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Abstract: Fetal growth restriction is an obstetrical pathological condition that causes high neonatal
mortality and morbidity. The mechanisms of its onset are not completely understood. Metabolites
were extracted from 493 placentas from non-complicated pregnancies in Hamilton Country, TN
(USA), and analyzed by gas chromatography–mass spectrometry (GC–MS). Newborns were classified
according to raw fetal weight (low birth weight (LBW; <2500 g) and non-low birth weight (Non-LBW;
>2500 g)), and according to the calculated birth weight centile as it relates to gestational age (small
for gestational age (SGA), large for gestational age (LGA), and adequate for gestational age (AGA)).
Mothers of LBW infants had a lower pre-pregnancy weight (66.2 ± 17.9 kg vs. 73.4 ± 21.3 kg,
p < 0.0001), a lower body mass index (BMI) (25.27 ± 6.58 vs. 27.73 ± 7.83, p < 0.001), and a shorter
gestation age (246.4 ± 24.0 days vs. 267.2 ± 19.4 days p < 0.001) compared with non-LBW. Marital
status, tobacco use, and fetus sex affected birth weight centile classification according to gestational
age. Multivariate statistical comparisons of the extracted metabolomes revealed that asparagine,
aspartic acid, deoxyribose, erythritol, glycerophosphocholine, tyrosine, isoleucine, serine, and lactic
acid were higher in both SGA and LBW placentas, while taurine, ethanolamine, β-hydroxybutyrate,
and glycine were lower in both SGA and LBW. Several metabolic pathways are implicated in fetal
growth restriction, including those related to the hypoxia response and amino-acid uptake and
metabolism. Inflammatory pathways are also involved, suggesting that fetal growth restriction might
share some mechanisms with preeclampsia.

Keywords: metabolomics; fetal growth restriction; small for gestational age; low birth weight

1. Introduction

Low birth weight (LBW) is a condition characterized by a neonatal birth weight of less
than 2500 g, occurring either in preterm or in full term. Small for gestational age (SGA)
neonates are also LBW, but are more precisely defined according to gestational age. A
low birth weight is correlated with many socioeconomic factors and parameters affecting
intrauterine growth restriction (IUGR) and preterm birth.

LBW has a global incidence of 17% and is an important predictor of infant mortal-
ity [1]. LBW also increases the risk of chronic diseases in adults, such as heart disease and
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type 2 diabetes [2,3]. Birth weight is correlated with heart-metabolic risk at 5 years old.
Lurbe et al. [4] reported that insulin and triglyceride serum levels at 5 years old depend on
birth weight, current weight, and postnatal weight gain.

Maternal exposure to environmental pollutants occupies a central role in the genesis of
LBW [5,6]. In Hamilton Country, TN, USA, there is a high rate of low birth weight infants
when compared with other metropolitan areas in the state, as well as the national rate [7].
This phenomenon has been extensively studied in recent years, but little progress has been
made in its understanding. Maternal habits and socio-economic factors appear to play a
role, but it seems that they cannot fully explain the abnormally high incidence of LBW in
Hamilton County.

An innovative approach for examining the complexities associated with LBW is the
field of metabolomics, which is the study of the identities and abundances of the entire
metabolome, which is the whole set of metabolites present in a biological sample at a
given time [8,9]. Metabolites are the substrates or products of biochemical reactions within
cells and tend to be small molecules weighing less than 1500 Daltons [9]. An individual’s
metabolome is strongly influenced by interactions with the external environment and by
the particular products of gene expression. Metabolomics differs from genomics, because it
identifies and quantifies the products of specific protein biochemical reactions occurring
within the cell, tissue, or organ as opposed to the genetic expression.

Although it is a powerful approach, metabolomics has only recently been applied to the
investigation of LBW associations. In 2012, Kenny and Baker [10] earned a patent for their
invention of a metabolomic approach to predict SGA infant development at a pre-symptomatic
gestational stage, based on the analysis of maternal blood. Changes to the metabolome in the
maternal serum during pregnancy were investigated by Heazell et al. [11] and Tea et al. [12].
Both reported changes in maternal energy metabolism associated with the LBW fetal condition.
Umbilical cord blood was investigated by Ivorra et al. [13] and Alexandre-Gouabau et al. [14].
Both studies reported a change in amino acid metabolism that was associated with LBW
infants. Furthermore, urine metabolomics of children [15] and adults [16] born with LBW
found that various metabolites were associated with subclinical renal and cardiac injury.
Horgan et al. [17] reported changes in the metabolic footprint of placentae cells of small for
gestational age and normal birth weight pregnancies when explanted and cultured in different
oxygen tensions.

Recent applications of metabolomics to investigate a variety of obstetrical compli-
cations include a study on polycystic ovarian syndrome [18] and the identification of
metabolomic biomarkers for pre-delivery screening for developmental anomalies [19],
chromosomal anomalies [20], central nervous system anomalies [21], heart defects [22],
and endometrial cancer [23,24]. The present study consisted of a large population-based
assessment that investigated the whole metabolome of postpartum placental tissue from
women living in Hamilton Country, TN, USA, in order to better understand the placental
metabolic pathway and its potential associations with SGA and LBW infants.

2. Materials and Methods
2.1. Tissue Collection

The University of Tennessee College of Medicine’s Institutional Review Board (IRB)
approved the gathering and utilization of placentae for the present research (IRB#05-031,
FWA#2301, 2005). The specimens were collected at Baroness Erlanger Campus of the
Erlanger Health System, located in Chattanooga, TN, between June 2007 and July 2010.
Sample collection was based on the timing of maternal arrival and placental delivery.
Sample collection was only performed when investigators of this study could be present to
ensure that standard collection procedures were followed. As this timing was somewhat
random (subject to personnel availabilities), this reduced any possibility of a “timing-based”
bias. Further information on mothers and infants was obtained from medical records. The
placentae were obtained in a standardized manner from single birth mothers over 18 years
old, who were free of HIV and hepatitis. To avoid analytical bias, all of the samples were
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collected, stored, processed, and analyzed in the exact same way. The whole placentae
were stored at −80 ◦C until they were processed. Prior to the analysis, samples were
thawed overnight at room temperature and then the chorionic plate and decidua basalis
were removed with ceramic scissors, leaving the villous core tissue to be homogenized. A
portion of the homogenized villous core was taken for the metabolomic analysis. Samples
were oven-dried at 60 ◦C to constant weight and then powderized with a mortar and pestle.

2.2. Birth Weight Centile Calculation

In this study, two key factors were analyzed: raw birth weight and the calculated birth
weight percentile. The obstetrical community considers infants with a weight less than
2500 g as being low birth weight (LBW). The birth weight percentile was calculated for each
sample using the gestation related optimal weight (GROW) software [25]. This calculation
considers various parameters that influence birth weight, such as gestational age, maternal
height/weight, ethnicity, parity, and infant sex. The GROW software is dependent on the
geographic location; thus, it employs nationwide data to determine specific coefficients
for each growth parameter. This study used the United States version of GROW. The data
for GROW and the birth weight percentile calculation were obtained from the anonymous
medical charts linked to each placenta. The gestational age was determined from the last
menstrual period and was based on the best obstetric estimate from either the first or
second trimester ultrasound examinations. Neither dietary nor socioeconomic data were
collected for this study. Based on the birth weight percentile, newborns were classified into
three categories: small for gestational age (SGA) (<10%), appropriate for gestational age
(AGA) (10–89%), or large for gestational age (LGA) (>90%).

2.3. Metabolite Extraction, Purification and Derivatization

The MetaboPrep GC kit from Theoreo was used for untargeted metabolome extrac-
tion, purification, and derivatization. Sample analysis was performed in the period from
December 2016 to August 2017. Following the manufacturer’s instructions, 25 ± 1 mg of
tissue was added to an Eppendorf microcentrifuge tube along with the extraction mixture,
including the internal standard (2-isopropyl malic acid). The sample and extraction mixture
were mixed via vortexing at 1250 rpm for 30 min and then subjected to ultrasonic treatment
(30 min at 30 ◦C). The extracted metabolome was centrifuged to separate any solids before
the purification process. The purified sample was then freeze-dried overnight.

Trimethylsilyl derivatization was carried out by adding the first derivatization mix-
ture and vortexing, followed by the second derivatization mixture. The derivatized
metabolomes were transferred to 100 µL inserts for the auto sampler injection. Before
injection into the GC–MS, the samples were centrifuged.

2.4. GC–MS Analysis

A sample of the derivatized solution (2 microliters) was injected into a GC–MS system
(GC-2010 Plus gas chromatograph with a 2010 Plus single quadrupole mass spectrometer
by Shimadzu Corp. in Kyoto, Japan) using split mode. Chromatography was performed
with a 30 m × 0.25 mm CP-Sil 8 CB fused silica capillary GC column with a 1.00 µm film
thickness from Agilent, using helium as the carrier gas.

The oven temperature program consisted of a 0.5-min hold at 100 ◦C and was then
increased to 320 ◦C at 4 ◦C/min, resulting in a GC run time of 60 min. Carrier gas flow
linear velocity was maintained at 39 cm/s and the split flow was set to 5:1. The mass
spectrometer was programmed with a 4.5 min solvent delay and then operated in full scan
mode (35–600 m/z) using electron ionization (70 eV) and a scan velocity of 3333 amu/s.

The samples were analyzed in groups of 25, with four controls per batch: a blank
injection of hexane, a standard mix of 50 molecules, a pool of 2 microliters from 50 randomly
selected treated samples, and a repeated injection of one randomly selected sample. Each
batch was deemed valid if the blank showed no peaks, the standard peak area was within
10% of what was expected, the ratio of the 100 major peaks in the repeated sample was
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within 15% of the original, and the pooled sample was within 5% of the model built from
previous samples.

The chromatograms were deconvoluted using the most intense fragment for metabo-
lites meeting the integration criteria (area > 10000; slope > 100/min; width > 1 s). 2-isopropyl
malic acid was used as the internal standard (SIM = 147) and the extracted chromatograms
were used to calculate the metabolite area. Relevant metabolites (see below) were annotated
according to level 1 of the Metabolomics Standard Initiative [26]. Briefly, after mass spectra
comparison with several public libraries (NIST2014 and HMDB), and also using the Kovats
retention index [27] to reduce the candidate list, an analytical standard was derivatized
and analyzed in the same condition to confirm the peak annotation.

2.5. Statistical Analysis
2.5.1. Demographics Data Comparison

The clinical and demographic data were not normally distributed according to the
Kolmogorov–Smirnov test, so that only non-parametric statistical tests were employed for
a comparison of these characteristics. The comparison between groups was made with the
Rank Sum Test, according to Mann–Whitney or by means of analysis of variance on rank
preformed single way (according to Kruskal–Wallis), also using the post-hoc test of Dunn
(p < 0.05). Comparisons of variables reported as percentages were done by means of the
Yates correction of the X2 test.

2.5.2. Metabolomic Data Analysis

Partial least square discriminant analysis (PLS-DA) was performed using the R sta-
tistical platform (version 4.1.2; http://www.R-project.org accessed on 10 January 2022;
R-Study version 1.4.1717 was used as IDE). Chromatographic data pre-treatment included
chromatogram alignment, calculation of peak areas normalized to that of the internal
standard, followed by mean centering and unit variance scaling (i.e., auto-scaling), and
were conducted using the MetaboPredict software (version 1.2.2, Theoreo srl, Montecorvino
Pugliano (SA), Italy). Class separation was investigated by PLS-DA, which is a supervised
method that uses multivariate regression techniques to extract, via linear combination of the
original variables (X), the information that can predict the class membership (Y). Variable
importance in projection (VIP) scores were calculated for each component. Features with
VIP score ≥ 2 were identified for further biochemical pathway investigation. Lower scores
were not considered to be significant contributors to class separation. Classification and
cross-validation were performed as well as a permutation test to assess the significance of
the class discrimination and the lack of model overfitting.

The PLS regression was carried out using the plsr function provided by the pls package
in R [28]. Classification and cross-validation were performed with the wrapper function
provided in the caret package in R [29]. To gauge the significance of class differentiation, a
permutation test was conducted. During each permutation, a PLS-DA model was estab-
lished by cross-validating the optimal number of components between the data (X) and
the permuted class labels (Y). Two forms of test statistics were calculated to measure the
class differentiation. The first was based on training prediction accuracy, while the second
was a separation distance based on the B/W ratio (ratio between group sum of squares and
within group sum of squares). If the observed test statistics were part of the distribution
produced from the permuted class assignments, class differentiation was not considered
statistically significant [30].

Variable importance in projection (VIP) scores were calculated for each component.
VIP is a weighted sum of the PLS loadings’ squares, considering the amount of Y-variation
explained in each dimension. The weights are determined by the reduction in the sums of
the squares across the number of PLS components. The average of the feature coefficients
was used to indicate the overall coefficient-based importance.

The involvement of metabolic pathways was analyzed using the MetPa tool [31]. It is
based on an over-representation analysis test. If a particular group of compounds is more

http://www.R-project.org
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represented than expected by chance within the compound list, this pathway was selected.
The over-representation was based on Fisher’s Exact test. The over-representation analysis
was performed using only statistically relevant metabolites (i.e., those with VIP-scores > 2
and those selected based on the volcano plot) as inputs for the MetPa analysis.

3. Results

Results were obtained from 493 placental tissues, 124 from pregnancies with LBW
newborns and 369 from pregnancies resulting in birth weight >2500 g. Newborns were
determined to be SGA in 118 cases, AGA in 326, and LGA in 49 by normographic data. The
demographic and clinical characteristics of all pregnancies are reported in Table 1.

Table 1. Population characteristics of the cohort profiled in the present untargeted metabolome
investigation. * Indicates a significant difference from Non-LBW. ¶ indicates a significant difference
from AGA. Abbreviations. BMI: Body mass index, HS/GED: High school/General Educational
Development, LBW: low birth weight; SGA: small for gestational age; AGA: adequate for gestational
age; LGA: large for gestational age.

All Patients LBW Non-LBW SGA AGA LGA

Sample size 493 124 (25.2%) 369 (74.8%) 118 (23.9%) 326 (66.1%) 49 (9.9%)
Age (years) 26.0 ± 5.5 25.4 ± 5.6 26.2 ± 5.5 25.6 ± 5.8 25.9 ± 5.4 27.8 ± 5.6
Height (cm) 162.6 ± 10.4 162.3 ± 14.5 162.7 ± 8.6 163.6 ± 7.8 162.0 ± 8.9 164.8 ± 20.4

Weight before pregnancy
(kg) 71.6 ± 20.7 66.2 ± 17.9 * 73.4 ± 21.3 73.3 ± 24.3 70.5 ± 19.2 74.6 ± 20.5

BMI 27.7 ± 7.6 25.3 ± 6.6 * 27.7 ± 7.8 27.3 ± 8.5 26.9 ± 7.2 28.0 ± 7.9
Underweight (<19) 7.5% 12.9% 5.7% 9.3% 7.1% 6.1%

Normal weight (19–25) 38.1% 42.7% 36.6% 38.1% 39.0% 32.7%
Overweight (25–30) 27.0% 21.0% 29.0% 32.2% 27.6% 30.6%

Obese (>30) 27.4% 23.4% 28.7% 20.3% 26.4% 30.6%
Marital Status

Single 52.5% 41.1% 56.4% 44.1% 53.1% 69.4%¶
Married 47.5% 58.9% 43.6% 55.9% 46.9% 30.6%¶

Race
White 63.5% 58.9% 58.2% 63.6% 63.2% 65.3%
Black 19.9% 25.8% 17.9% 24.6% 18.7% 16.3%

Hispanic 16.2% 15.3% 23.9% 11.9% 17.8% 16.3%
Other 0.4% 0.0% 0.0% 0.0% 0.3% 2.0%

Education
<HS 32.5% 32.7% 32.4% 27.1% 36.0% 21.2%

HS/GED 30.9% 33.6% 29.7% 40.6% 27.3% 30.3%
College 36.6% 33.6% 37.9% 32.3% 36.8% 48.5%

Tobacco use
No 81.1% 75.0% 82.4% 68.6%¶ 82.8% 93.9%
Yes 18.9% 25.0% 17.6% 31.4%¶ 17.2% 6.1%

Parity 1.3 ± 1.8 1.1 ± 1.4 1.4 ± 1.9 1.5 ± 3.0 1.2 ± 1.2 1.5 ± 1.3
Gestational age (day) 261.9 ± 22.5 246.4 ± 24.0 * 267.2 ± 19.4 260.0 ± 26.0 263.8 ± 17.8 254.1 ± 36.3¶

Infant sex
Male 52.1% 54.8% 47.7% 52.5% 50.0% 65.3%¶

Female 47.9% 45.2% 52.3% 47.5% 50.0% 34.7%¶

Women who had an LBW newborn also had the following characteristics: lower
pre-pregnancy weight (66.2 ± 17.9 kg vs. 73.4 ± 21.3 kg, p < 0.0001), a lower body
mass index (BMI) (25.27 ± 6.58 vs. 27.73 ± 7.83, p < 0.001), and a shorter gestation time
(246.4 ± 24.0 days vs. 267.2 ± 19.4 days p < 0.001) when compared with non-LBW subjects.
Marital status, tobacco use, and fetus sex affected the birth weight centile classification ac-
cording to gestational age. For example, single mothers had an LGA infant more frequently
than an AGA infant (69.4% vs. 53.1%, p < 0.05) and the LGA infant was more frequently
male (65.3% vs. 50.0%, p < 0.05). A higher tobacco use frequency was associated with SGA
infants compared with AGA infants (31.4% vs. 17.2%, p < 0.05).
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Gas chromatography–mass spectrometry consistently detected 272 endogenous metabo-
lites in each specimen. These compounds are involved in many biochemical processes, such
as energy metabolism, lipid metabolism, and amino acid metabolism. For chromatographic
peak identification, the linear retention index difference max tolerance was set to 10, while
the minimum matching for the NIST library search of the corresponding mass spectrum
was set to 85%. The results were summarized in a comma separated matrix file and loaded
in the appropriate software for statistical manipulation.

After data alignment using the Parametric Time Wrapping algorithm [32] and peak
picking, integration, and deconvolution, the chromatographic data were tabulated with one
sample per row and one variable (metabolite) per column. The normalization procedures
consisted of data transformation and scaling. Data transformation was generalized log
transformation while data scaling was auto scaling (mean-centered and divided by standard
deviation of each variable) [33]. Two PLS-DA models were considered (Figure 1); a two-
class model (LBW vs. Non-LBW; panel A) and a three-class model (SGA, AGA, and LGA;
panel B).
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Figure 1. Classification models: (A1). Two class (LBW vs. non-LBW) PLS-DA score plot. (A2). VIP
metabolites heat-map selected by the dichotomic classification. (B1) Three class (SGA, AGA, and
LGA) PLS-DA score plot. (B2) VIP metabolites heat-map selected by the three-class classification.
Abbreviations: LBW: low birth weight; PLS-DA: partial least square discriminant analysis; VIP:
variable important in projection; SGA: small for gestational age; AGA: adequate for gestational age;
LGA: large for gestational age.
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A well-defined differentiation of the LBW and non-LBW was achieved (R2
Ycum = 0.82,

Q2
Ycum = 0.59) (Figure 1-A1). Discrimination among SGA, AGA, and LGA was more

robust with less overlap (R2
Ycum = 0.85, Q2

Ycum = 0.71) (Figure 1-B1). Variable importance
in projection (VIP) scores were calculated for each component in the PLS-DA regressions.
Panels A2 and B2 of Figure 1 show the metabolites selected as being those most respon-
sible for class separation (with a VIP-score > 2) for the two-class and three-class models,
respectively.

Five metabolites were selected as being relevant by the volcano plot: hydroquinone
and hydroxylamine were lower in LBW, whereas deoxyguanosine, glutathione, and linoleic
acid were higher in LBW (Figure 2).
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Figure 2. Relevant metabolites selected in all class comparisons. (A) Heatmap reporting the ANOVA
selected metabolites. Cluster analysis allowed for the recognition of three groups of metabolites
based on their concentration mean levels in the three classes (SGA: small for gestational age; AGA:
adequate for gestational age; LGA: large for gestational age). (B) Volcano plot of the analyzed
metabolites comparing LBW to non-LBW placentae, highlighting the ones showing a p-value < 0.05
and a large fold change (>2.0 or <0.5); in red are the metabolites with a lower concentration in
LBW, while in blue are the metabolites with a higher concentration in LBW. (C). UpSet diagram
reporting the relevant metabolite selection among the various strategies. Set size indicates the number
of metabolites involved in each metabolite selection strategy, while intersection size indicates the
number of metabolites selected from each strategy combination.

Metabolites with p < 0.05 assessed by the ANOVA of the three classes were also eval-
uated in a heatmap. The consistent selection of relevant metabolites using the different
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models was synthesized with an UpSet visualization [34] showing that glycerophospho-
choline, tyrosine, and serine were selected using three tools (heatmap, 2- and 3- classes
PLS-DA); deoxyguanosine, hydroquinone, and linoleic acid were selected by heatmap and
volcano; and asparagine, glycine, taurine, isoleucine, aspartic acid, and deoxyribose were
selected by both PLS-DA models. All of the other metabolites were selected by only one
model (Figure 2). VIP metabolites concentration distribution in the studied classes are also
reported in Figure 3.
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Figure 3. Box and whisker plot of the VIP metabolites. Red boxes represent the placentae of
small for gestational age (SGA) newborns (n = 118), yellow represents the adequate for gestational
age (AGA) placentae (n = 326), green represents the large for gestational age (LGA) placentae
(n = 49), blue represents the placentae of low birth weight baby (LBW) (n = 124), while purple
represents the non-low birth weight baby (non-LBW) (n = 369). The y axes represent the normal-
ized metabolite chromatographic area. GPC = Glycerophosphocoline; HBA = Hydroxybutyric
acid; ns = not significance. Ns indicated not significant difference in concentration, * p-value < 0.05,
** p-value < 0.01, *** p-value < 0.001.
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Figure 4 shows the metabolic maps which better explain the interplay of the selected
metabolites. Several metabolic pathways are involved, including the glycerophsphate
shuttle; ammonia recycling; and glutathione, glycerolipid, tyrosine, glutamate, and phos-
pholipid metabolism.
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4. Discussion

In the present study, we report the placental metabolomic fingerprint of LBW and SGA
newborns, a subject of growing interest due to the recent importance given to the concept
of “fetal origin of adult disease”. This idea suggests that early life conditions can “program”
the fetus for a spectrum of adverse health outcomes in adulthood, such as coronary artery
disease, hypertension, obesity, and insulin resistance [35,36]. Indeed, for the first time in
human history, a generation of LBW and VLBW (very low birth weight < 1000 g) infants
have been identified and monitored until adulthood [37,38], which supported the theory of
“fetal origin of adult disease”. However, we are still far from understanding the long-term
effects of low birth weight.

Although the placenta is the organ mainly involved in fetal nutrition and weight de-
termination, few studies have investigated the placental metabolomic variations associated
with newborn weight [17,39]. The results obtained herein indicate that several metabolites
and metabolic pathways are associated with a low-birth-weight placental metabolic finger-
print. The network of tissue molecules allowing for class separation was characterized by
lower levels of taurine, ethanolamine, β-hydroxybutyrate, and glycine and higher levels of
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many amino acids (asparagine, aspartic acid, isoleucine, serine, and tyrosine), deoxyribose,
erythritol, glycerophosphocholine, and lactic acid in the SGA/LBW placentas we reported.

Taurine is an essential nutrient in fetal metabolism, as the fetus and placenta lack the
enzyme for taurine synthesis [40]. Reduced activity of a placental taurine transporter has
been found in preeclampsia, a condition frequently associated with fetal weight restric-
tion [41]. Reduced taurine in the placenta may impair syncytiotrophoblast cell renewal
and lead to decreased nutrient transfer to the fetus [41]. Austdal et al. [42] reported that
taurine levels were similar in the placentae from preeclampsia with or without fetal growth
restriction, suggesting that taurine depletion is not specific for fetal growth restriction, but
is probably associated with an impairment in placental mechanisms. Ethanolamine is a
component of phospholipid biosynthesis. Murine experiments indicate that ethanolamine
kinase deficiency results in low birth weight offspring and increased placental thrombo-
sis and apoptosis, indicating an important role of ethanolamine in placental and fetal
development [43]. Deoxyribose is a reducing sugar with angiogenic properties [44]. It
has been shown to alter apoptosis and glutathione expression in vitro [45]. Its increase
has been reported in placental tissue cultivated under hypoxic conditions [11]. It can be
released from cells, either by active transport from living tissue or from dead cells following
lysis. Accordingly, an increase in erythritol, a sugar alcohol derived either from external
sources or from the reduction of erythrose, was also reported in placental tissue and in a
culture medium under hypoxic condition [11]. Increased levels of erythritol were reported
during heart failure [46], indicating a possible role in the hypoxic response. In addition,
Arkwright et al. [47] described a differential expression of small sugars and their deriva-
tives in the syncytiotrophoblast glycocalyx in preeclampsia pregnancies. Such increases in
sugar alcohols may indicate altered glucose metabolism, which Kay et al. [48] previously
showed to be modified in trophoblast in response to changes in O2 tension.

Two possible reasons for increased glycerophosphocholine in LBW/SGA placentas
can be suggested. First, the increase may be due to increased cell death [49]. Second, the
increase may stem from placental cell membrane catabolism for the regeneration of choline
methyl groups due to folate deficiency [50].

Amino acids are among the main nutrient sources for fetal growth, accounting for
20–40% of fetal energy requirements [51]. Amino acids are actively transported by the
placenta from the maternal to the fetal circulation [52]. Indeed, the placental and fetal
uptake of amino acids is in excess with respect to fetal protein synthesis needs [52]. Our
report of a higher concentration of asparagine, aspartic acid, isoleucine, serine, and tyrosine
in SGA/LBW placentas can be the result of dysregulation in the placental amino acid
transport system. Fetal amino acid supply is subjected to a maternally regulated transport
system. Maternal signals that provide information to the placenta include metabolic
hormones, nutrients levels, and oxygen. In conditions of compromised maternal supply
line, the ability to deliver nutrients and oxygen to the placenta and placental functions,
including transplacental nutrient transport and placental growth, may be inhibited, directly
contributing to decreased fetal growth [53]. This transport system seems to be regulated by
the mTOR (mammalian target of rapamicine) sensing system [54], a system of considerable
interest for its implication in aging and commonly associated with several diseases.

The glycine transport system (called System A) is an Na-dependent system and is
concentrated in the syncytiotrophoblast, energized by the Na+ gradient. Subsequently,
glycine diffuses into the fetal circulation and back to the mother. The strong polarization of
System A provides the basis for the net transport of glycine to the fetus. Paolini et al. [55]
reports that System A transport is impaired differently compared with the leucine and
tyrosine transport system when associated with fetal weight restriction. It may be that the
leucine and tyrosine transport system is not as susceptible to low oxygen tension and high
concentrations of lactic acid such as those observed in the LBW/SGA placentae herein. If
so, this would help to explain the different prevalence of glycine compared with the other
VIP amino acids that were increased in LBW.
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Our observation of increased lactic acid concentration in LBW/SGA placentae strongly
indicates hypoxic conditions of the placental cells. In this condition, ketone utilization
was increased. In murine models, hypoxic tolerance was increased in those mice treated
with 3-hydroxybutyrate [56]. This finding provides some evidence to explain the lower
concentration of β-hydroxybutyrate found in the LBW/SGA placentas.

Women with SGA babies showed higher self-reported tobacco use. One of the main
ways in which smoking affects fetal growth is through the reduction of oxygen and nutrients
that reach the developing baby. Moreover, nicotine, a component of tobacco smoke, is
a vasoconstrictor, which means it narrows the blood vessels and decreases blood flow.
This reduction in blood flow can result in a decrease in oxygen and nutrients reaching
the placenta, which can lead to SGA babies. Additionally, smoking increases the risk of
placental abruption, where the placenta separates from the uterus prematurely, cutting
off the baby’s oxygen supply and increasing the risk of stillbirth. Another way in which
smoking can affect fetal growth is through the release of harmful chemicals from tobacco
smoke. These chemicals can cross the placenta and reach the developing baby, causing
damage to the developing cells and organs. For example, carbon monoxide, a component
of tobacco smoke, can reduce the amount of oxygen in the baby’s blood, leading to fetal
growth restriction. The risks associated with smoking during pregnancy are not limited to
women who smoke cigarettes. Secondhand smoke exposure can also have negative effects
on fetal growth and development.

Nevertheless, the use of tobacco is not associated with the reported differences in
terms of metabolomics profiling within our cohort. Indeed, the abundances of VIP-score
and Volcano plot selected metabolites did not show significant differences in smoker and
non-smoker enrolled subjects (data not shown). The same evaluations were performed
for marital status, education, and infant sex; the abundances of statistically significant
metabolites were also not correlated with these parameters.

The placental metabolic profile of LBW/SGA newborns highlights the role of amino
acid metabolism and degradation, and the role of folate, prostaglandin, and leukotriene
metabolism. This illustrates the great importance of hypoxic and nutritional placental
deficiency, but also suggests a possible role of inflammation, which may be responsible for
a subclinical preeclampsia condition.

The present study used a novel placental analysis technique and contributes to previ-
ous metabolomic studies carried out on cultured placental explants. Indeed, while oven
drying is not standard in human metabolomics investigations, it is widely used in plant
metabolomics [57] with no adverse effects. Complete water removal from tissue prior
to metabolite extraction is necessary because water provides the medium for enzyme-
mediated reactions, which could adversely affect the resulting metabolomes if metabolite
decomposition occurs. Of course, varying levels of water could then affect the overall pat-
tern and concentration of metabolites [57], underscoring the importance of complete water
removal. Moreover, Troisi et al. [58] reported that oven-drying is an easy and affordable
method for placenta sample preparation. Oven-dried placenta metabolomes were able to
distinguish complicated vs. non complicated pregnancies in the same manner that fresh
and lyophilized placenta samples could [58]. Notably, as Roessner et al. [59] observed,
regardless of which sample preparation techniques are employed, biological variability
is often greater than analytical variability. Most importantly for the relative comparisons
described herein, because all of the samples were treated identically, the statistical testing
and conclusions drawn were internally consistent.

Our method provides a unique tool for understanding placental disease mechanisms
in utero, thereby phenotyping diseases based on the whole placental involvement and
not on results from cultured cells. Because these kinds of studies require a large cohort to
provide accurate and reproducible findings, our strength is that our cohort is one of the
biggest ever used in a metabolomics study.
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