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Abstract: A number of steroids, including glucocorticoids and sex hormones, have been associated
with neurodegenerative and cardiovascular conditions common in aging populations. The appli-
cation of liquid chromatography tandem mass spectrometry (LC-MS/MS) steroid analysis offers
an opportunity to conduct simultaneous multiplex steroid analysis within a given sample. In this
paper, we describe the application of an LC-MS/MS steroid analysis method for the assessment
of reference ranges of steroids in human saliva samples (200 µL) collected from older adults (age
50 years and above) enrolled in a European cohort investigating the risk for Alzheimer’s dementia.
Saliva samples were prepared using supported liquid extraction (SLE) along with a calibration curve
and analysed using a Waters I-Class UPLC (Ultra Performance Liquid Chromatography) and a
Sciex QTrap 6500+ mass spectrometer. Mass spectrometry parameters of steroids were optimised
for each steroid and a method for the chromatographic separation of 19 steroids was developed.
Lower limits of quantitation (LLOQs), linearity and other method criteria were assessed. In total,
data from 125 participants (500 samples) were analysed and assessed for reference ranges (64 male,
61 female). A total of 19 steroids were detected in saliva within the range of the method. There were
clear diurnal patterns in most of the steroid hormones detected. Sex differences were observed for
androstenedione (A4), testosterone (T), cortisone (E) and aldosterone (Aldo). In the first sample of
the day, dehydroepiandrosterone (DHEA) was significantly higher in healthy volunteers compared
to those with Alzheimer’s disease biomarkers. This LC-MS/MS method is suitable for the analysis of
19 steroids in saliva in adults.

Keywords: LC-MS/MS; saliva; steroid hormone; supported liquid extraction

1. Introduction

Steroid hormones play a central role in many biological functions throughout the life
course. As our global population is aging, understanding the role of steroid hormones in
both healthy aging and age-related illnesses is critical. Glucocorticoids have been associated
in numerous studies with neurodegenerative conditions such as Alzheimer’s disease
(AD) [1], Parkinson’s disease [2], stroke [3] and cardiovascular conditions, such as diabetes,
that are common in later life [4]. Sex steroid hormones, particularly the estrogens, decline
significantly in menopause, and have been related to cognitive function in older age [5],
with both positive and negative associations seen between estradiol or estrone and cognitive
domains including executive function, attention and psychomotor performance. Lower
testosterone levels have been associated with AD [6,7], hypertension [8] and ischaemic
heart disease [8].

Typically these studies have used plasma, serum and cerebrospinal fluid samples (CSF)
for analysis; however, there is increasing focus on salivary sampling methods [9]. Saliva
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offers a non-invasive sampling technique when compared to other collection methods. This
in turn confers two clear benefits, firstly in avoiding the cortisol response to venepuncture
which can artificially inflate cortisol levels [10] and secondly eliminating the need for
samples to only be taken in clinics with trained sample collection experts. Combining the
non-invasive nature of the sample with the opportunity of home collection, it becomes
feasible to collect multiple samples in a day. Given the circadian rhythm of many of the
steroid hormones [11,12], particularly glucocorticoids [13], the opportunity to collect multi-
ple samples as opposed to a single time point has potential to increase knowledge of the
role steroids play in aging and disease. Previous research has demonstrated strong correla-
tions between plasma and salivary steroids including cortisol [14,15], testosterone [11] and
aldosterone [16]. Unlike in steroids in plasma, which can be protein-bound or free, salivary
steroids are not protein-bound. Indeed, the fact that salivary glucocorticoids are free has
clear benefits over other sampling techniques as a more suitable measure of adrenocortical
function [17–19]. When serum cortisol concentrations are low, salivary cortisone levels
have been demonstrated to be both detectable and a suitable alternative for serum cortisol
levels [20,21]. In diseases of endocrine disruption, such as congenital adrenal hyperplasia,
application of the measurement of five salivary steroids have been identified as markers of
treatment control [22], showcasing the benefits of multi-steroid profiling in saliva samples
in clinical research.

Much of the previous analytical work on saliva samples has used immunoassays,
particularly in the field of AD research. To use glucocorticoids as an example, the inter-
pretation of salivary cortisol measurement by immunoassays may be challenged due to
the presence of 11β-hydroxysteroid dehydrogenase (11β-HSD) type 2 in salivary glands
which catalyses the conversion of cortisol to cortisone, such that cortisone is at a higher
concentration in saliva than cortisol [23]. Methods of liquid chromatography tandem mass
spectrometry (LC-MS/MS) allows for measurement of both cortisol and cortisone to be
determined simultaneously. By exploiting the selective capabilities of LC-MS/MS cortisol
and cortisone, they can be analysed as part of a wider steroid hormone panel [24,25]. Fur-
thermore, steroid hormones that are present, but in low concentrations in saliva, require
the sensitivity of LC-MS/MS analysis. This includes steroids such as estrone (E1), estradiol
(E2) and 16-hydroxyestradiol (E3) [26]; these steroids, which further decrease with age,
are implicated in diseases in women [27,28] and have the potential to serve as important
biomarkers in saliva. In an editorial dating back to 2013, Handelsman and Wartofsky
clearly extoll the benefits of a mass spectrometry approach and echo call for this to be the
accepted method for the analysis of sex steroids [29]. Indeed, LC-MS/MS has now become
the gold standard approach in many clinical diagnostics laboratories [30].

In this study, we developed an LC-MS/MS method for the analysis of multiple steroids
in saliva and determined reference ranges by total sample, sex and AD biomarker pres-
ence. The steroids included corticoids (cortisol, F; cortisone, E; corticosterone, B; 11-
dehydrocorticosterone, A, aldosterone, Aldo), androgens (testosterone, T; androstenedione,
A4; dehydroepiandrosterone, DHEA; 5α-dihydrotestosterone DHT), progesterones (17α-
hydroxyprogestogens, 17αOH-P4; progesterone, P4; 17α-hydroxypregnenolone, 17αOH-
Preg; Pregnenolone, Preg), and the estrogens (estradiol, E2; estrone, E1; 16-hydroxyestradiol,
E3). See Figure 1 for an overview of the steroids detected in the method. LC-MS/MS con-
ditions were optimised such that the cortisol and cortisone measurement would be as
sensitive and reliable as possible.
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Figure 1. Human steroidogenesis pathway with steroids indicated in bold if measured in the human
saliva samples by LC-MS/MS. Relevant enzymes indicated above the arrows. HSD is hydroxy
steroid dehydrogenase.

2. Materials and Methods
2.1. Materials and Chemicals

Cortisol (F), cortisone (E), corticosterone (B), 11-deoxycortisol (S), 21-deoxycortisol
(21-DF), 11-deoxycorticosterone (11-DOC), testosterone (T), androstenedione (A4), 5α-
dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA), progesterone (P4), 17α-
hydroxyprogesterone (17αOH-P4), pregnenolone (Preg), 17α-hydroxypregnenolone (17αOH
-Preg), aldosterone (Aldo), estrone (E1), estradiol (E2), and 16-hydroxyestradiol (E3) were
produced by Cerilliant and purchased from Sigma-Aldrich (Merck). 11-dehydrocorticosterone
(A), was purchased from Steraloids, UK. Isotopically labelled internal standards 2,3,4-13C3-
Cortisol (13C3-F), 2,3,4-13C3-Cortisone (13C3-E), 2,3,4-13C3-Corticosterone (13C3-B), 2,2,4,5,5,21,
21,21-2H8-21-Deoxycortisol (d8-21-DF), 2,2,4,6,6-2H511-Deoxycortisol (d5-11S), 2,3,4-13C3-
Testosterone (13C3-T), 2,3,4-13C3-Androstenedione (13C3-A4), 2,2,3,4,4-2H5

-Dehydroepiandro
sterone (d5-DHEA), 2,2,4,6,6,17a,21,21,21-2H9-Progesterone (d9-P4), d8-17α-Hydroxyproges
terone 2,2,4,6,6,21,21,21-2H8-17a-hydroxyprogesterone (d8-17OHP4), 20,21-13C2,-16,16-2H2-
Pregnenolone (13C2,d2-Preg), 2,3,4-13C3-Estradiol (13C3-E2), 2,3,4-13C3-Estrone (13C3-E1),
were purchased from Sigma-Aldrich/Cerilliant. d8-Aldosterone (2,2,4,6,6,17,21,21-2H8-
Aldosterone (d8-Aldo)) and 2,3,4-13C3-16-hydroxyestradiol (13C3-E3) were purchased from
Cambridge Isotopes Laboratories/CK Isotopes and 2,3,4-13C3-5α-Dihydrotestosterone (13C3-
DHT) was purchased from Isosciences (Ambler, PA, USA). All standards had reported purity
factors of over 99.9%.

All standards and corresponding isotopically labelled internal standards (IS) were kept
at −20 ◦C. Quality controls MassCheck® Cortisol, Cortisone saliva controls (lyophilised)
for level 1 (0353) and level 2 (0354) were purchased from Chromsystems Instruments &
Chemicals GmbH (Munich, Germany). Isolute SLE+400 96-well plates for extraction were
provided by Biotage (Uppsala, Sweden) and 2 mL deep well 96-well collection plates were
supplied by Waters (Wilmslow, UK). Methanol (MeOH, HPLC grade and LC-MS grade),
2-propanol (HPLC grade and LC-MS grade), water (LC-MS grade) and acetonitrile (LC-MS
grade) were supplied by VWR (England, UK). Water (HPLC grade) and formic acid (LC-MS)
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grade were supplied by Fisher Scientific UK Ltd. (Leicestershire, UK). Ammonium fluoride
(99.99%) was provided by Sigma-Aldrich (Gillingham, UK). Sample extraction was carried
out using an Extrahera liquid handling robot, supplied by Biotage (Uppsala, Sweden). A
Waters I-Class UPLC (Waters, Wilmslow, UK) and QTrap 6500+ mass spectrometer from
AB Sciex (Macclesfield, UK) were used for LC-MS/MS analysis. The column used was
a Kinetex C18 (2.1 × 150 mm, 2.6 µm particle size) and a Krudkatcher inline filter both
purchased from Phenomenex (Macclesfield, UK).

2.2. Liquid Chromatographic Conditions

A Waters I-Class UPLC was used for the liquid chromatography on a Kinetex C18
2.1 × 150 mm, 2 µm particle size. The column temperature was maintained at 50 ◦C and
the autosampler temperature was maintained at 10 ◦C. Mobile phase A consisted of water
and 0.05 mM ammonium fluoride, mobile phase B consisted of methanol and 0.05 mM
ammonium fluoride. A gradient elution was conducted at a flow rate of 0.3 mL/min
over 16 min, starting at 55% B for 2 min, rising to 100% B over 6 min, held for 2 min,
then returning to 55% B over 0.1 min and equilibrating for 4.9 min. The solvent flow was
diverted to waste from 0–2 min and 11–16 min. The injection volume was 20 µL and the
total analytical run time per sample was 16 min.

2.3. Mass Spectrometric Conditions

Mass spectrometry multiple reaction monitoring parameters for each steroid were
determined by infusing 1 µg/mL solutions of each steroid in 50% methanol into the
Turbospray ionisation source of the QTrap 6500+ at 2 µL/min in both positive and negative
ion modes. The product ion scans were used to determine four mass transitions, using
the tune function of Analyst® software, and the mass spectrometry method was built
using these parameters in positive and negative mode. Solutions of individual steroids
were injected into the LC system in turn while developing the best chromatographic
separation of isomers and isotopomers, and the two most dominant mass transitions
were selected for each steroid and isotopically labelled internal standard. Product ions
that included the stable isotopes were preferentially selected for inclusion in the final
LC-MS/MS method, where possible. Initial product ion scans for each steroid and internal
standard are shown in Supplementary Materials Figures S1 and S2. For androst-4-ene-3-one
analogues, we consistently found the common m/z 97 product ion, which is well reported
in the literature [31,32], and ensured the chromatographic separation of all steroids to
ensure the specificity of the method. LC eluent was diverted to the mass spectrometer
between 2 and 11 min, with the remaining diverted to waste. Steroid hormones were
detected with a QTrap 6500+ mass spectrometer from AB Sciex (Warrington, UK) equipped
with an electrospray ionisation (ESI) turbo V ion spray source operated in both positive
and negative modes. Multiple reaction monitoring (MRM) was used for quantitation of
the steroids, where a quantification transition and a qualitative (confirmation) transition
was monitored for each steroid. Positive ion spray voltage was set to 5500 V and negative
ion spray voltage was set to −4500 V, with the source temperature maintained at 600 ◦C.
The method included a curtain gas (nitrogen (N2)) of 30 psi, collision gas (N2) medium, air
ion source gas 1 and air ion source gas 2 of 40 psi and 60 psi, respectively. Mass transition
parameters for steroids and isotopically labelled internal standards are presented in Table 1
(positive ion multiple reaction monitoring (MRM)) and Table 2 (negative ion MRM). A
chromatographic profile of steroids included in the method is presented in Supplementary
Materials Figure S3.
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Table 1. Positive ion multiple reaction monitoring (MRM) parameters and retention times for each steroid
and isotopically labelled internal standards, as analysed on a Kinetex C18 (150 × 2.1 mm; 2.6 µm) column
on an Acquity I-Class UPLC and QTrap 6500+ mass spectrometer following electrospray ionisation. A4—
Androstenedione; T—Testosterone; DHEA—Dehydroepiandrosterone; DHT—5α-dihydrotestosterone;
P4—Progesterone; Preg—Pregnenolone; 17αOH-Preg—17α-hydroxypregnenolone; 17αOH-P4—
17α-hydroxyprogesterone; 11-DOC—11-deoxycorticosterone; A—11-dehydrocorticosterone; S—11-
deoxycortisol; 21-DF—21-deoxycortisol; B—corticosterone; E—cortisone; F—cortisol; DP—Declustering
Potential; CE—Collision Energy; CXP—Collision Cell Exit Potential; RT-Retention Time. Quantifier (1)
and Qualifier (2), MRM indicated accordingly.

Steroid Internal Standard Q1 Mass (m/z) Q3 Mass (m/z) DP (V) CE (V) CXP (V) Time (Min)

A4 1 13C3-A4 287.1 97.0 61 27 14 6.9

A4 2 287.1 78.9 61 67 10 6.9

T 1 13C3-T 289.1 97.0 101 29 12 7.6

T 2 289.1 109.2 101 31 6 7.6

DHEA 1 d5-DHEA 289.1 253 121 15 46 8.1

DHEA 2 289.1 213.1 121 11 12 8.1

DHT 1 13C3-DHT 291.3 255.2 116 21 30 8.9

DHT 2 291.3 91.0 116 55 10 8.9

P4 1 d9-P4 315.0 97.1 96 23 10 8.9

P4 2 315.0 109.1 96 27 10 8.9

Preg 1 13C2,d2-Preg 317.1 281.1 66 31 12 10.3

Preg 2 317.1 159.0 66 29 12 10.3

17αOH-Preg 1 13C2,d2-Preg 333.1 297.1 36 13 22 9.6

17αOH-Preg 2 333.1 132.9 36 27 20 9.6

17αOH-P4 1 d8-17α-OHP4 331.1 109.0 66 29 12 8.1

17αOH-P4 2 339.1 100.1 66 31 12 8.1

11-DOC 1 d8-17α-OHP4 331.2 97.0 86 29 16 7.5

11-DOC 2 331.2 109.0 86 31 12 7.5

A 1 d4-F 345.1 121.0 66 31 12 3.6

A 2 345.1 91.2 66 83 40 3.6

S 1 d5-11S 347.1 97.0 71 27 12 5.7

S 2 347.1 109.0 71 33 16 5.7

21-DF 1 d8-21-DF 347.1 311.1 71 23 20 5.2

21-DF 2 347.1 269.0 71 27 14 5.2

B 1 13C3-B 347.1 121.1 76 29 8 5.3

B 2 347.1 90.9 76 75 12 5.3

E 1 d8-E 361.1 163.1 81 31 26 2.9

E 2 361.1 77.1 81 107 10 2.9

F 1 d4-F 363.1 121.2 76 31 8 3.5

F 2 363.1 91.1 76 83 10 3.5

Internal Standards
13C3-

Androstenedione 290.2 100.1 61 27 14 6.8

13C3-Testosterone 292.1 100.0 101 29 12 7.6

d5-Dehydroe
piandrosterone 294.1 258.2 141 11 34 8.1
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Table 1. Cont.

Steroid Internal Standard Q1 Mass (m/z) Q3 Mass (m/z) DP (V) CE (V) CXP (V) Time (Min)

Internal Standards
13C3-5α-DHT 294.2 258.3 116 21 30 8.9

13C2,d2-
Pregnenolone 321.2 285.2 141 17 18 9.5

d9-P4 324.1 100.0 96 23 10 8.9

d8-17α-OHP4 339.2 96.9 66 29 12 7.9

d5-11-
deoxycortisol 352.1 100.1 71 27 12 5.6

d8-21-
deoxycortisol 355.2 319.1 71 23 20 5.1

d8-corticosterone 355.3 125.1 76 29 8 5.0

d4-cortisol 367.3 121.1 76 31 8 3.4

d8-cortisone 369.2 169.0 81 31 26 2.8

Table 2. Negative ion multiple reaction monitoring (MRM) parameters for each steroid and isotopi-
cally labelled internal standards, as analysed on a QTrap 6500+ mass spectrometer following electro-
spray ionisation. E1—Estrone; E2—Estradiol; E3—16-hydroxyestradiol; Aldo—Aldosterone; DP—
Declustering Potential; CE—Collision Energy; CXP—Collision Cell Exit Potential; RT—Retention
Time. Quantifier (1) and Qualifier (2), indicated accordingly.

Steroid Internal Standard Q1 Mass (m/z) Q3 Mass (m/z) DP (V) CE (V) CXP (V) Time (Min)

E1 1 13C3-Estrone 269.1 144.9 −150 −48 −15 7.2

E1 2 269.1 142.9 −150 −70 −15 7.2

E2 1 13C3-Estradiol 271.0 144.9 −110 −52 −21 7.0

E2 2 271.0 182.9 −110 −52 −19 7.0

E3 1 13C3-16OH-E3 287.1 171.0 −155 −48 −29 2.5

E3 2 287.1 145.0 −155 −54 −9 2.5

Aldo 1 d8-Aldo 359.1 188.9 −70 −24 −21 2.6

Aldo 2 359.1 331.0 −70 −22 −35 2.6

Internal Standards
13C3-Estrone 272.0 147.8 −150 −48 −15 7.2

13C3-Estradiol 273.9 147.9 −110 −52 −21 7.0
13C3-16OH-Estradiol 290.2 173.9 −155 −48 −29 2.5

d8-Aldosterone 367.2 193.9 −70 −24 −21 2.6

2.4. Saliva Samples

Saliva samples were collected into Sarstedt Salivettes® (51.1534.500) (Sarstedt, Ger-
many) from older adults participating in the European Prevention of Alzheimer’s Dementia
(EPAD) longitudinal cohort study. The multi-site, pan-European, EPAD cohort study re-
cruited healthy volunteers representing a spectrum of risk for future AD dementia. Well
described in detail elsewhere [33,34], participants completed a number of study assess-
ments during the baseline study visit, including providing saliva samples. Follow up
visits occurred at month 6 and years 1, 2 and 3. Detecting AD earlier in the disease course
and identifying intervention opportunities is currently an important research focus, and
understanding the role of steroid hormones throughout the AD process is critical.

Four saliva samples were collected by participants into Salivettes® on the day of
a clinical study visit. Participants were advised to collect samples at 09:00, 11:00, 15:00
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and 22:00 on the day of collection, with the first and second sample collection typically
under staff supervision at the study site. Samples were stored in a domestic fridge until
returned to site. Samples contained in the Salivettes® were initially stored at −80 ◦C
prior to transfer on dry ice to long-term storage at −20 ◦C. Salivettes® were centrifuged
at 4500 rpm for 2 min, then saliva was aliquoted into labelled vials prior to preparation
for steroid extraction. The saliva samples were kept, stored and analysed in adherence to
procedures reviewed by ethical review boards. As this was a multi-centre international
cohort study, each country and site was required to obtain review and approval relevant to
local governance procedures prior to study activity beginning.

Participants self-reported their sex as male or female. Participant disease status
was categorized by the presence or absence of AD biomarkers. The AD biomarkers of
phosphorylated tau-181 (pTau181) and amyloid-beta 1-42 (Aβ42) were analysed in CSF and
used the fully automated cobas Elecsys® AD portfolio platform (Elecsys® Total -Tau CSF
(roche.com) (accessed on 20 December 2022) [35,36]. Participants were defined as having
AD if they had Aβ42 < 1000 pg/mL and/or pTau181 > 27 pg/mL, using cut offs as defined
and used in previous analysis using the EPAD and other similar AD cohort datasets such
as the Swedish BioFINDER and ADNI studies [37,38].

2.5. Calibrators, ISs and QC Samples

A steroid mixture was prepared using methanol (DHEA, P4: 50 µL × 1 mg/mL; T,
A4:20 µL × 1 mg/mL; 17αOH-P4: 10 µL × 1 mg/mL; A, B, S, DHT, E1, E2, E3:5 µL ×
1 mg/mL; 21-DF, 11-DOC, Aldo:50 µL × 100 µg/mL). The steroid mixture was used to
prepare a calibration curve with 14 points. A stock solution of each IS was prepared in
100% MeOH. From these, a working solution containing 16 IS was prepared at 100 µg/mL.

Fourteen calibration standards were prepared in the concentration ranges of 0.005 to
5.0 ng/mL (F, E, DHEA, P4), 0.002 to 2 ng/mL (T, A4), 0.001 to 1.0 ng/mL (17αOH-P4,
Preg, 17αOH-Preg) and 0.0005 to 0.5 ng/mL (A, B, S, 21-DF, 11-DOC, DHT, Aldo, E1, E2,
E3). Aliquots of the calibrator, standards and IS solutions were stored at −20 ◦C until use.

2.6. Sample Preparation

A total of 200 µL of each calibration standard, quality control and 200 µL of saliva
sample was added to the appropriate well on the 96-well plate. Standards, samples and
QCs were spiked with 20 µL of internal standard solution. Each plate was sealed using
a VWR 96-well-plate-sealing film and shaken on a plate shaker for 5 min at 600 rpm
to ensure sufficient mixing of the standards and IS. Extraction was completed using an
Extrahera liquid handling robot (Biotage, Uppsala, Sweden) with calibration standards,
QCs and samples diluted 1:1 (v/v) with 200 µL 0.1% formic acid. The contents of the
wells were then transferred to corresponding positions on the SLE+ 400 plate and loaded
onto the sorbent using positive pressure. The plate was then extracted using 600 µL
of dichloromethane:isopropanol (98:2 v/v) with elution under positive pressure. The
process was repeated twice more, resulting in 1.8 mL of extract from each well. Following
extraction, each elution plate was dried under nitrogen using a Biotage SPE Dry 96 Dual
Sample Concentrator with the gas temperature set to 40 ◦C. Samples were re-suspended in
100 µL of Water:Methanol (70:30 v/v), sealed using a Waters adhesive plate-sealing film
and shaken for 10 min at 600 rpm to ensure fully redissolved.

2.7. Linearity and LLOQ

Each calibration curve contained 14 points representing appropriate concentration
ranges for each steroid, along with double blanks and a solvent blank. Samples were
prepared, extracted and analysed alongside each plate (28 plates analysed on 28 different
days). The calibration curves were assessed using linear regression of the peak area ratio
of the analyte to its respective IS against the concentration of the calibration point, with a
weighting factor of 1/x. The intra-assay and inter-assay lower limit of quantitation (LLOQ)
for each steroidwas defined as the lowest concentration that can be quantified within ± 20%
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bias of accuracy and less than ± 20% precision expressed as coefficient of variation (CV%),
using six plates (with a calibration curve R > 0.99) to calculate.

2.8. Statistical Analysis

Analyst ® version 1.7 (AB Sciex) was used for instrument control and data acquisi-
tion. Data analysis was completed using MultiQuant version 3.0 (AB Sciex). Confidence
intervals and reference ranges were calculated using R programming language, with the
bias-corrected percentile confidence interval with bootstrapping (n = 999) using the boot
package. Reference intervals were created for each sample for the whole cohort, for men
and women separately and for those with and without AD biomarkers. Comparisons of
median concentrations for each steroid between men and women and healthy volunteers
and those with and without AD biomarkers were carried out using the Wilcoxon test.

3. Results
3.1. Linearity, Lower Limit of Quantitation, Precision and Accuracy

Six plates were selected to assess the precision and accuracy of the method across
multiple analytical runs. The mean R value of the calibration curves for all steroids was
consistent across the six plates (mean R > 0.99 for all steroids) with the exception of
pregnenolone (Preg) where only four plates had calibration curves (mean R > 0.99). Where
a steroid on a particular plate had a calibration curve <0.99 or was unable to be calculated,
no data from that steroid were used in the analysis. The lower limit of quantitation (LLOQ),
precision (relative standard deviation (RSD)) and accuracy (relative mean error (RME))
metrics are presented in Table 3.

Table 3. Inter-assay validation of the lower limit of quantitation (LLOQ) of steroid hormones detected (n = 6).
All data presented in A4—Androstenedione; T—Testosterone; DHEA—Dehydroepiandrosterone; DHT—
5α-dihydrotestosterone; P4—Progesterone; Preg—Pregnenolone; 17αOH-Preg—17α-hydroxypregnenolone;
17αOH-P4—17α-hydroxyprogesterone; 11-DOC—11-deoxycorticosterone; A—11-dehydrocorticosterone;
S—11-deoxycortisol; 21-DF—21-deoxycortisol; B—corticosterone; E—cortisone; F—cortisol; E1—Estrone;
E2—Estradiol; E3—16-hydroxyestradiol; Aldo—Aldosterone; nM; nM = nanomolar, RME = relative mean
error; RSD = relative standard deviation.

Steroid LLOQ
(ng/mL)

LLOQ
(nM)

Intra-Assay
%RSD

Intra-
Assay%RME

Inter-Assay
%RSD

Inter-
Assay%RME

A4 0.500 1.75 3.5 13.2 3.4 3.1

T 0.050 0.17 5.7 12.3 4.7 1.4

DHEA 1.250 4.33 5.6 18.4 5.2 −2.5

DHT 0.125 0.43 10.5 4.8 9.7 6.2

P4 1.250 3.98 8.2 12.2 4.3 0.8

Preg 0.375 1.19 17.6 14.2 14.0 −3.1

17αOH-Preg 0.050 0.15 15.0 13.5 14.8 14.0

17αOH-P4 0.250 0.75 11.1 17.8 3.0 1.8

11-DOC 0.063 0.19 8.0 11.5 17.7 −13.7

A 0.125 0.38 7.6 16.5 6.5 6.2

S 0.125 0.36 5.4 10.3 8.4 4.6

21-DF 0.125 0.36 5.6 10.3 8.4 5.1

B 0.125 0.36 11.7 5.2 11.4 5.2

E 0.050 0.14 13.2 14.7 2.8 0.0

F 0.050 0.14 7.2 −14.4 8.6 −2.6

E1 0.063 0.23 4.8 10.2 19.2 −8.3

E2 0.125 0.46 4.9 9.3 8.6 2.8

E3 0.125 0.43 7.0 8.8 8.7 4.2

Aldo 0.063 0.17 4.0 10.5 18.4 −7.7
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3.2. Reference Intervals

A total of 125 participants (64 male (51.2%), mean age 66.90 years (standard deviation
(SD): 6.38) were included in the study, each providing four samples to give a total of
500 samples. Sample collection times were well aligned to the pre-specified protocol times
(see Table 4).

Table 4. Mean sample collection times compared to protocol times and mean difference.

Sample Time Point
Collection

Mean Collection Time
hh:mm:ss (SD)

Protocol Time
hh:mm:ss

Difference
hh:mm:ss

Time Point 1 08:18:01 (0.05) 08:00:00 00:18:01

Time Point 2 11:24:52 (0.05) 11:00:00 00:24:52

Time Point 3 15:28:37 (0.05) 15:00:00 00:28:37

Time Point 4 21:43:53 (0.12) 22:00:00 00:16:07

All 19 steroids were detected in at least one sample at each collection time point. This
ranged from being detected in most samples (cortisone (E), samples 1, n = 115/125 (92.0%))
to only exceptionally detected (21-deoxycortisol (21-DF), sample 2, n = 2/125 (1.6%)). The
95% confidence intervals are presented for all steroids at each time point by full cohort,
sex and disease status; however, those with a small sample size may be less representative
(see Table S1).

Considering glucocorticoids, there are clear diurnal patterns evident across the four
sampling time points for cortisone (E), cortisol (F), 11-dehydrocorticosterone (A) and 11-
deoxycortisol (S), with the reference intervals demonstrating a reduction in concentration
from sample one to sample four. These diurnal patterns were observed in both men and
women, as well as in healthy volunteers and participants with AD biomarkers. There were
insufficient numbers of samples where concentrations were detected for corticosterone (B)
and 21-deoxycortisol (21-DF) to determine diurnal changes in this steroid. There was a
diurnal pattern observed for testosterone (T) concentrations with a reduction across the
day. This decline was clearer in men than women, and in healthy volunteers compared
to those with AD biomarkers. In contrast, progesterone (P4) increased throughout the
day for both men and women, with more fluctuating patterns when the group was split
by disease biomarker status. Androstenedione (A4) initially decreased between samples
one and two before rising again for samples three and four. There was no clear diurnal
pattern seen for aldosterone (Aldo), dehydroepiandrosterone (DHEA), pregnenolone (Preg)
or 17α-hydroxyprogesterone (17αOH-P4).

There were insufficient samples with detectable concentrations to infer diurnal rhythm
patterns for 11-deoxycorticosterone (11-DOC), 17α-hydroxypregnenolone (17αOH-Preg)
and 5α-dihydrotestosterone (DHT). There was some detection of the estrogens (estrone
(E1), estradiol (E2) and 16-hydroxyestradiol (E3)); however, the sample size in which these
were detectable remains comparatively small. Estrogen concentrations were detected in 60
of the 125 participants, two of whom were taking exogenous E2 with E1 detected in sample
one and three for one participant, and E2 detected in sample four for the other participant.
The remaining 58 participants did not report taking estrogen-containing medications.

There were statistically significant differences between men and women for the fol-
lowing steroids: androstenedione (A4) time point 1 (~08:18) and time point 4 (~21:43) (men
had a higher median concentration than women); testosterone (T) time points 1–4 (~08:18;
11:24; 15:28; 21:43) (men had higher median concentrations than women); cortisone (E) time
point 3 (~15:28) (men had a higher median concentration than women); and aldosterone
(Aldo) time point 3 (~15:28) (women had a higher median concentration than men). One
steroid showed differences by disease status for one sample: dehydroepiandrosterone
(DHEA) time point 1 (~08:18) (healthy volunteers had a higher median concentration than
participants with AD biomarkers). See Table S2 for full details.
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4. Discussion

The LC-MS/MS method described in this study was assessed and found to be both
precise and accurate for the quantitation of 19 steroids in a volume of 200 µL human
saliva samples.

Glucocorticoids were generally well detected, with the exception of corticosterone (B).
Cortisone (E), cortisol (F) and 11-dehydrocorticosterone (A) all had a clear diurnal pattern
with 95% confidence interval ranges including the highest concentrations in the morning
with a gradual decline through the sampling period. Similar diurnal patterns were seen
when median values were compared by sex and disease biomarker status. These diurnal
patterns first reported by Weitzman, E.D. et al. (1971) [13] have been well documented
throughout the literature. Findings from this study further support the importance of being
able to collect multiple samples within a day to study diurnal rather than single time point
glucocorticoid concentrations in saliva. Alternatively, collecting samples at time points that
can be related to known reference intervals may be a more cost-effective option.

Cortisone (E) concentrations were notably higher than cortisol (F) concentrations at
each time point and in all subgroup analyses. As discussed in the introduction, cortisone
is found in higher concentrations in the saliva compared to cortisol, due to the increased
expression of the 11β-HSD2 enzyme in the salivary glands [23]. The detection of cortisone
and separation in the method from cortisol is clearly critical when analysing glucocorticoid
concentrations in saliva, and demonstrates the value of the LC-MS/MS method.

Salivary cortisol reference ranges have previously been published from the CIRCORT
dataset, combining data from 15 studies to give age and sex-stratified ranges across the
lifespan [39]. Comparing the reference ranges, there is typically a higher range at all time
points in the relevant age groups in the CIRCORT data analysis compared to this present
study. All studies contributing data to the CIRCORT dataset utilized immunoassays for
sample analysis, meaning the higher values reported in the reference ranges may reflect
interference from cortisone (E) and other steroids present in saliva. The cortisone (E) ref-
erence range and median values were lower in our study compared to results from the
CIRCORT study, although only 20% of the reference group fell in the age group recruited
in our study, meaning that this is likely to not be directly comparable [40]. Testosterone (T)
and androstenedione (A4) median concentrations and reference ranges were comparable
to previously published data [41–43]. Concentrations of dehydroepiandrosterone (DHEA)
are higher in this study compared to a previous study investigating the effect of age on
concentrations, although reference ranges were not calculated and so only the mean value
was used in that study to compare with calculated 95% confidence intervals [43]. Reference
ranges for progesterone (P4) and 17α-hydroxyprogesterone (17αOH-P4) corresponded to
previously published reference ranges for ages 18–74 (no details on how many participants
were in the same age range as this study) [44]. We were not able to identify published
reference ranges for the remaining steroids (corticosterone (B), 11-dehydrocorticosterone
(A), aldosterone (Aldo), 21-deoxycortisol (21-DF), 11-deoxycorticosterone (11-DOC), preg-
nenolone (Preg), 17α-hydroxypregnenolone (17αOH-Preg), 5α-dihydrotestosterone (DHT),
11-deoxycortisol (S), estrone (E1), estradiol (E2), 16-hydroxyestradiol (E3)) within the age
group of interest for this study, highlighting the novel value of this work.

Diurnal variation in sample concentrations was also noted in testosterone (T), 17α-
hydroxyprogesterone (17aOH-P4), dehydroepiandrosterone (DHEA), progesterone (P4)
and androstenedione (A4). This circadian variation is well described in the literature for all
four of these steroids, although studies do suggest a loss of this rhythm with increasing
age [45–47].

Previous studies have investigated further cyclical patterns of steroid hormones, for
example, in pre-menopausal women in relation to the menstrual cycle, finding consistent
changes in progesterone and estradiol levels throughout the cycle over the course of a
year [48]. The women included in the sample used in our study were post-menopausal,
with comparatively low-level concentrations of progesterone, estrone, estradiol and estriol
detected, and as such, this was not a consideration for this study but should be kept in mind
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for any future work including pre- or peri-menopausal women. Another important cycle to
consider is the seasonality of hormones. Whilst the majority of evidence for the seasonality
of hormones is from animal research [49,50], a growing number of studies have investigated
this in humans, finding evidence for seasonal changes in dehydroepiandrosterone, cortisol,
testosterone and estradiol [51–54]. Future work should investigate associations between sea-
sonal changes in steroids and disease, with seasonal affective disorder and rheumatological
conditions already being studied with regard to seasonal steroid variations [55,56].

There were few significant differences between the steroid hormone concentrations by
sex. The most notable difference was seen for testosterone (T) where all four samples across
the day were higher for men compared to women. This finding is in line with multiple
research studies [41,57,58]. The lack of consistent sex differences in steroid hormones where
we may expect to see them (e.g., dehydroepiandrosterone [47]) may be due to an overall
decrease in concentrations with age. Interestingly there was only one difference in salivary
steroid hormone concentrations by AD biomarker status (dehydroepiandrosterone). A
systematic review and meta-analysis including 31 studies found no differences in dehy-
droepiandrosterone concentrations between healthy controls and those with AD [59]. This
meta-analysis included participants with established AD dementia, which is later in the
disease process than the participants included in this study who had early AD but no
dementia, and this may explain the differences observed in our results. It is interesting that
there were no other differences in median concentration values between the healthy control
and participants with AD biomarkers for the remaining glucocorticoids or testosterone
in previous research findings [1,6,7,60–62], although it should be noted that these studies
have used blood and cerebrospinal fluid samples analysed by immunoassays rather than
salivary samples analysed using LC-MS/MS, and as such, may not be directly comparable.
The participants who provided samples for this project included those with AD biomarkers
but without overt symptoms of dementia, whereas the vast majority of studies to date have
investigated more established AD. It may be that at this early stage of the disease process,
there is not yet dysfunction in the hypothalamic pituitary adrenal (HPA) axis meaning
glucocorticoid concentration levels remain comparable to healthy volunteers.

Further work is needed to investigate associations between the salivary steroid hor-
mones and diseases of aging, as well as with other indicators of AD.

In conclusion, we developed an LC-MS/MS method for the simultaneous quantitation
of 19 steroids in saliva and determined reference ranges, across 125 participants, with a
mean age of 66.90 years, representing 74 healthy controls and 51 participants with AD
biomarkers. This method can be applied to saliva samples in both healthy and disease
clinical research studies to further interrogate and refine salivary steroid hormone reference
intervals across the lifespan.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13020265/s1, Figure S1: Electrospray ionisation product ion
mass spectra of protonated androgens, progestogens and corticoids prepared in 50% methanol at
10 ng/mL or less, through infusion at a flow rate of 2 mL/min into a QTrap 6500+ turbospray
electrospray ionisation source in positive mode, with a collision energy offset of 46V; Figure S2:
Electrospray ionisation product ion mass spectra of deprotonated estrogens and aldosterone prepared
in 50% methanol at 1 mg/mL or less, through infusion at a flow rate of 2 mL/min into a QTrap
6500+ turbospray electrospray ionisation source in negative mode, with a collision energy offset of
46V. Figure S3: Representative chromatogram of steroids measured by LC-MS/MS, with quantifier
parent-product ion transitions. Table S1: Confidence intervals (95%) of steroid hormones in full
cohort, by sex and by disease status; Table S2: Comparison of median values for steroids by sex and
disease status.
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