
Citation: Tufarelli, V.; Colonna, M.A.;

Losacco, C.; Puvača, N. Biological
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Abstract: This review aims to summarize and present different biological health markers in dairy
cows during the lactation period. Biochemical health markers provide an indicator of how foreign
chemical substances, whether external or internal, affect the animal’s health. To understand the rela-
tionship between dairy cow health issues and oxidative stress, various biomarkers of oxidative stress
must be investigated. Biochemical and hematological factors play a significant role in determining
the biological health markers of animals. A variety of biochemical parameters are dependent on
various factors, including the animal’s breed, its age, its development, its pregnancy status, and
its production status. When assessing the health of cattle, a blood test is conducted to determine
the blood chemistry. To diagnose diseases in dairy animals, the blood biochemistry is necessary to
determine the cause of many physiological, metabolic, and pathological problems. Observing blood
alterations during pregnancy and at peak lactation may determine what factors lift oxidative stress in
cows due to disturbances in feed intake and metabolic processes.
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1. Introduction

The term “biomarker” was used for the first time in 1980 to describe the features that
are intentionally measured and used to determine the effects of therapeutic interventions or
to indicate the course of everyday biological processes [1]. It is possible to detect exposure
to unknown chemicals in our surroundings using biomarkers [2,3]. It can be a peripheral
material itself or a dissimilarity of the original exterior material following the body that has
practiced it which can often be enumerated. Biochemical and hematological factors play a
significant role in determining the biological health markers of animals [4]. A wide range
of biochemical parameters is affected by factors such as the breed of the animal, its age, its
development, and its gestation status [5].

The biochemistry of blood is estimated significantly to evaluate cattle health sta-
tus [6,7]. In dairy animals, biochemical measurements are necessary to find a wide range of
pathological, physiological, and metabolic problems [8,9]. It has been shown that blood
glucose, cholesterol, and protein affect the fertility and reproductive cycle of dairy cattle.
Among lipids, cholesterol is one of the most important [10]. Located in the bloodstream, it
is considered vital for an organism’s survival [11]. Different hormones, such as estrogen,
progesterone, and aldosterone, are produced by cholesterol to develop cell membranes
and maintain proper body functions. By assessing variations in the parameters such
as total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and
triglycerides (TG), variations in lipid metabolism happening in the body of cows during
pregnancy and lactation can be better understood [12–14].
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Aspartate transaminase (AST), alanine transaminase (ALT), and γ-glutamyl transferase
(GGT) are serum enzymes commonly found in the tissues of the liver and considered
biological health markers in case of hepatic disorders and other health issues [15–17]. To
diagnose and understand dairy cow health issues, serum enzyme performance and other
parameters must be determined [18,19]. To understand the growth of health issues in dairy
cows, researchers seek biomarkers of oxidative stress [20].

Oxidative stress, by definition, is the result of an increase in oxidant production in
animal body cells as a result of free radical production [21–23]. By releasing free radicals in
the body, the body is subjected to chemical stress because it cannot neutralize or eliminate
them [24]. A growing number of veterinarians are interested in finding out how different
antioxidants can improve the health of animals [25]. A few biochemical markers monitor the
stress caused by oxidation, but only a few diagnostic procedures evaluate total antioxidant
status (TAS) [26].

When different tissues do not function as they should, malondialdehyde (MDA) is the
best indicator of reactive oxygen species and the most effective detector for free radicals of
oxygen [27]. The main function of the superoxide dismutase enzyme (SOD) is to change
the superoxide radical into an oxygen molecule and water [28]. In the following reaction,
oxygen and water are transformed from hydrogen peroxide to water and oxygen by catalase
and peroxidase. Cells use catalase (CAT) to catalyze the breakdown of water into molecules
of water and less reactive oxygen gas [29]. Oxidative stress can result from disturbances in
antioxidant balance [30]. This type of imbalance can lead to a variety of disorders [31–33].

Both HDL and LDL oxidized lipids are eliminated by paraoxonase (PON1), which
acts as an antioxidant molecule, and antioxidant mechanisms are thus affected by it [34].
In high milk production situations, measuring serum PON1 activity could be a helpful
diagnostic tool for evaluating dairy cattle’s health [14]. Living beings possess the lipophilic
antioxidants PON1 and arylesterase (ARE), which are serum esterase enzymes. A chemical
reaction is catalyzed by both esterase enzymes acting together as one enzyme [35].

As an acute phase protein, ceruloplasmin (Cp) performs as an antioxidant in living
beings. Acute phase proteins are imprecise biological health markers and are arbitrated by
cytokines [36]. These proteins’ levels in serum modify noticeably in an acute phase. Vita-
mins and trace elements as antioxidants can defend the body from free radicals directly by
hunting these radicals or indirectly by slowing down the enzymes’ activity of oxidation [37].

In their one-year life cycle after adulthood, dairy cattle have to pass various physio-
logical changes. During such physiological stages including breeding, pregnancy, fetus
growth and development, parturition, and lactation, dairy animals are highly influenced by
changes in hormones [38]. Among these hormones, thyroid hormones (T3 and T4) directly
influence the cattle’s metabolic activities, mainly enhancing the speed of metabolism of
approximately all tissues [39]. Energy metabolism having main components such as lipids
and carbohydrates is modulated by thyroid hormones. Cortisol is considered the best
biomarker to determine stress status [40,41].

As an investigative practice, serum biochemical analyses are a reliable way to obtain
information about dairy animals’ metabolic and health status. By doing so, we can compare
the standard values of healthy animals with those of animals with detrimental health
statuses [42]. To gain a better understanding of the role of oxidative stress on animal
welfare and production, Celi and Gabai [43] encouraged other scientists to recognize the
biomarkers of protein oxidation in veterinary medicine.

Based on the previously presented, the objective of this review was to summarize and
present the biological health markers of cows during lactation.

2. Production of Free Radicals

Oxidative stress is an energetic ground of research in the veterinary field and is related
to numerous diseases. Nowadays, studies have been paying thoughts to oxidant and
antioxidant status that have an effect on dairy cattle during the gestation and lactation
period [44,45]. Oxidation involves the loss of electrons and reduction is the addition of
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electrons. The number of electrons increase or decrease when involved in an electron
transfer which raises due to oxidation and reduction. Reactive oxygen species is a common
term which includes both oxygen radicals and some non-radicals, which take steps as
oxidizing agents and are simply converted into radicals [46,47]. Free radicals are very
reactive atoms or molecules having one or more than one unpaired electron. Biologically
related free radicals are groups of atoms generally having oxygen or nitrogen with an
unpaired number of electrons. When a bond is broken during a chemical reaction, free
radicals are formed. The free radicals can attach to tissues and damage the tissues [48].
Mostly, biological compounds such as carbohydrates, proteins, and lipids are damaged.
When oxygen species and nitrogen species are immediately produced, they collectively
also act as free radicals [49].

During normal physiology and metabolism in tissues, free radicals such as reactive
oxygen species (ROS) are constantly produced. For the generation of ATP, oxygen is utilized
in mitochondria and water is formed by the reduction of oxygen, but some quantities are
not reduced completely and form an oxygen intermediate compound. In living cells, the
main free radical is the superoxide radical, produced in the mitochondria by the electron
transport chain [50]. Free radicals produced during oxidative metabolism form fatty acid
hydroperoxides. When these peroxides react with fatty acids, they generate a chain reaction
which again produces free radicals. In a stress condition, macrophages are also produced as
a source of free radicals. ROS is also produced by immune cells [51]. Next to free radicals
and ROS, other molecules with oxidative properties are produced during metabolism, such
as reactive nitrogen species (RNS) or reactive chlorine species [52].

3. Antioxidants and Oxidative Stress in Cows

In oxidative damage prevention or removal, antioxidants play an important role [53,54].
By protecting the body from free radicals, antioxidants play an important role. There are
two types of defense systems: enzymatic and non-enzymatic. Among the enzymes are
SOD, glutathione peroxidase (GPx), and CAT, while the non-enzymatic vitamins are C, E,
and selenium [55,56]. A weak antioxidant defense occurs when reactive oxygen species
and free radical production increase greatly. By reducing antioxidant defenses, biological
molecules and normal physiological and metabolic functions are damaged. The formation
of reactive oxygen species occurs naturally in living organisms due to the release of free
radicals. Normally, prooxidants and oxidants balance each other, but when the equilibrium
is disturbed, harmful effects result. In cattle, oxidative stress occurs due to a decrease in
antioxidant levels near the time of parturition [57,58]. Figure 1 shows the oxidative stress
and antioxidant status in advanced pregnant and early lactating cows [59].
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Figure 1. Oxidative stress and antioxidant status in advanced pregnant and early lactating dairy cows.
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A disturbance and disorderly metabolic process may occur due to ROS damage during
oxidative stress, such as damage to lipids, proteins, or DNA. Furthermore, ROS may alter
cellular membranes or other components in addition to causing damage to lipids and
other macromolecules [60]. This means oxidative stress does not present a precise clinical
picture and does not act as a disease. As a result of oxidative stress, animals with high
metabolisms are likely to develop other metabolic diseases [61]. Therefore, the role of
antioxidants and oxidative stress in animals is well understood thanks to enzymatic and
non-enzymatic substances.

4. Oxidative Stress during Lactation in Cows

Oxidative stress can weaken dairy cattle to several diseases and metabolic disorders
during lactation. As a result, the physical condition and reproductive capability of dairy
cows are affected [62]. During lactation, energy demands are increased, so this is the
stressful stage with increased metabolic activities. The normal metabolism of the animals
changes and stress is produced, thus metabolic disorder takes place. In addition, during
the late period of pregnancy and the first stage of lactation, oxidative stress progresses in a
negative energy balance (NEB) [47]. Dairy cows experience a drastic change in metabolism
around parturition. Daily dry matter (DM) intake declines up to 30%, and at the same time
before lactation, energy demand raises leading to NEB. This enhances metabolism harshly,
resulting in a raised production of ROS and RNS. It is also well-known that dairy cows
suffer from increased oxidative stress in late gestation and early lactation can be measured
by a rise in thiobarbituric acid reactive substances (TBARS) including MDA [63]. The
start of lactation is an important factor for free radicals production [64], mostly a negative
energy balance developed in lactating animals that have starved conditions. A negative
energy balance also develops in some diseases in which oxytocin is produced [65], while
environmental conditions can also affect the antioxidant status [66] of high milk-producing
dairy cattle (Figure 2).
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Figure 2. Effect of temperature–humidity index (THI) on antioxidant status of lactating cows.

5. Biological Health Markers of Cows in the Lactation Period

For monitoring the animal’s health and reproductive condition, metabolic profiles are
important to review the oxidants and antioxidant substances [67].

5.1. Serum Biochemistry and Liver Enzymes in Dairy Cows

A high intensity of energy is consumed by the gravid uterus for the growth and
development of the fetus. During late pregnancy, the glucose requirement for the gravid
uterus increases and there is also a greater requirement for lactation, demanding major
adjustments in the production of glucose and use in the maternal liver, adipose tissues, and
skeletal muscles. The negative energy balance during lactation can raise lipolysis and dimin-
ish lipogenesis, causing the raised level of non-esterified fatty acids and β-hydroxybutyric
concentration, which mobilized the fats and indicator of fatty acids mobilization [68–70].
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An imbalance in hepatic carbohydrates occurs due to the mobilization of excessive fats and
fat metabolism resulting in metabolic problems, such as ketosis and fatty liver syndrome.
Economic losses can be caused by metabolic disorders in dairy farmers such as decreased
milk production, treatment costs, decreased reproductive efficiency, and greater involun-
tary culling. Lactation stimulates stress because it is a physiological condition that adapts
to metabolism in cows [14]. After calving, the body condition score loss is linked with an
NEB [71]. In cows, NEB is produced by the mobilization of body reserves, because more nu-
trition is needed for milk synthesis. It is well known that to meet the nutritional demands of
milk synthesis, dairy cows need to mobilize body reserves; awaiting nutrient intake covers
the demand [71,72]. The study of Basoglu et al. [73] indicated that there was an increase in
glucose VLDL, triglyceride levels before parturition, HDL levels, and cholesterol during
late lactation in dairy cows. The dairy cows were tending to the fatty liver because of lower
VLDL and glucose levels in early and late lactation and were inclined to hyperketonemia
in early lactation because of lower insulin levels than in late lactation. Hagawane et al. [74]
reported that in early and late lactating cows, blood glucose concentration was lower and
significantly increased in dry cows. The downward trend of serum cholesterol was ob-
served in dry pregnant cows as compared to lactating cows. The study of Piccione et al. [75]
experimented on five healthy pregnant and lactating Holstein Friesian dairy cows. Samples
of blood were collected at late gestation and early lactation during the 15, 35, and 105 days
after parturition and at the end of lactation. Urea, total proteins, creatinine, albumin, total
cholesterol, triglycerides, nonesterified fatty acid (NEFA), β-hydroxybutyrate, total and
indirect bilirubin, calcium, phosphorus, and magnesium were determined on each sample.
It was observed that the physiological phases have a significant effect on urea, creatinine,
total proteins, total cholesterol, triglycerides, NEFA, β-hydroxybutyrate, calcium, and
phosphorus. The study confirmed that a metabolic lactation period is more rational for the
high-producing dairy cow. During the three situations such as late pregnancy, lactation,
and disease, animals had undergone a negative energy status. High-yielding dairy cows
during lactation undergo an NEB because energy is used for milk production and less feed
intake; during the first four weeks of lactation, lipids uptake is increased by the liver thus
the capacity of lipid oxidation results in a fatty liver or hepatic lipidosis. During the first
stage of lactation in high yielding cows, lipid mobilization was observed, causing the liver
lesion by fatty infiltration. This hepatic lesion increases the possibility of distress to the
animal from other disorders such as mastitis, ketosis, hypocalcemia, and retention of the
placenta more reactively or less reactively. AST and GGT appear to be the most useful
for identifying hepatic disease in animals. The sensitive indicator of liver damage is the
increased activity of AST; still, the level of damage is subclinical.

Stojević et al. [76] reported the behavior of aspartate, AST, ALT, and GGT in the plasma
of dairy Holstein breed cows. The lactation period was divided into three groups and the
fourth one was the dry period. The first group covered the 10th to 45th day of lactation, the
second from the 46th to 90th day, and the third from the 91st to the end of lactation. The dry
period is considered the 4th period. In the first lactation period, AST activity was highest
and in the 2nd and 3rd it was higher than in the dry period. ALT showed a significant
increase from the 46th day of lactation until the dry period. ALT activity in the 2nd and 3rd
periods was higher than in the dry period. In the first production period and dry period,
GGT activity was statistically higher as compared to the second and third periods. On
the enzymes, there was a significant influence of lactation and the dry period, and it was
concluded that constant monitoring is a need for good production.

5.2. Lipid Peroxidation and Antioxidant Enzymes in Dairy Cows

During metabolism, reactive oxygen species are produced, and their production
and balance are controlled by enzymatic and non-enzymatic defense mechanisms [77].
Enzymatic antioxidants are SOD and CAT, while ascorbate, vitamin E, and β-carotene
are non-enzymatic antioxidants. Due to elevated energy demand and increased oxygen
necessity during lactation, oxidative stress is produced [78]. Lactation is a physiological
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action; any change in biochemical positions results in complications. Bhullar et al. [79]
studied lipid peroxidation, glutathione peroxidase, and superoxide dismutase behavior,
finding that they were firm with the plasma level of vitamin E and β-carotene during early,
mid, and late pregnancy, early lactation, and the dry period.

On Holstein dairy cows, Sharma et al. [59] studied the stress due to oxidants and in turn
antioxidant conditions during advanced gestation and early lactation. MDA was measured
as a marker of lipid peroxidation and SOD, CAT, GSH, and GPx as antioxidants. During
early lactation, the values of lipid peroxidation were significantly higher as compared to
advanced gestation stages. In early lactation between MDA and CAT, a significant positive
correlation was found. Blood glutathione (GSH) was significantly lower in early lactating
cows than in the late pregnant stage. There was no significant negative correlation between
lipid oxidation and all antioxidant enzymes. It is concluded that dairy cows have more
oxidative stress and less antioxidant defense during early lactation than late pregnant cows.

Konvičná et al. [57] studied the indicators of oxidative stress MDA and SOD, GPx,
selenium, and vitamin E in dairy cows in late gestation and early lactation. The significantly
higher MDA concentration was in one week after calving as compared to three, six, and nine
weeks. During the full monitoring period, SOD activities were increased and GPx activities
were decreased during one week after calving as compared to six and nine. Vitamin E was
found in the lowest concentration in the first week after calving. Between MDA and SOD,
GPx, and vitamin E, significant changes proved that oxidative pressure occurs during the
parturition and may be a reason for the increase in the rate of metabolic disease.

5.3. Serum Biochemical Profile in Dairy Cows

The TAS scale has been used to determine the active balance between prooxidants
and antioxidants. Oxidative stress is determined by the ratio of total peroxides to total
antioxidant capacity. The serum TAS level was higher in the first week of lactation than
in the cattle in pregnancy and late lactation. According to Castillo et al. [80], antioxidant
activity diminishes with the passage of lactation. Castillo et al. [81] studied the values of
lipid hydroperoxides and TAS in healthy cows and also studied their relationship with
milk yield. The results indicated that there was a higher level of lipid hydroperoxides
present in the group with a high milk yield than the other. This high oxidant compound
is not accompanied by an increased level of defensive antioxidant substances. A TAS
measurement gives balancing information about the metabolic status of parameters than
parameters (Figure 3). Mousa and Galal [82] found that the concentration of TAS was
significantly poorer before calving and the TAS concentration elevated eight weeks after
calving. The decreased TAS rate before calving was synchronized with the deficiency of
vitamins and minerals.
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The PON1 is a calcium-dependent glycoprotein in nature that is linked with HDL [83].
PON1 acts as an enzyme that hydrolyzes organophosphorus. It has been recommended
that increased oxidative stress might be associated with decreased serum PON1 activity,
anti-inflammatory and antioxidative properties, and activities of PON1 give relief from
physiological oxidative stress as well as contaminated environmental chemicals [84]. The
liver is the site where the PON1 gene is expressed. After production, some of the PON1
residue is inside the hepatocytes and some of it is free in the blood where it is attached
to HDL by association with apolipoprotein [85]. Hussein and Staufenbiel [86] studied
the Cp action and copper (Cu) concentration in plasma and serum in dairy cows. In
addition to this, a ceruloplasmin to Cu ratio was also observed. Serum Cu, plasma Cu,
and plasma ceruloplasmin activities were increased in the fresh lactating stage. Serum
ceruloplasmin showed no significant difference between fresh and early lactation. It was
found that plasma Cu and plasma ceruloplasmin concentrations were increased, rather
than serum Cu and Cp. Vitamin E is an antioxidant and hinders peroxidation, removes
free oxygen radicals, and mixes up the break of peroxidation chain reactions by a holdback
of reactive oxygen species. Near the parturition, vitamin E supplementation decreases
the level of ALT, AST, and alkaline phosphatase (ALP); thus, it prevents oxidative stress
by neutralizing reactive oxygen species during late pregnancy and early lactation, and
the liver condition becomes better. The cows during lactation and mastitis have lowered
vitamin C in milk and plasma [86]. Vitamin C scavenges the reactive oxygen species by a
fast electron transfer and inhibiting lipid peroxidation, showing an important antioxidant
defense next to oxidative damage. Cellular and non-cellular immunity can be increased by
the antioxidant vitamins. Vitamin C has an inspiring effect on the phagocytic activity of
leukocytes and the formation of antibodies. Vitamin C with the phagocytic cells uses free
radicals and reactive oxygen species to destroy the pathogen. Thus, vitamin C defends the
cells from oxidative damage [87].

5.4. Alterations in the Antioxidant Status of Health Markers in Dairy Cows

Ruminant medicine is relatively new in terms of assessing oxidative status. There
have actually been a number of studies in cattle, sheep, and goats, but they have mostly
focused on the effects of diseases, such as mastitis, pneumonia, sepsis, acidosis, ketosis,
enteritis, joint disease, and retained placentas [88–90]. Nowadays, peripartum metabolic
diseases are becoming increasingly studied in dairy ruminants, while dairy cattle blood
biochemical parameters are well-established as a means of analyzing metabolic profiles [67].
Nevertheless, metabolic profile tests can serve as an effective method of discovering which
areas of dairy management and nutrition require more attention [91].

Free radical damage detection has emerged as an important complementary tool for
evaluating metabolic status in recent years [92]. To combat free radical accumulation, the
body has sufficient antioxidant capacity under normal physiological conditions, while
ROS are produced in the body as a result of aerobic metabolic pathways. Maintaining
homeostasis requires an equilibrium between ROS production and neutralization [93]. It
is important to know that when domestic animals are in the productive phase, oxygen
free radicals are produced [94]. There are a number of biomarkers that can be used to
monitor oxidative stress, which result from increased exposure to or production of oxidants.
Through TAC estimation, antioxidative systems are monitored for their efficacy against
ROS. Antioxidants other than enzymatic antioxidants are found in serum, such as GSH,
α-tocopherol, and β-carotene [95]. Taking into account the cumulative effects of all the an-
tioxidants present in plasma, TAC is a useful, reliable, and sensitive indicator. Additionally,
TAC can be used to assess the nutritional status of calves during transportation and for
measuring stress. The measurement of TACs and the levels of MDA, as major components
of total body antioxidants in dairy cows, are useful in identifying their relationship to
lactational stages and the dry period [91].

The major portion of the total antioxidants in the body are plasma total thiols, which
serve as a marker of oxidative protein damage. Thiol compounds have a high antioxidant
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capacity since the sulfur atom can easily accommodate electron loss [96]. There have been
reports indicating that total thiol levels are low in various physiological and pathological
conditions, such as diabetes mellitus, cardiovascular disorders, kidney disorders, and
neurological disorders that are caused by excessive free radical production [97–100]. A
primiparous cow, or a cow in the early stages of lactation, is more susceptible to infections
and metabolic diseases than a multiparous cow [101,102]. For this reason, it is vital to assess
the metabolic and oxidative markers in cows to detect at-risk cows, especially primiparous
or early lactating cows.

6. Conclusions

Free radical production, oxidative stress, and damage are great concerns when dealing
with high-producing dairy cows. Oxidative stress biomarkers are considered to be useful
tools to comprehend animal welfare since stress can reduce the body’s antioxidant resources
and, as a consequence, lead the animal to metabolic disorders or diseases. In dairy cows,
oxidative stress biomarkers undergo wide changes in production and concentration during
the different stages from pregnancy to parturition and lactation. Hence, blood analyses
carried out during these periods is helpful to detect the oxidative status of the animal and to
identify possible strategies in order to limit the negative effects of free radicals and oxidant
molecules upon health, production, and reproduction. Enzymes from the liver, blood, and
microbial marker mined from the different states of dairy cattle gut by high-throughput
sequencing (metagenome) should not be forgotten as important health markers as well. A
growing number of researchers are interested in gaining further insight on the mechanisms
by which different antioxidants can improve the health of animals and, consequently, milk
yield and quality.
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54. Puvača, N.; Čabarkapa, I.; Bursić, V.; Petrović, A.; Aćimović, M. Antimicrobial, Antioxidant and Acaricidal Properties of Tea Tree
(Melaleuca Alternifolia). J. Agron. Technol. Eng. Manag. 2018, 1, 29–38.

55. Kharrazi, H.; Vaisi-Raygani, A.; Rahimi, Z.; Tavilani, H.; Aminian, M.; Pourmotabbed, T. Association between Enzymatic and
Non-Enzymatic Antioxidant Defense Mechanism with Apolipoprotein E Genotypes in Alzheimer Disease. Clin. Biochem. 2008,
41, 932–936. [CrossRef] [PubMed]
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