
Cu, respectively. All RDA values were calculated based on recommended values (Na-
tional Academy of Sciences, 2019). The amounts of minerals in cold brew Kaua’i coffee 
were in the order of K > Mg > P > Na > Ca > Mn > B > Fe > Zn > Cu. For all other brews of 
Kaua’i coffee, the order of mineral abundance was K > Mg > Na > P > Ca > Mn > B > Fe > 
Zn = Cu. In general, except for boron, Kaua’i coffee brewed by filter paper method had 
the lowest mineral contents, followed by filter mesh < French press < cold brew. 

Mineral contents in brewed Waialua coffee also showed similar trends to those ob-
served in Kaua’i coffee (Table 1). An 8 oz cup of cold brew Waialua coffee contained 6.03%, 
17.16%, 1.99%, 15.29%, 1.99%, 0.75%, 37.05%, 0.74%, and 11.83% of the RDAs for P, K, Ca, 

French press.
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3.4. Mineral and Metal Analysis of “Kona Typica” (Waialua) and “Yellow Catuai” (Kaua’i)
Coffee Brews

Brews of roasted coffee grounds are most widely consumed worldwide as compared
to brews of green beans. Hence, the mineral and metal profiles of only the roasted coffee
bean brews were analyzed. As indicated in Table 1, the amounts of most minerals in cold
brews were significantly higher compared to those brewed by the French press, filter paper,
and filter mesh brewing methods (Table 1, p < 0.05). Although not statistically significant,
total minerals were higher in W-CB > K-CB > K-FrP > W-FrP > W-FM > K-FM > W-FP >
K-FP (Table 1).

An 8 oz cup of cold brew Kaua’i coffee contained 5.19%, 13.73%, 1.66%, 13.79%, 1.79%,
0.44%, 22.85%, 0.45%, and 3.15% of the RDA for P, K, Ca, Mg, Na, Fe, Mn, Zn, and Cu,
respectively. All RDA values were calculated based on recommended values (National
Academy of Sciences, 2019). The amounts of minerals in cold brew Kaua’i coffee were in
the order of K > Mg > P > Na > Ca > Mn > B > Fe > Zn > Cu. For all other brews of Kaua’i
coffee, the order of mineral abundance was K > Mg > Na > P > Ca > Mn > B > Fe > Zn = Cu.
In general, except for boron, Kaua’i coffee brewed by filter paper method had the lowest
mineral contents, followed by filter mesh < French press < cold brew.

Mineral contents in brewed Waialua coffee also showed similar trends to those ob-
served in Kaua’i coffee (Table 1). An 8 oz cup of cold brew Waialua coffee contained 6.03%,
17.16%, 1.99%, 15.29%, 1.99%, 0.75%, 37.05%, 0.74%, and 11.83% of the RDAs for P, K, Ca,
Mg, Na, Fe, Mn, Zn, and Cu, respectively. For Waialua coffee, most of the mineral contents
were similar in those brewed by filter paper and filter mesh except for K, while the amounts
of minerals in French press coffee were less than those in cold brews.

The Food and Nutrition Board has not established an RDA or AI for boron, which also
does not have a DV. Total median boron intakes from dietary supplements and foods are
about 1.0 to 1.5 mg.day−1 for adults (NIH.gov, accessed on 10 November 2022).

3.5. Antioxidant Capacity of “Kona Typica” (Waialua) and “Yellow Catuai” (Kaua’i) Coffee Brews

The antioxidant capacity, as measured by ORAC values, was influenced by the meth-
ods of brewing rather than the coffee variety. The highest ORAC values were noted for the
cold brewing method and were about 2.6- to 2.8-fold higher compared to the filter paper
method (Figure 6, p < 0.05). For both coffee varieties, the antioxidant capacities for different
brewing methods were in the order of cold brew > filter mesh > French press > filter paper
(Figure 6). Overall, there were no significant differences between the ORAC values for
Kaua’i and Waialua coffee brews prepared by the same brewing method (Figure 6, p < 0.05).

Metabolites 2023, 13, x FOR PEER REVIEW 14 of 23 
 

 

Mg, Na, Fe, Mn, Zn, and Cu, respectively. For Waialua coffee, most of the mineral contents 
were similar in those brewed by filter paper and filter mesh except for K, while the 
amounts of minerals in French press coffee were less than those in cold brews. 

The Food and Nutrition Board has not established an RDA or AI for boron, which 
also does not have a DV. Total median boron intakes from dietary supplements and foods 
are about 1.0 to 1.5 mg.day−1 for adults (NIH.gov, accessed 10 November 2022). 

3.5. Antioxidant Capacity of “Kona Typica” (Waialua) and “Yellow Catuai” (Kaua’i) Coffee 
Brews 

The antioxidant capacity, as measured by ORAC values, was influenced by the meth-
ods of brewing rather than the coffee variety. The highest ORAC values were noted for 
the cold brewing method and were about 2.6- to 2.8-fold higher compared to the filter 
paper method (Figure 6, p < 0.05). For both coffee varieties, the antioxidant capacities for 
different brewing methods were in the order of cold brew > filter mesh > French press > 
filter paper (Figure 6). Overall, there were no significant differences between the ORAC 
values for Kaua’i and Waialua coffee brews prepared by the same brewing method (Fig-
ure 6, p < 0.05). 

 
Figure 6. Antioxidant capacity of Kaua’i and Waialua coffee. FrP, French press; FP, filter paper; FM, 
filter mesh; CB, cold brew; K, Kailua; W, Waialua. Data are represented as mean ± SD (n = 18). a,b 

Mean values with common letters do not differ (p < 0.05). 

4. Discussion 
To understand the effects of health benefits and/or disease risks of coffee consump-

tion, several studies have identified the metabolite composition of commercially brewed 
coffees based on the brewing methods, roast levels, coffee varieties, and/or caffeine con-
tents [31,33,36,49,51–56]. The goal of our study was to identify differences in metabolites, 
lipids, and biogenic amines between the two types of Hawai‘i-grown coffees and the ef-
fects of roasting and brewing methods. Previous studies have used coffee beans to identify 
varietal differences in metabolites, while we used coffee brews [41,101]. The metabolomic 
approach has been previously used to identify specialty coffees and characterize their 
quality and exotic coffee tastes. For example, higher levels of sucrose and lower levels of 
γ-aminobutyric acid (GABA), quinic acid, choline, acetic acid, and fatty acids were ob-
served in specialty or high-grade green coffees [102]. Similarly, arachidic acid and stearic 
acid were identified as markers for the Bourbon genealogical group; myristic and linoleic 
acids and sucrose, for the exotic genotype coffees; and lauric, palmitoleic, and oleic acids, 
for the Timor Hybrid group [103]. Metabolomic profiling has been also used to identify 
differences in Philippine coffee to distinguish between Coffea arabica (Arabica) and Coffea 
canephora var. Robusta coffees [41], sensory values [104], geographic diversity of Indone-
sian arabica coffees [105], defective coffee seeds of Brazilian coffee [101], and degrees of 
coffee adulteration in civet coffee blends [39]; discriminate Arabica and Robusta blends 
[106–108]; compare caffeinated and decaffeinated coffee [37]; and compare fermented 

FrP FP FM CB
0

50

100

150

Coffee Brewing Methods

Tr
ol

ox
 E

qu
iv

al
an

ce
 (μ

M
 T

E)

Kauai
Waialua

a a
a a

a a

b b

Figure 6. Antioxidant capacity of Kaua’i and Waialua coffee. FrP, French press; FP, filter paper; FM,
filter mesh; CB, cold brew; K, Kailua; W, Waialua. Data are represented as mean ± SD (n = 18). a,b

Mean values with common letters do not differ (p < 0.05).

NIH.gov


Metabolites 2023, 13, 412 13 of 22

Table 1. Mineral contents of Kaua’i and Waialua coffee prepared by different brewing methods. a,b,c Mean values with common letters do not differ (p < 0.05).

Mineral

Average RDA, AI,
and UL in Males
and Females in

mg/day (19-70 years)

Minerals in 8 oz of Kaua’i Coffee (mg) Minerals in 8 oz of Waialua Coffee (mg)

French Press (K-FrP) Filter Paper (K-FP) Filter Mesh (K-FM) Cold Brew (K-CB) French Press
(W-FrP) Filter Paper (W-FP) Filter Mesh (W-FM) Cold Brew (W-CB)

P (mg.day−1) 1 700 *
1250 ** 5.721 ± 0.26 a 3.352 ± 0.42 a 4.524 ± 1.46 a 12.128 ± 1.30 b 5.511 ± 0.004 a 4.315 ± 0.13 a 4.572 ± 0.45 a 14.074 ± 1.36 b

K (mg.day−1) 2 2600 *
4700 ** 110.395 ± 9.70 a,b 79.83 ± 7.16 a 108.60 ± 33.17 a,b 137.26 ± 16.88 b 112.26 ± 2.57 a,b 101.65 ± 3.42 a,b 112.74 ± 8.60 a,b 171.61 ± 17.77 c

Ca (mg.day−1) 1 1000 *
1300 ** 2.883 ± 0.19 a 2.116 ± 0.23 a 2.363 ± 0.80 a 5.711 ± 0.56 b 2.299 ± 0.10 a 2.032 ± 0.18 a 1.946 ± 0.12 a 6.871 ± 0.36 c

Mg (mg.day−1) 1 310–320 *
400–420 * 11.17 ± 1.28 a 7.31 ± 0.14 b 8.69 ± 2.26 a,b 16.78 ± 0.97 c 8.92 ± 0.18 a,b 7.45 ± 0.42 b 7.562± 0.65 b 18.61 ± 1.73 c

Na (mg.day−1) 2 2300 * 7.00 ± 0.008 a 5.384 ± 0.20 a 5.977 ± 1.63 a 8.773 ± 0.23 b,c 6.654 ± 0.05 a,b 5.92 ± 0.13 a 6.309 ± 0.86 a 9.99 ± 1.26 c

Fe (mg.day−1) 1 18 *
8 * 0.0084 ± 0.0011 a,d 0.0073 ± 0.0007 d 0.01 ± 0.002 a,d 0.017 ± 0.001 b 0.011 ± 0.0008 a 0.011 ± 0.00001 a,d 0.012 ± 0.001 a 0.029 ± 0.003 c

Mn (mg.day−1) 2 2.3 ** 0.056 ± 0.004 a 0.036 ± 0.008 a 0.05 ± 0.02 a 0.156 ± 0.03 b 0.057 ± 0.0004 a 0.046 ± 0.003 a 0.05 ± 0.003 a 0.252 ± 0.009 c

Zn (mg.day−1) 1 8 *
11 * 0.006 ± 0.0002 a 0.004 ± 0.001 a 0.006 ± 0.001 a 0.014 ± 0.003 b 0.006 ± 0.001 a 0.004 ± 0.00002 a 0.007 ± 0.003 a,b 0.023 ± 0.006 c

Cu (µg.day−1) 1 0.9 ** 0.005 ± 0.0001 a 0.004 ± 0.0004 a 0.006 ± 0.001 a 0.009 ± 0.001 a 0.005 ± 0.0001 a 0.006 ± 0.001 a 0.006 ± 0.001 a 0.034 ± 0.023 b

B (mg.day−1) 3 1.5 0.042 ± 0.003 a,c 0.035 ± 0.003 a,b 0.048± 0.01 a.c 0.025 ± 0.003 b 0.044 ± 0.0008 a,c 0.048 ± 0.003 a,c 0.052± 0.003 c 0.039 ± 0.004 a

1 Recommended dietary allowance (RDA); 2 adequate intake (AI); 3 tolerable upper intake level (UL); K-, Kaua’i; W-, Waialua; FrP, French press; FP, filter paper; FM, filter mesh; CB, cold
brew. Sourced from * the Dietary Guidelines for Americans 2020–2025, ** FDA.gov (accessed on 10 November 2022).

FDA.gov
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4. Discussion

To understand the effects of health benefits and/or disease risks of coffee consump-
tion, several studies have identified the metabolite composition of commercially brewed
coffees based on the brewing methods, roast levels, coffee varieties, and/or caffeine
contents [31,33,36,49,51–56]. The goal of our study was to identify differences in metabo-
lites, lipids, and biogenic amines between the two types of Hawai‘i-grown coffees and
the effects of roasting and brewing methods. Previous studies have used coffee beans
to identify varietal differences in metabolites, while we used coffee brews [41,101]. The
metabolomic approach has been previously used to identify specialty coffees and character-
ize their quality and exotic coffee tastes. For example, higher levels of sucrose and lower
levels of γ-aminobutyric acid (GABA), quinic acid, choline, acetic acid, and fatty acids were
observed in specialty or high-grade green coffees [102]. Similarly, arachidic acid and stearic
acid were identified as markers for the Bourbon genealogical group; myristic and linoleic
acids and sucrose, for the exotic genotype coffees; and lauric, palmitoleic, and oleic acids,
for the Timor Hybrid group [103]. Metabolomic profiling has been also used to identify
differences in Philippine coffee to distinguish between Coffea arabica (Arabica) and Coffea
canephora var. Robusta coffees [41], sensory values [104], geographic diversity of Indonesian
arabica coffees [105], defective coffee seeds of Brazilian coffee [101], and degrees of coffee
adulteration in civet coffee blends [39]; discriminate Arabica and Robusta blends [106–108];
compare caffeinated and decaffeinated coffee [37]; and compare fermented coffees [109]. In
keeping with published studies, the two Hawai‘i-grown coffee varieties also demonstrate
distinct profiles of several metabolites in green beans as well as roasted beans. As previ-
ously noted by others [33], roasting significantly reduced chlorogenic acid and increased
caffeine in both coffee varieties. Among the several coffee polyphenols, chlorogenic acid
is most affected by roasting levels [110]. Compared to Waialua coffee, Kaua’i coffee had
higher concentrations of pyrogallol, which is known to inhibit cellular glutathione (GSH)
and induce apoptosis (cell death) in human platelets [111].

Lipid content in coffee beans accounts for about 10–17% of their dry weight, and
most of these lipids are triacylglycerols (TAGs) and small quantities of phospholipids
(PLs). TAGs contain both saturated and unsaturated fatty acids (FAs), with unsaturated
FAs being oleic (18:1(n-9)), linoleic (18:2(n-6)), and linolenic (18:3(n-3)) [112]. Coffee lipids
are major contributors to organoleptic properties, quality, and formation and stabilization
of coffee foam and emulsion and influence flavor and aroma, specifically in espresso
coffees [113–115]. Lipids in coffee beans are influenced not only by growing conditions
such as altitude, shade, and temperature [115–117], but also by genotype [113,116–118].
For example, Arabica coffees generally have lipid contents of 15%, while Robusta has
about 10% lipids [113]. Palmitic (16:0), arachidic (20:0), stearic (18:0), and linolenic (18:3)
acid contents are higher and oleic acid (18:1) content is lower in Arabica compared to
Robusta [113,119,120]. Considering the fact that lipids play an important role in coffee
bean development, coffee brew properties, and the effects of coffee on human health, few
studies have focused on lipidomic profiles in coffee beans [112,113,121]). To our knowledge,
our study is the first to investigate the effect of coffee varieties, roasting, and brewing
on the lipidomic profiles of coffee brews. In our study, palmitic (16:0), stearic (18:0), and
oleic (18:1) acids were higher in the Kaua’i compared to Waialua roasted coffee brews. No
major differences in these FAs were noted in green coffee beans. Both green and roasted
Waialua and Kaua’i coffee brews also differed in a few phospholipids (PC; 34:1, 36:2, 34:2),
phosphatidyl ethanolamine (1-PE. 17:0/17:0), and several unannotated lipids that warrant
further investigation into their identities.

Biogenic amines (BAs) in food and beverages are mainly formed due to the decarboxy-
lation or amination of proteins and/or free amino acids via microbial or natural enzyme
activity. Putrescine, spermidine, spermine, and serotonin are the most abundant BAs in
coffee beans and coffee beverages, while cadaverine and tyramine are present in smaller
amounts [122,123]. Processing methods of unripe coffee beans can affect the final levels
of some BAs. Histamine, tryptamine, and cadaverine were detected in low-quality and
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defective coffee beans. The presence of BAs is an indicator of undesired microbial activity
and at high concentrations can be toxic to humans [29,124,125]. BA concentrations have
been studied to identify coffee origins, e.g., Asia, South America, and Africa [126].

Putrescine is the most abundant amine in both Robusta and Arabica coffee, followed by
spermidine, spermine, and serotonin, while cadaverine and tyramine are generally present
in smaller amounts [127–130]. Putrescine is used to discriminate coffee species, while
tyramine is considered a chemical marker for Angolan robusta, and low levels of histamine
are present in low-quality or immature coffee beans [129,131]. In our study, although
brews of green beans or the roasted coffee of both varieties demonstrated differences in
several biogenic amines, putrescine, spermidine, spermine, and serotonin, cadaverine
and tyramine were not detected. The effect of roasting on BAs is still controversial since
some studies report a reduction in BAs while other studies indicate high BA levels after
roasting [29,122]. Overall, brewed coffee contains a very low level of BAs compared to
green or roasted ground coffee beans [29].

Metabolites, lipids, and BA composition are also affected by methods of brewing
coffee, as noted in 76 commercial coffees [36]. Studies have indicated that different brewing
methods affect not only the chemical composition but also the aroma [36,63]. Metabolite
variations are also influenced by temperature as in hot or cold brews [86], brewing time,
or the size of ground solids [45,58]. In contrast to studies by Rothwell et al. [36], studies
by Kim et al. [33] indicated that the composition of bioactive compounds was dependent
upon roasting rather than brewing methods. Kim et al. [33] demonstrated significantly
different levels of resveratrol, eugenol, ferulic acid, and vanillin between hot and cold
brews, but only for dark roasted coffee. In our studies, we did not detect resveratrol,
eugenol, or vanillin. However, ferulic acid was highest in our coffees brewed by filter
mesh (hot brewing method) and French press (cold brewing temperatures) as compared to
cold brew and filter paper (hot brew) methods. Differences between our study and that
of Kim et al. [33] could be attributed to the type of coffee, roasting level, or temperatures
of brewing. Similar to Kim et al.’s study [33], caffeine levels were unaffected by brewing
methods in our study. Ferulic acid is known for its antioxidant, anti-inflammatory, and
antimicrobial properties [33]. In our study, chlorogenic acid was the lowest in cold-brewed
coffee compared to other brewing methods. Caffeine levels were unaffected by brewing
methods, which is similar to the result noted by Kim et al. [33].

Among several biological properties, the health benefits of coffee are attributed to
its antioxidant capacity [43,64,80,81,83,132–136]. A large variation in antioxidant capacity
has been observed among commercially brewed coffees [135] as well as variety and ori-
gin of coffee [137], degree of roasting [138], type of roast and blend [139], and brewing
methods [43,64,81,136,140]. Among the 12 varieties of Arabica and 1 variety of Robusta
studied by Priftis et al. [132], roasting increased the antioxidant capacity in 1 coffee variety
and reduced it in 5 varieties of Arabica and resulted in no difference in the other varieties.
On the other hand, slower roasting speeds and dark roasts reduced antioxidant capacity,
and lightly roasted coffee had more antioxidants [83,133]. Besides roasting conditions, the
preparation of coffee brews with different coffeemakers also influenced their antioxidant
capacity. Mocha coffee had the highest antioxidant capacity compared to filter, plunger, and
espresso coffees [134]. Another study indicated that cappuccino, a milk-based coffee drink,
had the highest antioxidant activity as compared to instant coffee and Turkish coffee [141].
Wolska et al. [80] further demonstrated that brewing methods did not affect the antioxidant
capacity of Robusta coffee brews, but simple infusion had the highest activity in Arabica
brews prepared by French press, espresso maker, overflow espresso, and Turkish coffee.
In contrast to the results of Wolska et al. [80], antioxidant capacity was unaffected by
coffee types in our study but was influenced by brewing methods. Similar to the study by
Perez-Martinez et al. [134], we also demonstrate that filter coffee had lower antioxidant
capacity compared to other brews.

Studies have also indicated that besides antioxidant capacity, brewing methods also
influence the aroma and mineral contents of coffee [64,142]. To date, one study has demon-
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strated that among the five brews from a coffee shop in Szczecin, Poland, coffee prepared
by espresso machine had the lowest antioxidant capacity, followed by French press < drip
= simple infusion coffee < Aeropress [64]. Furthermore, coffees prepared by simple infu-
sion and Aeropress had higher levels of magnesium, manganese, chromium, cobalt, and
potassium, while the drip brew had higher silicon levels [64]. Similar to Janda et al. [64],
our study also indicated that French press coffee had a lower antioxidant capacity. We also
observed an effect of brewing methods on the mineral contents of the coffee. Although the
results are incomparable between our study and that of Janda et al. [64] due to differences
in brewing methods, the individual mineral values in French press-brewed coffees are
different in the two studies possibly due to the coffee variety or degree of roasting.

5. Conclusions

Our studies demonstrate that levels of global metabolites, lipids, and biogenic amines
were significantly influenced by roasting and differed between the two Hawai‘i-grown
coffee varieties: “Kona Typica” and “Yellow Catuai”. Interestingly, the mineral contents
and the antioxidant capacity of both these coffee varieties were influenced only by the
brewing methods. Total minerals were higher in cold brews compared to other brewing
methods. Similarly, regardless of the coffee variety, cold brew coffees had the highest
antioxidant capacity, followed by coffees brewed by the French press method. Future
studies are warranted to understand and extrapolate the influence of brewing methods on
antioxidant capacity in vivo.
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