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Abstract: Bark beetles maintain symbiotic associations with a diversity of microbial organisms,
including ophiostomatoid fungi. Studies have frequently reported the role of ophiostomatoid fungi
in bark beetle biology, but how fungal symbionts interact with host chemical defenses over time
is needed. We first investigated how inoculations by three fungal symbionts of mountain pine
beetle affect the terpene chemistry of live lodgepole pine trees. We then conducted a complimentary
laboratory experiment specifically measuring the host metabolite degradation by fungi and collected
the fungal organic volatiles following inoculations with the same fungal species on lodgepole pine
logs. In both experiments, we analyzed the infected tissues for their terpene chemistry. Additionally,
we conducted an olfactometer assay to determine whether adult beetles respond to the volatile
organic chemicals emitted from each of the three fungal species. We found that all fungi upregulated
terpenes as early as two weeks after inoculations. Similarly, oxygenated monoterpene concentrations
also increased by several folds (only in logs). A large majority of beetles tested showed a strong
attraction to two fungal species, whereas the other fungus repelled the beetles. Together this study
shows that fungal symbionts can alter host defense chemistry, assist beetles in overcoming metabolite
toxicity, and provide possible chemical cues for bark beetle attraction.

Keywords: Dendroctonus ponderosae; diterpenes; Pinus contorta; Grosmannia clavigera; Leptographium
longiclavatum; monoterpenes; Ophiostoma montium; secondary metabolites; terpene detoxification

1. Introduction

Bark beetles (Coleoptera: Curculionidae, Scolytinae) are subcortical insects that primar-
ily feed on host tree phloem. These species play critical roles in maintaining the ecosystem
function, including nutrient cycling, by killing defensively compromised trees (stressed,
diseased, etc.). Host tree colonization starts with the release of aggregation pheromones by
the pioneering beetles that attract conspecifics after locating a potentially suitable host tree.
The aggregation pheromone is produced by bark beetles either de novo or using the host
chemicals as precursors. During host colonization, beetles also introduce their symbiotic
ophiostomatoid fungi into the host trees. All bark beetles are associated with several
species of fungi from the genera Ophiostoma, Ceratocystiopsis, Grosmannia, or Ceratocystis [1].
These fungal symbionts are critical components of successful host-tree colonization by bark
beetles [2–4]. After mating, female beetles excavate oviposition galleries and lay eggs. The
newly hatched larvae make their galleries where they feed on phloem tissues infected with
the fungal symbionts [5–7]. Due to their widespread associations [8–12], there is growing
literature on bark beetle-fungal interactions; however, fungal-host tree interactions have
received relatively less attention. In particular, how fungal infection alters the production
of host secondary metabolites over time and their role in assisting beetles in overcoming
metabolite toxicity require additional studies. Furthermore, ophiostomatoid fungi produce
a diversity of fungal volatile organic compounds or FVOC [13–16]. In a relatively few
species of bark beetles, the role of FVOCs in bark beetle attraction was reported [6,16–18].

Several species of bark beetles can also attack healthy trees once their populations
reach a certain threshold density [19–21]. Such attacks usually lead to landscape-level tree
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mortality. However, coniferous trees have developed sophisticated defenses against bark
beetles-fungi complexes that comprise physical, chemical, and histological mechanisms
that can be expressed both constitutively and induced. The main constitutive response is
located in the secondary phloem, which contains cells that act as mechanical barriers against
attacking beetles. In particular, the resin cells produce oleoresin that contains terpenes that
provide chemical protection against the bark beetle-fungal complexes [22]. At the induced
phase, attacks induce resinosis and additional traumatic resin duct formation, auto-necrosis,
and biosynthesis of structurally diverse terpenoids through the methylerythritol phosphate
pathway [23–25]. Oleoresins are toxic to both beetles and fungi and also physically entrap
invading bark beetles [26–29]. However, some monoterpenes are utilized by bark beetles
as precursors for pheromone production during host colonization [27,30,31]. For instance,
the Norway spruce beetle, Ips typographus, can oxidize host monoterpene α-pinene to
cis-verbenol, which is then used as an aggregation pheromone by the same beetles in
combination with fungal-produced volatile, 2-methyl-3-buten-2-ol [32,33].

The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) is an eruptive
native bark beetle species in western North America and has killed millions of pines, mainly
lodgepole pine (Pinus contorta Douglas), during the last outbreak [21]. Three main symbiotic
fungi associated with MPB include Grosmannia clavigera (Robinson-Jeffery and Davidson)
Zipfel, de Beer, and Wing, Ophiostoma montium (Rumford) von Arx, and Leptographium
longiclavatum Lee, Kim, and Breuril [34–36]. Toxic terpenes such as monoterpenes and
diterpene resin acids are produced in response to MPB attacks [29,37].

The interaction between fungi growing in beetle-colonized hosts and the host defense
chemistry may result in the production of metabolites that can be attractants to bark
beetles [16,38]. Determining whether fungi can emit bark beetle-attractive compounds
would promote our understanding of the sources of semiochemical (behavior modifying
specific compounds) landscape that bark beetles encounter during host-tree colonization.
Although several studies have shown the ability of symbiotic fungi to modify host defense
chemistry, the mechanism of how bark beetles surpass host defenses in the MPB-symbiotic
fungal complex is still not clear. Such understanding can help us to determine the symbiotic
fungi’s role in aiding beetles to overcome the host defenses. We hypothesize that symbiotic
fungi improve beetles’ successful host colonization (1) by modifying terpene defenses
of trees and (2) by attracting beetles towards fungal volatiles that may signal favorable
breeding-host substrates.

Several studies have investigated the role of FVOCs in fungus-tree, fungus-beetle,
and fungus-fungus interactions [13,16,17,39–43]. These studies have reported that (1) host
defense chemistry, mainly monoterpenes, can affect the production of FVOCs; (2) different
fungal species have similar FVOC profiles, but the abundance of specific compounds
varied by the fungal species; (3) competition among different species of fungi can affect
both composition and concentration of FVOCs; (4) fungi can produce volatile compounds
that can be attractive or inhibitive to bark beetles; (5) some symbiotic fungi are capable
of transforming the primary MPB aggregation pheromone trans-verbenol into its anti-
aggregation verbenone; (6) tree chemical defenses affect host suitability to bark beetles
through influencing their fungal symbionts; and (7) different species of fungal symbionts
respond differently to host defense metabolites.

Our research objectives are (1) to investigate the host terpene detoxification by MPBs’
fungal symbionts [38,44,45]; (2) to determine the benefits of maintaining multiple species of
fungal symbionts to MPBs; (3) to test whether MPB elicits behavioral responses to FVOCs
produced its fungal symbionts. Here, we inoculated the mature lodgepole pine trees in
a forest stand with three fungal species (G. clavigera, L. longiclavatum, and O. montium) of
MPB. To complement this field study, we inoculated the same fungal species on lodgepole
pine logs in the laboratory. While live trees allow us to measure the time-specific interac-
tion between trees and fungi, the log experiment allows measuring the host metabolites
degradation process driven by the fungi. By collecting and analyzing the fungal-infected
phloem samples, we identified and quantified the terpenes (monoterpenes, sesquiterpenes,
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and diterpenes) and the FVOC profile of each fungus. We then conducted an olfactometer
assay to determine whether MPB is attracted to FVOCs associated with its symbiotic fungi
through olfaction.

2. Methods
2.1. Field Phloem Sample Collection

We carried out a field experiment in lodgepole pine forests to characterize how differ-
ent species of fungal symbionts of MPB alter the terpene chemistry of host phloem over
time. We selected 10 healthy (asymptomatic) lodgepole pine trees (DBH = 25.05 ± 0.78 cm)
at 22 km North-East of Hinton (Alberta; 53◦30′50.7” N 117◦17′31.2” W). On each tree, we
open four holes 20 mm in size in four cardinal directions equidistant from each other at
breast height (1.40 cm) along the tree stem. We placed 1 2 cm-sized plug of fungal mycelium
(one of three fungal species) on each hole and 1 agar plug without fungal mycelium as
control. The fungal plugs were taken from the edges of 10-day-old fungal cultures on
potato dextrose agar media. Then, the wounds were covered with saran wraps. Phloem
samples (from the fungal-infected and immediate upper part of the initial inoculation
point, at different locations along the tree stems, i.e., 5–6 cm above the earlier sample) were
collected after every 2 weeks for a total of 6 weeks, stored in dry ice in the field, brought
to the laboratory, and stored at −40 ◦C until analysis. The tissues were processed and
extracted based on the method described earlier [46]. The following fungi were used in
this experiment; G. clavigera (EL004), O. montium (EL 031), and L. longiclavatum (EL002).
Fungal cultures were obtained from different sources: G. clavigera was originally isolated
from MPB in Fox Creek (Alberta) and provided by AV Rice (Northern Forestry Centre,
Canadian Forest Service, Edmonton, Alberta), L. longiclavatum (NOF 3100) was provided
by the Northern Forestry Centre Culture Collection, and O. montium (UAMH 4838) was
provided by the University of Alberta Microfungus Collection and Herbarium (Edmonton).

2.2. Laboratory Experiment

The preliminary results from the above field study showed the highest induced terpene
production in the phloem occurred at week 2; hence we further conducted a complementary
laboratory experiment using logs of lodgepole pine trees. This study enabled us to better
understand the host metabolite degradation process by fungi as well as to collect FVOCs. A
total of 10 logs (21 × 30 cm: diameter × height) were selected. A 10 mm-sized plug of three
fungi (as mentioned above) and 1 control (agar without fungal mycelium) were randomly
inoculated on four cardinal directions of each log. Phloem samples were collected on day
zero, during fungal inoculations, and 14 days post-inoculation and stored at −40 ◦C until
analysis. After 14 days, fungal growth margins were traced, photographed, and used to
quantify the culture area using ImageJ software version Java 1.8.0-172 (National Institutes
of Health, Bethesda, MD, USA) [47].

Headspace volatiles from fungal-infected phloem samples were collected according
to the method described in Cale et al. (2016) [13]. Briefly, infected tissues excised from
logs were placed into a volatile collection chamber consisting of a 473 mL glass jar with
Teflon tape on its threading and fitted with a metal cap. The jar was attached with a
vacuum/pressure pump (Cole-Parmer Canada Inc., Montreal, QC, Canada). Constant
airflow through chamber lines was set to 450 mL min−1 using a flowmeter. A Teflon
tube filled with activated carbon (450 mg; 6–14 mesh, Fisher Sci., Hampton, NH, USA)
fixed in place with glass wool was used to collect headspace volatiles from the jar for
6 h, after which time the carbon-filled tubes were removed from the collection apparatus
Volatiles were extracted by adding the activated carbon to a microtube containing 1 mL
of dichloromethane with tridecane as the internal standard (0.002%). This mixture was
vortexed for 30 s, sonicated for 10 min, and centrifuged (at 18,213× g) for 30 min before the
extract was collected and transferred to a 2 mL glass gas chromatography (GC) vial. This
procedure was repeated a second time [14].
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Phloem samples were processed as above and stored at −40 ◦C until further analy-
sis [46].

2.3. Chemical Analysis

All extracts were analyzed using a GC fitted with a DB-5MS UI column (30 m × 0.25 mm
ID × 0.25 µm film, product: 122-5532UI; Agilent Tech., Santa Clara, CA, USA) and coupled
to a mass spectrometer (GC-MS; GC: 7890A, MS: 5062C, Agilent Tech.). Helium was used
as a carrier gas flowing at 1 mL min−1 with a temperature program beginning at 45–50 ◦C
(held for 2 min), followed by an increase of 3 ◦C min−1 to 70 ◦C, then 5 ◦C min−1 to 130 ◦C,
after that 12 ◦C min−1 to 170 ◦C, and finally the column temperature was brought to 300 ◦C
(held 2 min) at a rate of 30 ◦C min−1. A 1 µL sample injection volume was used; the
injector temperature was 250 ◦C, and samples were run in splitless mode. The Sim and Scan
acquisition mode was conducted simultaneously; while Sim mode allows us to acquire
low traces of VOC and terpene compounds, Scan mode is performed for identification
purposes. The NIST 2017 Mass Spectral library version 2.3 was used for the verification
of all compounds. All compounds were quantified based on the following standards
availability: Monoterpenes: limonene (Chem Purity: >99%, racemic mixture), β-pinene
(CP: >99%, RM), β-myrcene (CP: 90%), α-pinene (CP: 98%, RM), β-phellandrene (CP: 96%,
RM), α-phellandrene (CP: 95%), p-cymene (CP: >99%), terpinolene (CP: 90%), 3-carene
(CP: 98.5%, RM), camphene (CP: 90%, RM), α-terpinene (CP: 85%), γ-terpinene (CP: 97%),
ocimene (CP: 90%), Oxygenated monoterpenes: (-)-borneol (>99%), camphor (CP: 95%), α-
terpineol (CP: 90%, RM), linalool (CP: 97%), cis-grandisol (CP: >95%), verbenone (CP: >99%),
Phenylpropenes: 4-allylanisole (CP: 98.5%), Sesquiterpenes: (+) aromadendrene (CP: 97%),
caryophyllene oxide (CP: 95%), β-caryophyllene (CP: 80%), Aliphatics/others: iso-butanol
(CP: >99%), phenethyl alcohol (CP: >99%), 2-methyl-1-butanol (CP: >99%), phenethyl
acetate (CP: >98%), 3-methyl-1-butanol (CP: >98%), iso-amyl acetate (CP: >97%), acetoin
(CP: >96%),. All standards were obtained from Sigma-Aldrich (Oakville, ON, Canada),
except β-phellandrene from TRC Canada (Toronto, ON, Canada). For the quantitation of
some sesquiterpene compounds, due to their unavailability in the market, we used some
of the above-mentioned standards to quantify based on hydrocarbon groups along with
unique ion masses.

2.4. Two-Choice Olfactometer Test

We prepared a plant-based media as described earlier [16,38]: 7% lodgepole pine
phloem powder and 4% bactoagar were mixed in 100 mL of distilled water. The powder
supplemented fungal growth on the agar and made the diet palatable for adult MPBs.
All three symbiotic fungi were grown on the media for 5 days. We developed a novel
olfactometer setup that contained a 55 mm round Petri dish connected with 2 × 10 cm
polyvinyl chloride tubes from opposite sides. The two tubes were further distally connected
with two 15 mL falcon tubes (attached through the lid). The petri dish and the tubes were
masked with vinyl electrical tape to make the experimental environment dark. As MPBs
are positively phototactic insects, the whole setup was placed under a light source that was
visible to beetles through the falcon tubes. A 6 mm fungal plug was placed inside either
of the 2 falcon tubes. A media plug without fungus was inserted inside the other falcon
tube that served as a control. A single adult female beetle was placed inside the Petri dish,
and after 20 min, the beetle choice was recorded. Thus, a total of 20 beetles were tested
for each fungal treatment. A beetle that did not respond to either treatment after 20 min
was discarded from the experiment and replaced with another beetle. We used beetles that
emerged from our mountain pine beetle colony in our bioassays; these beetles are reared
on lodgepole pine logs.
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2.5. Statistical Analysis

Data from fungal growth were transformed to Ln (Y) of original values to assure
normality (Kolmogorov–Smirnov test). Then, Welch’s ANOVA test was done in Graph-
Pad Prism version 9.0.0 for Windows (GraphPad Software, San Diego, CA, USA, www.
graphpad.com, accessed on 15 July 2022). Dunnett’s T3 multiple comparison test was done
to compare the means between different treatments (p < 0.05).

The final data matrices of chemical concentration from the field and laboratory studies
were imported into the metabolomics data analysis platform Metaboanalyst 5.0 for data
exploration, visualization, and multivariate statistical analysis (http://www.metaboanalyst.
ca, accessed on 1 September 2022) [48]. Missing inputs were replaced by values calculated
as half of the minimum positive values in the original data. The data were log2 transformed
and auto-scaled to obtain a normal distribution.

The field study data were used for repeated measure analysis in live trees and were
processed using the “Time-Series/One-factor” option. Principle component analysis (PCA)
was applied to inspect the variation with averages of ten replicates from each treatment
and each week. PERMANOVA test was performed to ascertain significant differences
among different weeks, different treatment samples, and interaction between week and
treatment, followed by Tukey’s multiple comparison test. Two-way repeated measure
ANOVA, ANOVA-Simultaneous Component Analysis (ASCA) and multivariate empirical
Bayes (MEBA) time-series analysis were performed to determine potential biomarkers that
significantly regulated the host tree-fungal interaction.

To understand the dimensionality of the overall terpene chemical profile from the
laboratory inoculations, we subjected the whole compound concentration dataset to Non-
Metric Multidimensional Scaling (NMDS) indirect gradient analysis. PERMANOVA test
was performed to ascertain the significant impact of treatments on terpene chemistry.
Then for each fungal treatment, we performed fold change analysis coupled with 1-way
ANOVA to estimate the individual compounds that showed at least 2-fold upregulation
or downregulation compared to the control treatment. After that, multiple comparisons
between different treatments for the specific compound were done by Fisher’s protected
least significant difference (LSD). Correlations between fungal treatments and VOCs were
calculated with the parametric test Pearson’s correlation.

Data from the 2-choice olfactometer assay were subjected to a 2-sample t-test. Sig-
nificant differences were determined at p < 0.01. All the data were tested for normality
assumption and homogeneity of variance before performing the statistical tests.

3. Results
3.1. Metabolic Profiles of Live P. contorta Trees Inoculated with Symbiotic Fungi

We quantified 20 metabolites: monoterpenes (β-phellandrene, β-ocimene, 3-carene, ter-
pinolene, limonene, β-pinene, camphene, β-myrcene, bornyl acetate, α-pinene, p-cymene,
and geranyl acetate), sesquiterpenes (germacrene-d-4-ol, β-caryophyllene), diterpene (epi-
13-manool), and oxygenated monoterpenes (α-terpineol, γ-terpinene, terpinen-4-ol, bor-
neol, camphor). The metabolic profile of trees over 6 weeks was visualized by a heat map
using the actual concentration of metabolites. The heat map provided interesting find-
ings, including (1) inoculations with all fungal symbionts led to the induction of all of the
host monoterpenes, relative to the control treatment; (2) the highest metabolite induction
occurred at week 2 and thereafter, the concentrations decreased; (3) the concentrations
of oxygenated monoterpenes increased by several folds following fungal inoculations
compared to the control at weeks 2 and 4 (Figure 1; Tables S2–S5).

www.graphpad.com
www.graphpad.com
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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PCA 1 and 2 explained a total of 71% variance in the metabolite concentrations (Figure 2). 
While concentrations in control and fungal treatments at week 0 clustered closely, treat-
ment clusters separated away from each other by weeks 2–6. Furthermore, the PER-
MANOVA test revealed significant differences in the metabolite concentrations over time 
(R2 = 0.33, F3 = 28.41, p = 0.001). Treatment and treatment x time interaction were also sig-
nificant (F3 = 4.66, R2 = 0.05, p = 0.001 and F9 = 1.48, R2 = 0.05; p = 0.04 respectively; Figure 2). 

Figure 1. Combination of the heat map and hierarchical cluster analysis of the secondary metabolites
in Pinus contorta phloem (treatment and control groups) during the period of weeks 0to 6 (n = 10).
The color gradient panel on the right represents the highest to lowest concentrations from the darkest
red to the darkest blue, respectively. Legends for time factor denoted by W0 = week 0, W2 = week 2,
W4 = week 4 and W6 = week 6. Here, the distance was measured by the Euclidean method and
clusters were prepared by the Ward clustering algorithm method.

We performed PCA combined with PERMANOVA to investigate the effects of different
explanatory variables on the changes in metabolite concentrations over time. The PCA 1
and 2 explained a total of 71% variance in the metabolite concentrations (Figure 2). While
concentrations in control and fungal treatments at week 0 clustered closely, treatment
clusters separated away from each other by weeks 2–6. Furthermore, the PERMANOVA
test revealed significant differences in the metabolite concentrations over time (R2 = 0.33,
F3 = 28.41, p = 0.001). Treatment and treatment x time interaction were also significant
(F3 = 4.66, R2 = 0.05, p = 0.001 and F9 = 1.48, R2 = 0.05; p = 0.04 respectively; Figure 2).

We also conducted two-way repeated measure ANOVA (within subjects) to analyze
which factors (time, treatment, and their interaction) caused differences among metabolites.
Out of 20 metabolites, the concentrations of 5, 17, and 8 metabolites were affected by
treatments, time, and their interaction, respectively (Table 1).
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Figure 2. Principal component analysis of secondary metabolites of Pinus contorta inoculated with
the three fungal symbionts of Dendroctonus ponderosae. C = control, GC = Grosmannia clavigera,
LL = Leptographium longiclavatum, OM = Ophiostoma montium. The clusters of different treatments
were denoted with different colors and 95% confidence interval eclipses. Significant differences
among treatments were determined by PERMANOVA.

Table 1. Metabolite profile of Pinus contorta phloem inoculated with the fungal symbionts of Dendroc-
tonus ponderosae. Biomarkers are selected based on statistical significance in two-way ANOVA and
well-modeled with Hotelling’s T2 value > 10.

Treatment Time Interaction Hotelling-T2

Metabolites F p* pˆ F p* pˆ F p* pˆ G Ll Om

β-Myrcene 6.333 0.001 0.026 80.864 1.69 × 10−27 3.39 × 10−26 6.085 6.93 × 10−7 1.39 × 10−5 27.102 17.5 15.052
β-Pinene 5.311 0.004 0.026 43.314 1.86 × 10−18 5.31 × 10−18 4.387 6.72 × 10−5 0.001 23.415 21.095 13.926

Camphene 5.077 0.005 0.026 71.673 1.39 × 10−25 1.39 × 10−24 4.9301 1.52 × 10−5 0.000 8.676 5.779 5.2164
β-Phellandrene 5.043 0.005 0.026 30.098 3.20 × 10−14 6.41 × 10−14 2.994 0.003 0.010 61.257 25.006 44.444
γ-Terpinene 3.172 0.036 0.143 57.656 2.49 × 10−22 1.14 × 10−21 3.653 0.001 0.003 1.309 0.8404 0.616

3-Carene 2.831 0.052 0.173 57.416 2.86 × 10−22 1.14 × 10−21 3.348 0.001 0.005 23.153 18.273 13.56
Terpinolene 2.654 0.063 0.181 49.326 3.69 × 10−20 1.23 × 10−19 2.975 0.003 0.010 16.078 11.555 9.421

Terpinen-4-ol 2.083 0.120 0.299 34.55 9.82 × 10−16 2.46 × 10−15 2.196 0.028 0.055 0.039 0.025 0.019
Limonene 1.924 0.143 0.318 22.144 2.99 × 10−11 5.43 × 10−11 2.533 0.011 0.025 10.265 8.910 9.106

Borneol 1.769 0.171 0.341 34.235 1.25 × 10−15 2.77 × 10−15 2.675 0.008 0.019 0.014 0.014 0.009
p-Cymene 1.349 0.274 0.456 68.208 8.04 × 10−25 5.36 × 10−24 1.217 0.292 0.450 0.021 0.103 0.021
α-Pinene 1.206 0.321 0.494 15.264 2.39 × 10−8 3.67 × 10−8 1.842 0.069 0.125 11.495 8.122 4.828

α-Terpineol 1.036 0.388 0.537 18.548 8.90 × 10−10 1.48 × 10−9 1.040 0.413 0.551 0.180 0.078 0.063
Camphor 0.959 0.423 0.537 14.371 6.05 × 10−8 8.64 × 10−8 1.130 0.348 0.498 0.001 0.001 0.001

epi-13-Manool 0.944 0.430 0.537 3.202 0.026 0.031 1.359 0.221 0.368 3.295 4.982 1.629
Germacrene-D-4-ol 0.284 0.837 0.877 5.457 0.002 0.002 0.581 0.811 0.897 3.313 1.627 1.228

Bornyl acetate 0.227 0.877 0.877 4.914 0.003 0.004 0.528 0.852 0.897 1.369 1.187 0.709

p*: raw p-value; pˆ: adjusted p-value; Gc: Grosmannia clavigera, Ll: Leptographium longiclavatum,
Om: Ophiostoma montium.
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Furthermore, we performed ASCA to ascertain the trends associated with different
treatments, time, and their interactions [49]. The score plot for the time factor with compo-
nent 1 (98.07% of variation explained) of the corresponding model showed a decrease in
scores from week 0 to week 2, then increased at weeks 4 and 6 (Figure 3a). The score plot for
the treatment factor showed that treatment types differed in their PC1 scores; the control
treatment score was higher than those of fungal treatments, with L. longiclavatum having
the lowest score (Figure 3b). The interaction effect score plot exhibited clear opposite trends
at week 2 between treatments and control (Figure 3c). To correlate metabolic features
with explanatory variables, we further constructed Leverage/squared prediction error
(SPE) plots. Leverage assesses the importance of metabolites to the model, and SPE tests
the model’s fitness for a particular metabolite. Well-modeled metabolites were selected
based on high-leverage SPEs that contribute significantly to the model. The dots in the
red area of Figure 3e correspond to β-myrcene, β-pinene while the dot in Figure 3f shows
β-phellandrene. We then further conducted multivariate empirical Bayes (MEBA) time-
series analysis to specify metabolic biomarkers that significantly (Hotelling T2 value > 10)
shifted in comparison to the control (Table 1). Analyzing both models, four metabolites
were selected out of 20, which were considered potential biomarkers (β-phellandrene,
β-myrcene, β-pinene, and 3-carene; Table 1, Figure 4).
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Figure 3. ANOVA-simultaneous component analysis (ASCA) of the induced secondary metabo-
lites of Pinus contorta phloem following fungal inoculations of trees from weeks 0 to 6. (a–c) Major
pattern related to time, treatments, and interaction between them; (d–f) important variables (metabo-
lites) selected by ASCA related to time, treatments and their interaction respectively calculated by
leverage/SPE analysis.
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Figure 4. Multivariate empirical Bayes time-series analysis of Pinus contorta metabolites following
inoculations by the fungal symbionts of Dendroctonus ponderosae selected based on two-way ANOVA,
well-modeled by SPE and Hotelling’s T2 value > 10. Here, C = control; GC = Grosmannia clavigera;
LL = Leptographium longiclavatum; OM = Ophiostoma montium.

3.2. Kinetic Metabolic Pattern of Potential Biomarkers Following Fungal Infection

Following two-way ANOVA and ASCA, the four metabolites that were affected
by either time or treatments or their interactions were further analyzed by MEBA to
see the kinetic pattern change over time. Week 2 was the critical time point when the
abundance of all four metabolites increased sharply (Figure 4). By weeks 4 and 6, the
abundance of metabolites decreased gradually. In response to all three fungal inoculations,
the abundance of β-phellandrene was increased up to four-fold at week 2 compared to the
control (Hotelling’s T value > 20; F = 30.10, p < 0.05; Table 1, Figure 4). The abundance
of β-myrcene in all fungal treatments significantly increased up to five-fold by week 2
compared to the control (time: F = 80.86, p < 0.001; treatment: F = 6.33, p < 0.05). Similarly,
3-carene was also significantly upregulated up to two-fold by week 2 compared to the
control in all three fungal treatments (time: F = 57.41, p <0.001). The abundance of β-pinene
was affected by both time and treatment (time: F = 43.31, p < 0.001; treatment: F = 5.31,
p < 0.05; Figure 4, Table 1).

3.3. Effect of Fungal Inoculations on Chemotypic Traits of P. contorta Logs

We performed NMDS on the metabolites collected from infected and non-infected
phloem tissues of logs. The analysis was combined with the PERMANOVA test to fur-
ther investigate the significance of treatment effects. We found that fungal inoculations
significantly altered the metabolite concentrations (F = 4.66, p < 0.05; Figure 5). The total
monoterpene and the total oxygenated monoterpene concentrations were correlated with
both G. clavigera and L. longiclavatum, whereas the total sesquiterpene concentration was cor-
related with L. longiclavatum. Phenylpropenes such as methyl eugenol and allylanisole-4-ol
were correlated with L. longiclavatum (Figure 5).
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Figure 5. Effects of the inoculations by the fungal symbionts of Dendroctonus ponderosae on the terpene
concentration of Pinus contorta phloem (logs). Individual terpene concentrations (ng mg−1 DW) were
used in the analysis. Data were analyzed using NMDS gradient analysis. Treatments, monoterpenes,
oxygenated monoterpenes, sesquiterpenes, and phenylpropanes were represented in violet, blue,
black, green, and red, respectively (all red vectors). Significant differences between treatments were
determined by PERMANOVA at p < 0.05. T_MT = Total Monoterpenes (blue vector), T_OxMT = Total
Oxygenated Monoterpenes (black vector), T_sesq = Total Sesquiterpenes (green vector).

Symbiotic fungi also differed in their virulence (F3, 14.24 = 135.50). Overall, G. clavigera in-
duced the largest lesion (total fungal infected area on phloem) area compared to L. longiclavatum
(p < 0.001), O. montium (p < 0.001), and control (p < 0.001) treatments. Both L. longiclavatum
and O. montium had similar lesion areas (p > 0.99) while larger than the control (p < 0.001;
Figure 6a–d). In pre-fungal inoculation samples, we detected a total of 23 compounds:
α-pinene, camphene, β-myrcene, 3-carene, limonene, α-terpinene, p-cymene, γ-terpinene,
terpinolene, linalool, β-phellandrene, α-phellandrene, β-pinene, α-terpineol, bornyl acetate,
aromadendrene, allylanisole-4-ol, germacrene-d-4-ol, δ-cadinol, γ-cadinene, α-muurolene,
guaia-6,9-diene, δ-cadinene. In 14 days post fungal inoculated samples, we detected addi-
tional 24 compounds that were not detected constitutively: tricyclene, borneol, camphor,
terpen-4-ol, methyl eugenol, caryophyllene, α-bergamotene, β-elemene, citronellol acetate,
acetoin, grandisol, isobutanol, phenethyl alcohol, verbenone, 3-methyl-1-butanol, 2-methyl-
1-butanol, 2-methyl-2-butanol, 2,4-dimethyl-1-heptene, 4-methyl-octane, 4-methylheptane,
1-butanol, 3-methyl-2-butanone, 2-ethyl-1-butanol, 3,4-dimethoxyphenol (Table S1).
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Figure 6. Upregulation of oxygenated monoterpenes in Pinus contorta phloem following inoculations
by the fungal symbionts of Dendroctonus ponderosae. (a–c) Volcano plots show the fold change analysis
of oxygenated monoterpenes combined with t-test (a) Leptographium longiclavatum, (b) Grosmannia
clavigera, (c) Ophiostoma montium (Fold change analysis in X-axis, T-test in Y-axis; p < 0.05), (d) compar-
ison of symbiotic fungal growth on the phloem, (e–g) upregulation of oxygenated monoterpenes such
as (e) α-terpineol, (f) borneol, and (g) terpinen-4-ol by fungal infection (One-way ANOVA; followed
Fisher’s LSD; p < 0.05), (f) proportional increment of borneol to bornyl acetate in the phloem tissues
inoculated with symbiotic fungi compared to control after 14 days (One-way ANOVA followed by
Fisher’s LSD test at p < 0.05). Significant differences (d–g) between different treatments are denoted
by small letters.

3.4. Symbiotic Fungi Influence the Proportion of Oxygenated Monoterpenes

To investigate whether the fungal inoculations can alter the concentration of oxy-
genated monoterpenes, we conducted a fold change analysis combined with a parametric
t-test. Interestingly, all three fungi significantly upregulated borneol at least two-fold com-
pared to the control (Figure 6a–c). Leptographium longiclavatum significantly upregulated
α-terpineol up to four-fold (FC = 4.78, p < 0.001), and G. clavigera was upregulated two-fold
(FC = 2.16, p < 0.05) relative to the control. Both G. clavigera and L. longiclavatum signifi-
cantly increased the concentration of terpinen-4-ol compared to the control and O. montium
(FC = 2.53 and 6.77, respectively; p < 0.05).

Logs inoculated with all three fungi caused a stronger proportional increment of
borneol to bornyl acetate compared with the control, corresponding to an over three-fold
increase (Figure 6f). Moreover, in the log experiment, we detected bornyl acetate at day 0
only before the fungal inoculations but not borneol and camphor, which were only detected
on day 14 post-inoculation. In addition, there was a positive correlation between fungi-
induced lesions and borneol (R2 = 0.5253, Spearman’s correlation, p < 0.001). Altogether,
the oxygenated monoterpene concentration increased several folds post-fungal treatments
(Figure S1).

3.5. Mountain Pine Beetles Were Attracted to Their Symbiotic Fungi

Two-choice olfactometer assay revealed significant results between control and fungal
symbionts (Figure 7). Here, G. clavigera and O. montium responded similarly and attracted
80% of tested beetles as compared to the control (p < 0.01). In contrast, L. longiclavatum
only attracted 25% of the tested beetle as compared to the control, while the remaining 75%
showed attraction towards the control treatment (p < 0.01). Interestingly, concentrations of
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most of the FVOCs were comparatively higher in L. longiclavatum (Figure 8). The FVOC
identified were as follows acetoin, grandisol, isobutanol, phenethyl alcohol, verbenone,
3-methyl-1-butanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 2,4-dimethyl-1-heptene, 4-
methyl-octane, 4-methylheptane, 1-butanol, 3-methyl-2-butanone, 2-ethyl-1-butanol, and
3,4-dimethoxyphenol (Figure 8, Table S1).
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Figure 7. Behavioral responses of female Dendroctonus ponderosae to different fungal symbionts:
(a) Experimental setup (described in methods). (b) The right bar graph shows beetle responses
to fungal treatments, and the left bar graph shows beetle responses to controls. p-values show a
significant difference at the 0.05 level by conducting a two-sample t-test. Here, LL = Leptographium
longiclavatum, GC = Grosmannia clavigera, OM = Ophiostoma montium.
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Figure 8. Heat map analysis, combined with hierarchical cluster analysis (HCA) of the fungal
volatile organic compounds in Pinus contorta phloem (treatment and control groups) after 14 days
(n = 10). The color gradient panel on the right represents metabolic abundance from the darkest red
(high) to the darkest blue (low). Legends for treatment factor denoted by GC = Grosmannia clavigera,
LL = Leptographium longiclavatum, OM = Ophiostoma montium. Here, the distance was measured by
the Euclidean method and clusters were prepared by the Ward clustering algorithm method.
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4. Discussion

We clearly show that MPB fungal symbionts can upregulate tree terpene defenses
both in mature trees and logs and modify host monoterpenes to oxygenated derivatives in
logs. Time seems to be a crucial factor in tree-induced responses, as the highest induction
occurred two weeks after inoculations over the six-week duration of the experiment. Fur-
thermore, the three fungal symbionts differed in their virulence as evidenced by differences
in lesion lengths, the conversion efficiency of monoterpenes to oxygenated monoterpenes,
and attraction to MPB via FVOCs. Together, these results demonstrate that MPB fungal
symbionts play crucial roles during host colonization by bark beetles, including assisting
beetles in the alteration of host tree defenses and likely increasing beetle attraction via the
production of oxygenated monoterpenes and FVOCs [1,45,50]. Furthermore, both field and
laboratory experiments provide complementary information that cannot be achieved by
either alone.

4.1. Several Monoterpene Biomarkers Are Associated with Tree Responses to Fungal Inoculations

We show that low-density fungal inoculations can upregulate defense metabolites
of lodgepole pine trees as fast as two weeks following inoculations, in agreement with
earlier investigations in this [51–53] and other [54–56] study systems. However, not all
terpenes were similarly upregulated as the concentrations of some of the monoterpenes
and diterpenes were increased, while concentrations of all sesquiterpenes identified re-
mained similar over the period of 6 weeks. Among monoterpenes, concentrations of
β-phellandrene, β-myrcene, β-pinene, and 3-carene were several folds greater in the fungal
inoculated trees, relative to the control, parallel to the results of other studies [29,57]. Some
of these monoterpenes are reported to be highly toxic to MPB [58], supporting their impor-
tance in tree resistance. Among diterpenes, we found upregulation of 13-epi-manool which
can suppress the reproduction and growth of fungal pathogens [59]. This is the first report
of this labdane diterpenoid in response to the fungal inoculations in lodgepole pine. These
results suggest that β-phellandrene, β-myrcene, β-pinene, 3-carene, and 13-epi-manool can
be potential biomarkers and important components of the host chemical defenses against
the fungal infection.

4.2. Conversion of Monoterpenes to Oxygenated Derivatives Appears to Be a Common Strategy to
Reduce the Toxicity among Bark Beetle

Conifer monoterpenes are toxic to several species of bark beetles, including
MPB [58,60–65], and their conversion to oxygenated derivatives may lessen their toxicity.
For example, α-pinene and myrcene were reported to be more toxic than their oxygenated
derivatives, bornyl acetate and linalool, respectively, to bark beetles [58,60,66]. Therefore,
the conversion of monoterpenes to their less toxic oxygenated derivatives by fungal sym-
bionts could reduce the extent of monoterpene toxicity to MPB. Earlier studies reported a
similar detoxification mechanism by fungal symbionts of several bark beetle species [10,44].
Auto-oxidation of monoterpenes can also occur as the resin encounter air; however, in this
study, we found the concentrations of several oxygenated monoterpenes such as borneol
and terpinene-4-ol were multiple folds higher in the fungal treated tissues compared to
the control, suggesting the possible role of fungi in the detoxification process. In support
of this, Wang et al. [11] reported that G. clavigera contains genes encoding cytochromes
P450 and several other oxidative enzymes that can degrade and utilize monoterpenes, such
as limonene. Interestingly, some of the oxygenated monoterpenes, such as borneol, were
reported to elicit attraction in MPB [17].

4.3. Fungal-Produced Volatile Organic Compounds Serve as Attractant Cues for Beetles

Fungal symbionts of bark beetles are reported de novo synthesis of VOCs that act as
attractants for several species of bark beetles [13,15,16]. Here, we demonstrated a close-
range attraction of MPBs to VOCs of their fungal symbionts. Among them, phenethyl
alcohol was reported as an attractant for MPB in field tests [17]. These results complement
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the vast literature on the attractiveness of FVOCs in other bark beetle species [39,67–69].
For instance, the fungal volatiles 2-phenylethyl acetate and 3-methyl-1-butyl acetate in-
creased the attraction of D. frontalis to its pheromone blend [70]. Similarly, I. typographus
utilizes the fungal volatile 2-methyl-3-buten-2-ol as aggregation pheromone [16,30]; other
FVOCs released from the same fungal symbionts improved the attraction of I. typographus
to its pheromone [18,38]. Furthermore, the walnut twig beetle, Pityophthorus juglandis,
was attracted to the FVOCs produced by its primary bark fungi [71]. In the current study,
we did not detect all FVOCs reported in our earlier studies [13,14,40], probably due to
differences in the timing of volatile collection between studies. Nevertheless, our olfac-
tometer experiment reveals that MPB can recognize their fungal symbionts by detecting
their FVOCs. Interestingly, not all three fungal species tested were attractive to MPB, as
80% of adult MPB tested were attracted to G. clavigera and O. montium, but only 25% of
beetles were attracted to L. longiclavatum. Such differences in attraction may be attributed
to the greater abundance of most of the FVOCs associated with L. longiclavatum relative to
those of G. clavigera and O. montium.

5. Conclusions

We demonstrate that fungal symbionts of MPB can upregulate host tree defense
metabolites and convert monoterpenes to oxygenated derivatives. Through this mechanism,
fungi can help beetles to exhaust and deplete terpene defenses, enabling beetles to overcome
host resistance and making host substrates suitable for larval growth [51]. Maintaining
multiple symbionts provides the beetles with a variety of benefits, including nutritional
supplementation, protection and many other complementary benefits. We further propose
that de novo synthesized FVOCs volatiles and oxygenated monoterpenes may improve
the attraction of bark beetles to trees during host colonization. However, FVOCs and
oxygenated monoterpenes can be attractive or repellent to beetles depending on their
specific concentrations. Whether FVOCs elicit behavioral responses in bark beetles should
be verified in the field experiment. Nevertheless, FVOCs and oxygenated monoterpenes
can be potential components in integrated pest management strategies to control the bark
beetle population [15,18,71]. The potential tree resistance biomarkers we have identified
in our study can be used in tree breeding through genomic approaches to generate more
resistant trees to beetle-fungal attack.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13020239/s1. Figure S1: Pie chart representing the chemical
composition of Pinus contorta phloem (cut logs) before and after 14 days of fungal inoculation.
Table S1: Emission of volatile organic compounds identified from the headspace collection of fresh
pine bark, fourteen days after inoculation with different fungi. Analyses were conducted using
GC-MS. Table S2: Relative amounts (mean ± SE, n = 10) of volatiles from uninfected bark detected
after various time periods (0, 14, 28 and 42 days) from the beginning of an experiment. Data from
the control uninfected treatment are presented here. Table S3: Relative amounts (mean ± SE, n = 10)
of volatiles from uninfected bark detected after various time periods (0, 14, 28 and 42 days) from
the beginning of an experiment. Data from the control G. clavigera treatment are presented here.
Table S4: Relative amounts (mean ± SE, n = 10) of volatiles from uninfected bark detected after
various time periods (0, 14, 28 and 42 days) from the beginning of an experiment. Data from the
control L. longiclavatum treatment are presented here. Table S5: Relative amounts (mean ± SE, n = 10)
of volatiles from uninfected bark detected after various time periods (0, 14, 28 and 42 days) from the
beginning of an experiment. Data from the control O. montium treatment are presented here.
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