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Abstract: In nutrition and health research, untargeted metabolomics is actually analyzed simultane-
ously with clinical data to improve prediction and better understand pathological status. This can be
modeled using a multiblock supervised model with several input data blocks (metabolomics, clinical
data) being potential predictors of the outcome to be explained. Alternatively, this configuration
can be represented with a path diagram where the input blocks are each connected by links directed
to the outcome—as in multiblock supervised modeling—and are also related to each other, thus
allowing one to account for block effects. On the basis of a path model, we show herein how to
estimate the effect of an input block, either on its own or conditionally to other(s), on the output
response, respectively called “global” and “partial” effects, by percentages of explained variance in
dedicated PLS regression models. These effects have been computed in two different path diagrams
in a case study relative to metabolic syndrome, involving metabolomics and clinical data from an
older men′s cohort (NuAge). From the two effects associated with each path, the results highlighted
the complementary information provided by metabolomics to clinical data and, reciprocally, in the
metabolic syndrome exploration.

Keywords: multiblock; metabolomics; clinical data; global effect; partial effect; partial correlation;
metabolic syndrome; NuAge cohort

1. Introduction

In precision medicine, the ultimate goal is to decipher disease phenotypes in order to
improve diagnosis and treatment. Advances in deep phenotyping approaches, in particular
using -omics technologies, allowed the emergence of systems biology as an integrated per-
spective to achieve more precise modeling of complex diseases [1]. Clinical syndromes are
defined as a group of signs and symptoms that occur together and characterize a particular
biological abnormality (https://disease-ontology.org/, accessed on 31 January 2023). From
a numerical point of view, they are defined by a cluster of quantitative clinical variables with
specific cut-offs defining the binary outcome. Untargeted metabolomics is now routinely
used as a powerful tool to get an integrated view of biological systems, better understand
complex phenotypes, discover biomarkers and validate patterns that are characteristic of
particular biological states in various populations. However, it generates high-dimensional
data that need dedicated treatment to extract biological knowledge. The common strategy
for processing such data consists in performing univariate and multivariate statistics to re-
veal variables of interest that will be further used for biological interpretation [2]. Moreover,
in health-related case-control studies, untargeted metabolomics is often integrated with
standard clinical information in order to better predict and understand clinical syndromes
or diseases of interest. However, extracting correlations as meaningful biological interac-
tions is not trivial, and deciphering the modulation of metabolites from clinical factors is of
major importance to achieve more precise modeling of clinical syndromes [3].
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From a data analysis point of view, this leads to setting up a supervised model with
two blocks of input data (metabolomics, clinical characteristics) being potential predictors
of the targeted output to be explained. Such a configuration can be represented with a path
diagram where directional links connect each input block to the output. In health-related
studies, metabolomics reflects the clinical state to a certain extent suggesting that the input
blocks are also interrelated. In this a priori-drawn path diagram, we were interested in
evaluating the effect of an input block, either on its own (global effect) or conditionally to
another (partial effect), on the output response. In the classical path analysis approach that
could be used for such multiblock modeling, the data blocks must be unidimensional, and
‘direct’, ‘indirect’ and ‘total’ effects are estimated on the basis of standardized coefficients
(path coefficients) in linear regression models [4,5]. Indeed, the regression coefficient
approach is not suitable when the explanatory variables are highly colinear. Due to the
multidimensionality of the metabolomic data, the use of PLS regression models is advocated
to evaluate the links between the data blocks. Global and partial effects are then defined
from the explained variance accounted for each model.

In the present work, published data from a project on metabolic syndrome (MetS)
within the NuAge longitudinal cohort on aging [6] were used as a case study [7]. In this
publication by Comte et al. [7], data were acquired by different untargeted metabolomic
methods combined in a multiplatform approach followed by a variable selection strat-
egy to build a comprehensive molecular signature of the metabolic syndrome, including
102 metabolites. The objective of our study was to enrich our knowledge about MetS by
the assessment and explanation of global and partial effects in path diagrams involving the
same metabolomics and clinical input blocks and the same output response consisting of a
binary variable indicating the MetS presence (case or control). Then, we sought to identify
the most important variables in the global effect and study the effect of introducing the
mediating block. As in this study, there were no obvious causal and/or temporal links
between clinical and metabolomic perturbations, we adopted a data-driven approach, and
two pathway diagrams were therefore studied, differing in the mediating block, which was
either the metabolomics or the clinical data.

2. Materials and Methods
2.1. Experimental Design
2.1.1. Available Data

Published data from a project on MetS within the Quebec Longitudinal Study on
Nutrition and Successful Aging (NuAge) [6]; (https://nuage.recherche.usherbrooke.ca/
en/, accessed on 31 January 2023) were used as a case study, including 121 male subjects [7];
2 subjects were removed after participant’s withdrawal. A binary variable, y, indicated the
subjects’ status regarding the MetS presence (case or control).

A clinical data block (Clinic) included the 6 quantitative MetS diagnostic variables
collected at baseline, scaled to unit variance. In the present work, only subjects with no
missing values (54 cases/45 controls) were kept for analysis.

A metabolomic data block (Metabo) included a comprehensive MetS signature of 102
selected variables from serum sample analyses at baseline. The data acquisition, processing,
and feature selection strategy, as well as annotations of these 102 variables, are provided in
Comte et al. (2021) [7]. In the present work, null intensities within the metabolomic dataset
were replaced by 80% of the minimum intensity value of the corresponding variable before
a logarithm transformation.

2.1.2. Path Diagrams

The “global” and “partial” effects of an input block on an output response were
computed by considering two different path diagrams, named “path 1” and “path 2”,
respectively (Figure 1). The output response, y, was a binary variable indicating the MetS
presence. The two explanatory, or input, data blocks were metabolomics and clinical

https://nuage.recherche.usherbrooke.ca/en/
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datasets, named Metabo and Clinic, respectively. In path 1, Clinic predicts y with Metabo
as a mediating block. In path 2, Metabo predicts y with Clinic as a mediating block.
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2.2. Effect Assessment
2.2.1. Effect Calculation

In the framework of multiblock analysis, directed acyclic graphs (DAG) are convenient
ways to represent the conditional dependence relations between blocks. Let us consider a
graph with three vertices representing three different data blocks, denoted A, B and C (as in
Figure 2a,b). Furthermore, suppose three directed arrows between these vertices indicate a
direct dependence from A to C and an indirect link connecting A to C through B.
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With respect to the DAG depicted in Figure 2a, A refers to an independent block
(that is to say, an explanatory one), C a dependent block (i.e., to be explained) and B a
mediating or intermediary block as far as it depends on A and is predictive with respect to
C. As illustrated in Figure 1, in path 1, A corresponds to Clinic, C to y, and B to Metabo.
Similarly, in path 2, A corresponds to Metabo, C to y, and B to Clinic.

The global effect of A on C corresponds to the amount of variance of C explained
by A, while the partial effect of A on C, conditionally to B, is obtained by the amount of
variance of C explained by A, taking into account the explanation of A and C by B. Let us
denote XA, XB and XC as the data matrices associated with blocks A, B and C, respectively.
Without loss of generality, we suppose that XA, XB and XC are column-wise centered. The
Froebenius norm of a matrix is noted ‖.‖2.

The global effect of A on C is the explained variance accounted for regressing C on A
(Figure 2a and Equation (1)). In Equation (1) of the regression model, VAC are the regression
coefficients and EAC the residuals.

XC = XAVAC + EAC (1)
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The global effect of A on C is therefore equal to

‖XACVAC‖2

‖XC‖2 (2)

The determination of the partial effect of A on C, given B, requires first removing the
linear dependence between B and C and between B and A, respectively (Figure 2b). The
residuals of C on B, noted EBC, and of A on B, noted EBA, are thus retained:

XC = XBVBC + EBC and XA = XBVBA + EBA (3)

The partial effect of A on C, given B, is determined as the explained variance accounted
for regressing the residuals of C on the residuals of A thus obtained (Figure 2c):

EBC = EBAVCBA + ECBA (4)

The partial effect of A on C, given B, is therefore equal to

‖EBAVCBA‖2

‖EBC‖2 (5)

Finally, a repeated k-fold cross-validation procedure is performed to take into ac-
count sampling variability when estimating these effects. The “global” effect corresponds,
therefore, to the average of the cross-validated percentages of explained variance of the
output block by the input block. Similarly, the “partial” effect is estimated by averaging the
cross-validated percentages of explained variance resulting from a regression between the
residuals blocks.

2.2.2. Determination of the Models by Means of PLS Regression

In a multidimensional framework, with data blocks gathering a large number of highly
correlated variables, a PLS regression is carried out for each predictive model to prevent
collinearity issues. Thus, the amount of global and partial explained variances are estimated
from usual PLS regression models: PLS1 when only one variable is to be predicted, PLS2
otherwise. As far as the complexity of the model depends on the number of components,
the optimal number of components to be retained in the different PLS models is tuned by
repeated k-fold cross-validation associated with a stratified resampling and the application
of the one standard error rule [8]. Such a rule leads to a good compromise between the
parsimony and the quality of a model as it corresponds to the most parsimonious model
having a cross-validated residual sum of squares lower than the smallest cross-validated
sum of squares value plus one standard deviation.

Once the optimal model has been determined, the variable importance in the projection
(VIP) values are evaluated in both cases, i.e., for models associated with global and partial
effect assessments. Bootstrap mean and standard deviation of VIP indices were also
computed. The threshold value of mean bootstrap VIP, to determine that a variable
is important, was set independently for each path and each model based on the mean
bootstrap VIP value diagrams. Finally, log2 fold-changes (Log2 FC) were calculated for
each explanatory variable (on data neither mean-centered nor scaled to unit variance) to
complete the model interpretation.

2.2.3. Software and Implementation

Data analysis was performed under the R software (version 4.2.0, R Development Core
Team, 2019), using ‘caret’ (createFolds() function) and ‘pls’ (plsr() function) R-packages.
Both metabolomics and clinical variables were scaled to unit variance. The choice of the
optimal numbers of components and the calculation of cross-validated explained variance
was performed with 10-fold cross-validation repeated 50 times, with a resampling frame
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stratified on the y variable. Bootstrap mean and standard deviation of VIP indices were
computed with 500 repetitions.

3. Results
3.1. Global and Partial Effect Estimations and Selected Variables by Means of VIP Indices

The explained variances and the number of components of each model are indicated
in Table 1. For both paths, global and partial effect estimations were found to be similar.
Moreover, the amount of explained variance associated with the partial effect showed
greater variability than the global effect.

Table 1. Global and partial effects estimated for both paths described in Figure 1.

Effects Explained Variance
± SD (%)

Number of
PLS Components

Path 1
Clinic => y

(global effect) 52.37 ± 0.74 1

Clinic => y|Metabo
(partial effect) 22.95 ± 1.85 2

Path 2
Metabo => y
(global effect) 53.43 ± 1.47 2

Metabo => y|Clinic
(partial effect) 21.67 ± 3.83 2

Concerning the global effect estimated for path 1, around 52% of the variance of y
was explained by the Clinic block. Three clinical variables that are directly related to
carbohydrate and lipid metabolism disturbances, in link with insulin resistance, namely
“waist circumference”, “glycemia” and “triglyceridemia”, had variable importance in the
projection (VIP) value higher than the threshold that was set to 1. Their observed and mean
bootstrap VIP values and Log2 FC are provided in Table 2. These statistics for this global
effect for all variables are provided in Supplementary Materials (Table S1).

Table 2. Identifications, VIP and Log2 FC of the most important variables in the effects of Clinic on y
in path 1.

Important Variable in the
Model Identification VIP Mean

Bootstrap VIP ± SD
Log2 FC 1 (Cases/

Controls)

Global effect
WC waist circumference 1.53 1.50 ± 0.11 0.23
GLY glycemia 1.11 1.10 ± 0.13 0.36
TG triglyceridemia 1.08 1.08 ± 0.13 0.86

Partial effect
WC residual waist circumference 1.44 1.41 ± 0.24
SBP residual systolic blood pressure 1.41 1.33 ± 0.24

1 no Log2 FC was calculated for partial effects because of the relevance of Log2 FC on residual values.

For the partial effect estimated for path 1, after removing the amount of variance
explained by the Metabo block, 23% of the variance of the y residuals was explained by the
Clinic residuals. The two clinical variable residuals having important VIP values higher
than 1 in this model, namely “waist circumference” and “systolic blood pressure”, are
presented in Table 2. We observe that “waist circumference” was important both in the
global effect and in the partial effect. All the observed and mean bootstrap VIP values for
this partial effect are provided in Supplementary Materials (Table S1).
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In path 2, the global effect of the Metabo block on y represented around 53% of the
explained variance of y. The metabolites that were important in this global effect were
found to be directly related to carbohydrate and lipid metabolism disturbances in link
with insulin resistance. Nineteen annotated metabolomics variables had a significant mean
bootstrap VIP value higher than the threshold that was set to 1.2 for this model (Table 3).
These metabolites were previously identified as lipids (triglycerides, phosphatidylcholines,
LDL, VLDL . . . ), carbohydrates (hexoses, glucose), as well as amino acids (leucine, valine,
glutamine) and derivatives [7]. All the Log2 FC (cases vs. controls) and all the observed
and mean bootstrap metabolomics variable importance values in the projection in this
global effect are provided in Table S2 in Supplementary Materials.

Table 3. Identifications, VIP and Log2 FC of the most important metabolomics variables in the effects
of Metabo on y in path 2.

Important
Variable in the Model

Identification
Reported in Comte et al. [7] VIP Mean

Bootstrap VIP ± SD
Log2 FC 1

(Cases/Controls)

Global effect
V5261 TG(16:0_18:1_18:1) 2.11 2.00 ± 0.26 0.06
V3854 PC(18:0_20:3) 1.94 1.79 ± 0.26 0.02

M179T471 Hexoses 1.88 1.77 ± 0.17 0.02
M101.0244T0.93 Hexoses 1.83 1.72 ± 0.17 0.02
BV_1.273_NMR LDL, VLDL 1.82 1.76 ± 0.27 0.05

BV_5.23745012_NMR D-α-Glucose 1.73 1.62 ± 0.17 0.01
V2975 PE(18:0_20:4) 1.66 1.59 ± 0.28 0.04

M261.1445T7.64 γ-Glutamyl-leucine 1.55 1.49 ± 0.23 0.03
M215.0328T0.91 Hexoses 1.52 1.41 ± 0.18 0.04
M203.0526T0.91 Hexoses 1.52 1.40 ± 0.23 0.02
M163.06T0.91_1 Hexoses 1.52 1.45 ± 0.24 0.04

M178T555 Glucosamine 1.44 1.30 ± 0.20 −0.04
M274T549 Glutamyl-glutamine 1.43 1.35 ± 0.30 0.06

M564.3308T14.67 LPC(18:2_0:0) 1.43 1.37 ± 0.24 −0.03
M146.0459T0.91 L-Glutamic acid 1.42 1.36 ± 0.28 −0.02

M520.3397T14.67 LPC(18:2_0:0) 1.36 1.31 ± 0.24 0.02
M223.0925T0.93 Hexahydroxyheptane hydrazide 1.35 1.30 ± 0.23 0.04
M118.0863T1.19 L-Valine 1.34 1.26 ± 0.21 0.01

Partial effect
V3854 residual PC(18:0_20:3) 2.21 1.71 ± 0.46

M200T324
residual 1,5-anhydroglucitol 2.00 1.48 ± 0.45

M118.0862T0.92 residual Betaine 1.94 1.52 ± 0.56

M174.0571T6.89 residual 2-(methoxyimino)-
propanoic acid 1.26 1.24 ± 0.36

1 no Log2 FC was calculated for partial effects because of the relevance of Log2 FC on residual values.

The partial effect estimated in path 2 of the Metabo block on y, i.e., after removing
what was explained by the Clinic block, showed that around 22% of the variance of the
y residuals was explained by the Metabo residuals. Sixteen residuals of metabolomics
variables had a significant mean bootstrap VIP value higher than the threshold set to 1.2.
Among them, the four previously identified are listed in Table 3. They were metabolites with
endogenous and dietary origins (see Section 4) having different effects related to MetS, but
not immediately linked to clinical parameters. Moreover, all the observed and mean bootstrap
VIP values in this partial effect are indicated in Supplementary Materials (Table S2).

3.2. Comparison of Important Variables in the Global and Partial Effects

It is interesting to note that the most important variables in the global effect and those
that become important in the partial effect were not the same in both paths, except the waist
circumference that remained important in path 1 and PC(18:0_20:3), which is an alkylacyl
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phosphatidylcholine that remained important in path 2. In addition, the VIP indices of
the variables in the partial effects had relatively high variability, which has already been
noticed for the explained variance.

4. Discussion
4.1. Interest of Path Modeling Approaches

To the best of our knowledge, path modeling approaches have been applied with
metabolomics to explain health-related outputs only in a few publications [9–11]. But no
publications have already applied multiblock path modeling approaches with metabolomics
for a clinical syndrome exploration. However, the path modeling or mediation approaches
are of major interest compared to supervised multiblock methods, such as multiblock PLS
regression, which search for components of the different data blocks providing the same
or complementary information with respect to a block to be predicted without taking into
account the links between the explanatory blocks.

Within the multidimensional framework of multiblock analysis, a path diagram is a
convenient way to represent the conditional dependence relations between several blocks.
Modeling these relationships may be achieved using components-based SEM (Structural
Equation Modeling) methods such as PLS-PM [12], RGCCA [13] and GSCA [14]. More
specifically, the approach we applied here, whose objective was to better understand a
health-related predictive model, was inspired by an approach recently proposed under the
name SO-PLS-PM, for Sequential and Orthogonalized Path Modeling PLS [15,16].

It is interesting to note that, in the particular case where the data blocks are restricted
to a single variable, the path modeling approach refers to path analysis, on the basis of
which so-called direct, indirect and total effects are defined [4,5].

4.2. Concepts of Global and Partial Effects

In order to clarify the difference between the concepts of direct, indirect and total effects
from the global and partial effects used in this work, let us consider a unidimensional
setting, where blocks A, B and C, shown in Figure 1, are restricted to single variables
assumed to be standardized, denoted xA, xB and xC for clarity.

The direct, indirect and total effects are assessed by combining the standardized
regression coefficients (or path coefficients) of the multiple linear regression of xC as a
function of xA and xB, denoted pxC ,xA and pxC ,xB respectively, as well as the standardized
regression coefficients of simple linear regression of xB as a function of xA, which is nothing
else than the linear correlation coefficient between xA and xB, rxA ,xB . The direct effect
corresponds to pxC ,xA , the indirect effect is obtained by the multiplication of pxC ,xB and
rxA ,xB , and the total effect is the sum of the direct and the indirect effects. It is equivalent
to rxA ,xC , the linear correlation coefficient between xA and xC [4,5]. Direct and indirect
effects determined by means of the path coefficients are very popular because of specifically
addressing causal analysis. Nevertheless, in a multidimensional framework, the path
coefficients between A, B and C data matrices are no longer defined globally but have to be
determined for each pair of individual variables involved in the three blocks, as in [9,17].

Our point of view was to consider instead, on the one hand, the linear correlation
coefficient between xA and xC, rxA ,xC , which is the above defined total effect, and, on
the other hand, the partial correlation coefficient between xA and xC conditionally of xB,
rxA ,xC/xB . The squared correlation and the squared partial correlation correspond to the
explained variance accounted for the regression models between xA and xC, on the one
hand, and between xA and xC given xB, on the other hand. They have been defined as the
global effect (Equation (2)) and the partial effect (Equation (5)), respectively. In contrast to
the use of direct and indirect effects, the evaluation of the explained variance, and hence
the quantification of global and partial effects, are generalizable to the multidimensional
case.

In our study, we could neither proceed to a selection of variables nor subdivide the
explanatory blocks to make them unidimensional, notably because of the large amount of
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information in the metabolomic block and the risk of obtaining unidimensional blocks that
would be uninterpretable. Therefore, to determine the global effect of A on C as well as its
partial effect, we recommend using the explained variance of the corresponding regression
models. It is worth noting that such an approach is the one proposed by Naes et al. within
the framework of SO-PLS-PM [15,16], in which the way the indirect effect is determined is
completely different from the classical approach adopted in path analysis. Consequently,
we do not refer here to the direct and indirect effect terms, which may be confused with the
terms used in the path analysis.

It is interesting to note that in our method, there is no weighting of the blocks. It
could, therefore, be applied with limited risk of not highlighting important variables when
explanatory data blocks are very different in terms of dimensions, information content with
respect to a variable to be predicted, transformation or scaling.

4.3. Input for the Exploration of Metabolic Syndrome

The presented approach can significantly contribute to helping to interpret the links
between clinical and metabolomics data, in particular for the exploration of clinical syn-
dromes. Indeed, in such approaches, the strength of each link between the different datasets,
considering the others, can be determined simultaneously. Additionally, as in multiblock
analyses, the most important variables in these links can be used to highlight corresponding
biological effects.

From a biological point of view, the present results highlighted the complementary
information provided by metabolomics to clinical data and, reciprocally, in the MetS explo-
ration. In particular, as expected, results showed that metabolomics is the measurement of
metabolic phenotypes but also the reflection of the secondary functional deficits associated
with MetS.

Presently, by a global effect, metabolomics data explained, as well as the Clinic
dataset, the glycemic and lipid disturbances observed at the blood level in the case of MetS.
When the partial effect is analyzed, i.e., when the information explained by the Clinic
was removed from the metabolomics, metabolites further linked to dysfunctions were
highlighted. These metabolites allowed a more systemic and comprehensive view of the
processes involved in the syndrome.

It is first illustrated in path 1, where the most important clinical variables in the pro-
jection related to the global effects are measurements of blood biochemical parameters,
whereas residuals of those important in the partial effect are, secondly, measures of adipos-
ity and vascular dysfunction, respectively. Interestingly, waist circumference is important
in both effects, as it could also be linked to the disturbance of the insulin action associated
with the accumulation of abdominal fat. Indeed, over the last decades, adipose tissue has
emerged not only as a key actor in multiple processes such as metabolism and adipogenesis
but also as a very important endocrine organ, being able to secrete hormones and inflam-
mation regulators [18]. Therefore, our results raise the question of waist circumference as a
clinical measurement reflecting not only the absolute amount of intra-abdominal or visceral
fat but also of subcutaneous adipose tissue, both having different and complex functions,
which need to be further investigated within the emerging field of adipocyte biology.

Secondly, the importance of the residuals of some metabolomics variables (not ex-
plained by the clinical variables) in path 2 brought some statistical evidence of the in-
dependence of complex effects that support distinct physiological processes leading to
MetS. In detail, PC(18:0_20:3) is an alkylacyl phosphatidylcholine both linked to lipid
and cholesterol transports. It was associated with waist circumference, body mass index,
C-peptide and leptin [19], but also with high blood pressure and dyslipidemia, which could
explain its importance in both effects [20]. Secondly, 1,5-anhydroglucitol, recognized as a
short-term marker of glycemic control, was recently identified as a circulating biomarker of
the functional ß-cell mass of the islets of Langerhans, which produce insulin. In fact, a close
association between 1,5-anhydroglucitol levels and poor glucose control was evidenced
in type 2 diabetic patients, although not in nondiabetic subjects. It was shown that the
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loss of ß-cells was necessary and sufficient to decrease circulating 1,5-anhydroglucitol, not
requiring hyperglycemia. It is, therefore, partially not immediately linked to glycemic
disturbance [21–24]. Regarding betaine, this metabolite has both endogenous and exoge-
nous origins, as it is a nutrient obtained from the diet (e.g., some green veggies, whole
grains, and shellfish), but also synthesized de novo in the kidney and liver by choline
oxidation [25,26]. It is an important osmoprotectant and methyl group donor with anti-
inflammatory effects [27]. It has been shown that betaine was also inversely associated with
serum non-HDL cholesterol, triglycerides, BMI, percent body fat, waist circumference, and
systolic and diastolic blood pressure and positively associated with HDL cholesterol [28].

In the original publication [7], correlation analyses were used to explore the relation-
ships between the molecular signature and clinical parameters. Their results highlighted
the links between almost all significantly modulated metabolites and the five individual
clinical criteria defining MetS, without that much specificity (i.e., a metabolite chemical
family being related to several MetS criteria), revealing the interconnection of complex
underlying metabolic processes and MetS components. The present approach allowed
going further into the exploration of the relationships between MetS, its clinical criteria
and its metabolic signature. Interestingly, the assessment of global and partial statistical
effects reflecting orthogonal statistical links revealed corresponding physiopathological
independent processes, which can be measured within single metabolomic variables.

5. Conclusions

In our study, a path-modeling method was implemented in a multidimensional context.
This method can be easily applied with correlated variables and different blocks in terms of
dimensions, transformations and normalizations. The interpretation of the results, based
on the explained variances and VIP values, is also straightforward.

The determination of both global and partial effects, together with the identification
of the most important variables from the associated models, highlighted the redundancy
as well as the complementarity of the clinical and metabolomic information in the MetS
explanation. In particular, the disturbances in lipid and carbohydrate metabolism, which
exist in metabolic syndrome and are measurable at the plasma level, were highlighted by
the important clinical or metabolomic variables in the global effects. Thus, these variables
were often no longer important in the partial effect. In particular, in the partial effect
of Clinic on y, given the presence of Metabo in the diagram, the residuals of functional
variables became important. And in the partial effect of Metabo on y, given the presence of
Clinic in the model, metabolic variables not explained by MetS clinical diagnostic variables
were highlighted. The present developed approach is of major interest in deciphering
the relationships between metabolomic data and clinical measurements, allowing us to
go deeper into the interpretation of metabolomic data in the exploration of metabolic
phenotypes of clinical syndromes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13030373/s1, Table S1: Identifications, Log2 FC, and VIP
values of the clinical variables in path 1; Table S2: Identifications, Log2 FC, and VIP values of the
metabolomics variables in path 2.
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