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Abstract: Obesity is a leading contributor to colorectal cancer (CRC) risk, but the metabolic mecha-
nisms linking obesity to CRC are not fully understood. We leveraged untargeted metabolomics data
from two 1:1 matched, nested case–control studies for CRC, including 223 pairs from the US Prostate,
Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial and 190 pairs from a prospective
Chinese cohort. We explored serum metabolites related to body mass index (BMI), constructed a
metabolomic signature of obesity, and examined the association between the signature and CRC risk.
In total, 72 of 278 named metabolites were correlated with BMI after multiple testing corrections
(p FDR < 0.05). The metabolomic signature was calculated by including 39 metabolites that were
independently associated with BMI. There was a linear positive association between the signature and
CRC risk in both cohorts (p for linear < 0.05). Per 1-SD increment of the signature was associated with
38% (95% CI: 9–75%) and 28% (95% CI: 2–62%) higher risks of CRC in the US and Chinese cohorts,
respectively. In conclusion, we identified a metabolomic signature for obesity and demonstrated the
association between the signature and CRC risk. The findings offer new insights into the underlying
mechanisms of CRC, which is critical for improved CRC prevention.

Keywords: obesity; metabolomics; colorectal cancer; cohort

1. Introduction

As the third most common and second most deadly malignancy globally, colorectal
cancer (CRC) caused over 1.9 million new cases and 0.9 million deaths in 2020 [1]. The
burden is projected to increase to 3.2 million new cases and 1.6 million deaths by 2040 [2].
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Obesity, a major public health concern worldwide, has been recognized as a leading risk fac-
tor for CRC [3]. Evidence from experimental and molecular epidemiologic studies indicates
that obesity can cause chronic inflammation, dysregulation of sex hormones, and alterations
in insulin signaling, thereby promoting the development of CRC [4]. Notably, obesity is a
systemic disease featured with substantial metabolic and endocrine abnormalities [5]. A
better understanding of metabolic disturbances underlying the association between obesity
and CRC is crucial to develop effective strategies to mitigate future CRC risk.

Metabolomics has emerged as a powerful tool to identify novel biomarkers for
metabolic characteristics and reveal mechanisms underlying complex diseases [6]. Pre-
vious metabolomic studies have reported multiple metabolites in relation to body mass
index (BMI), including lipids, amino acids, peptides, and nucleotides [7–13]. Some of the
studies further examined the association between the identified metabolites and the risks
of diabetes [8], breast cancer [11], and prostate cancer [12]. In a nested case–control study
within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort,
a metabolomic signature comprising 31 lipids and 11 amino acids was established for
BMI, but this signature was not statically significantly associated with CRC risk [14]. As
acknowledged by the authors, the study was limited by the use of targeted metabolomics,
which measured a set of metabolites of interest defined a priori [14]. Therefore, additional
efforts are needed to uncover the metabolic effects of obesity on CRC risk.

Leveraging untargeted metabolomics data from a nested case–control study within
the US Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, we aimed to
identify BMI-related metabolites and develop a metabolomic signature for BMI. We further
evaluated the association of the metabolomic signature with CRC risk in the PLCO and
validated this association through an independent nested case–control study based on a
Chinese cohort. We also assessed the mediating effect of the signature on the association
between BMI and CRC.

2. Materials and Methods
2.1. Study Design and Participants

The PLCO study is a randomized controlled trial to determine the effect of specific
screening exams on reducing mortality from prostate, lung, colorectal, and ovarian cancers,
which has been described previously [15]. Briefly, approximately 155,000 participants aged
55 to 74 years, who had no history of prostate, lung, colorectal, or ovarian cancer, were
enrolled from ten US medical centers between 1993 and 2001 and were randomly assigned
to the screened or the non-screened arm. All participants were asked to complete a baseline
questionnaire collecting information on anthropometrics, demographics, lifestyle, and
health status. Blood samples drawn at baseline were centrifuged into serum, plasma, red
blood cells, and buffy coat fractions stored at −70 ◦C. The study was approved by the
Institutional Review Boards at the National Cancer Institute and ten recruitment centers,
and all participants provided informed consent.

The current analysis was based on a nested, 1:1 matched case–control study within
the screening arm of the PLCO cohort. Participants were eligible if they had no self-
reported history of cancer (except basal-cell skin cancer), Crohn’s disease, ulcerative colitis,
familial polyposis, Gardner’s syndrome, or colorectal polyps at baseline and had been
followed up for at least 6 months. Controls, who were free from any cancer at the time the
matched case was diagnosed, were incidence–density sampled and matched to cases by
age at randomization (5-year intervals), sex, race, year of randomization, and season of
blood draw. Finally, 223 pairs of cases and controls that had available metabolomics data
were included.

To validate results from the PLCO, we designed a 1:1 matched, nested case–control
study for CRC based on a prospective cohort in Jiangsu Province, China. Details of the study
design have been described elsewhere [16]. Briefly, a total of 44,962 adults completed an
interviewer-administered electronic questionnaire and underwent physical examinations
at baseline. Blood samples were collected after an overnight fast of at least 8 h and were
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immediately centrifuged into plasma, red blood cells, and white blood cells stored at
−80 ◦C. Until December 2020, the overall follow-up rate was approximately 90%, and
190 incident CRC cases were recorded. The cancer diagnoses were confirmed by reviewing
the cancer registration database and/or by visits to local communities. We selected controls
randomly from cancer-free participants and matched them 1:1 to the incident CRC cases by
age (±2 years), sex, and region. All participants provided written informed consent, and
the study was approved by the Nanjing Medical University.

2.2. Metabolomic Profiling

In the PLCO, untargeted serum metabolomics data were generated by using the
Metabolon Inc. platform consisting of ultra-high performance liquid chromatography-
tandem mass spectrometry (UHPLC-MS/MS) and gas chromatography-mass spectrometry
(GC-MS). The details of the procedures have been described elsewhere [17]. In brief, protein
precipitation with methanol was performed to extract a broad coverage of metabolites in
the serum. The extracts for UHPLC-MS/MS were analyzed on a Waters ACQUITY UPLC
(Waters, Milford, MA, USA), and the extracts for GC-MS were analyzed on a Thermo-
Finnigan Trace DSQ fast-scanning single-quadrupole MS (Thermo Finnegan, San Jose,
CA, USA). Each batch contained up to 30 samples, including blinded quality-control
samples of pooled serum at a level of 10%. Matched cases and controls were consecutively
arranged in a counterbalanced order within each batch. In addition, a standard was spiked
every six samples for quality control. The metabolites were identified by comparison to a
chemical reference library generated from 2500 standards. A total of 447 named metabolites
were identified, out of which 278 metabolites were measured in >80% of the participants
and included in the analysis. These metabolites included amino acids, lipids, peptides,
carbohydrates, cofactors and vitamins, xenobiotics, nucleotides, and energy.

In the Jiangsu cohort, untargeted metabolites in the plasma were measured using
UHPLC-MS/MS at Metabolon, as described in detail elsewhere [16,18]. Briefly, based on
ACQUITY UPLC (Waters, Milford, MA, USA) and Q Exactive HF hybrid Quadrupole-
Orbitrap (Thermo Fisher Scientific, San Jose, CA, USA), four independent UHPLC-MS/MS
methods were applied: two separate reverse-phase (RP)/UHPLC-MS/MS methods with
positive-ion mode electrospray ionization (ESI), RP/UHPLC-MS/MS with negative-ion
mode ESI, and hydrophilic interaction liquid chromatography (HILIC)/UHPLC-MS/MS
with negative-ion mode ESI. The methods for quality control and metabolite identification
were similar to those used in the PLCO.

2.3. Exposure and Covariate Measurement

Information on age, sex, smoking, alcohol drinking, history of diabetes, and family
history of CRC in first-degree relatives was derived from structured baseline questionnaires.
BMI was calculated as weight in kilograms divided by height in meters squared. In the
US, BMI ≥ 30 kg/m2 was defined as obesity [19], and in China, the cut-off point was
28 kg/m2 [20]. Pack-years of smoking were calculated by multiplying the number of
packs smoked per day by the number of years smoked. Alcohol consumed in grams
per day was calculated by multiplying alcoholic beverage consumed (mL) with alcohol
concentration (%) and alcohol density (0.8) by the frequency and usual serving size of
alcohol consumption [21].

2.4. Statistical Analysis

In order to account for the potential batch effect and improve normality, metabolite
concentrations were batch-normalized (divided by the batch median for each metabolite)
and then transformed. Metabolite values below the limit of detection were assigned with
the minimum of all observed values. Baseline characteristics between CRC cases and
controls were compared by Chi-squared tests for categorical variables and Wilcoxon rank
tests for continuous variables. In the PLCO, Spearman’s partial correlation was performed
to estimate the correlations between baseline BMI and 278 metabolites, with adjustment for
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potential confounders, including age, sex, smoking status, and pack-years of smoking. In a
secondary analysis, we analyzed the correlation of weight change from 20 years old to study
baseline with the metabolites. The false discovery rate (FDR) was used for multiple testing
corrections, with p FDR < 0.05 considered statistically significant [22]. We then performed
the Least Absolute Shrinkage and Selection Operator (LASSO) analysis to select metabolites
that were most informative of BMI [23]. The metabolomic signature was calculated as
the weighted sum of the selected metabolites with weights equal to coefficients from
the LASSO regression [24]. The percent variation in BMI explained by the metabolomic
signature was assessed by R-squared from linear regression. We also applied random
forest for feature selection and obtained variable importance to examine the robustness
of the results from LASSO [25]. Because not all BMI-related metabolites included in the
metabolomic signature (n = 39) were measured in the Jiangsu cohort (n = 27), we then
fitted a re-weighted metabolomic signature using ridge regression [26,27]. Spearman’s
correlation was used to assess the strength of the relationship between the re-weighted
signature and the original signature.

We used multivariable restricted cubic splines with four knots (5th, 35th, 65th, and
95th percentiles) to explore the precise shape of the dose–response curve between the
metabolomic signature and CRC risk. The likelihood ratio tests were performed to assess
nonlinearity and linearity. P for nonlinear < 0.05 was defined as nonlinearity, while p for
nonlinear > 0.05 and p for linear < 0.05 was defined as linearity. To evaluate the associations
of the metabolomic signature and BMI-related metabolites with CRC risk, multivariable
conditional logistic regression models were used to compute odds ratios (ORs) and 95%
confidence intervals (CIs) by quartiles and per 1-standard deviation (SD) increment of
the metabolomic signature and metabolites. Model 1 was adjusted for age (continuous),
and Model 2 was further adjusted for smoking status (never, former, current), pack-years
of smoking (continuous), alcohol intake (g/day), history of diabetes (yes, no), and in
the PLCO, study center and family history of CRC (yes, no). The stratified analysis was
conducted according to median age, sex, smoking status, and median time to CRC diagnosis.
Potential interaction effects were assessed by including a product term between metabolite
concentrations and the categorical stratified variable in Model 2.

To assess the mediation effect of the metabolomic signature on the association between
BMI and CRC, we decomposed the “total effect” of BMI into an “indirect effect” (i.e.,
through metabolites) and a “direct effect” (i.e., through other mechanisms) [28]. The total
and direct effects were estimated by multivariable logistic regression and presented as ORs
and 95% CIs, without and with the metabolomic signature as a covariate. All statistical
tests were two-sided and performed using SAS 9.4 (SAS Institute, Carry, NC, USA) and R
3.6.3 (R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Population Characteristics

The median follow-up periods from blood collection to CRC diagnosis were 8.0 and
9.0 years in the PLCO and Jiangsu cohorts, respectively. In the PLCO, participants were,
on average, 64.4 (SD = 5.1) years old at baseline, and 56.9% were male. The proportion of
obesity was higher in CRC cases than in controls (29.7% vs. 20.0%, p = 0.02). In the Jiangsu
cohort, the mean age of participants was 59.7 (SD = 10.6) years, and 55.8% were male. The
proportions of obesity were 14.2% in cases and 6.3% in controls (p = 0.02) (Table 1).
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Table 1. Baseline characteristics of colorectal cancer cases and controls from the PLCO and Jiangsu co-
horts.

Characteristic a

PLCO Jiangsu

Case (n = 223) Control
(n = 223) p b Case (n = 190) Control

(n = 190) p b

Age, years 64.3 (5.2) 64.4 (5.1) 0.95 59.7 (10.6) 59.7 (10.6) 0.98
Female, % 43.1 43.1 – 44.2 44.2 –

Smoking status, % 0.61 0.07
Never 41.3 43.5 60.0 65.3

Former 47.9 48.4 6.8 2.1
Current 10.8 8.1 33.2 32.6

Pack-years of smoking 18.8 (25.2) 18.0 (27.1) 0.44 12.3 (20.3) 10.8 (19.7) 0.31
Height, cm 171.7 (10.2) 171.5 (9.4) 0.85 160.9 (8.7) 160.5 (8.4) 0.74

Body weight, kg 81.8 (17.3) 78.4 (16.7) 0.04 60.8 (10.5) 60.8 (10.3) 0.83
BMI, kg/m2 27.9 (4.7) 26.7 (4.6) 0.01 23.8 (3.7) 23.6 (3.1) 0.69

Adiposity, % c 29.7 20.0 0.02 14.2 6.3 0.02
Alcohol, g/day 12.2 (22.9) 12.8 (22.3) 0.38 17.4 (43.6) 13.0 (30.8) 0.69

Prevalence of diabetes, % 8.5 6.8 0.48 4.2 5.8 0.36
Family history of colorectal cancer, % 13.1 10.0 0.58 – – –

a Values are mean (standard deviation) for continuous variables and percentages for categorical variables. b Chi-
squared tests for categorical variables and Wilcoxon rank tests for continuous variables. c Obesity was defined as
BMI ≥ 30 kg/m2 in the PLCO and BMI ≥ 28 kg/m2 in the Jiangsu cohort. Abbreviations: PLCO, Prostate, Lung,
Colorectal, and Ovarian Cancer Screening Trial; BMI, body mass index.

3.2. Metabolites Correlated with BMI

In the PLCO, Spearman’s partial correlation showed that 33 metabolites were positively
(r ranging from 0.35 to 0.12, p FDR < 0.05) and 39 metabolites were inversely correlated with
BMI (r ranging from −0.24 to −0.12, p FDR < 0.05) (Figure 1 and Table S1). These metabolites
included lipids (n = 27), amino acids (n = 23), peptides (n = 7), carbohydrates (n = 5),
cofactors and vitamins (n = 4), xenobiotics (n = 4), nucleotide (n = 1), and energy (n = 1).
Using LASSO, we identified that 39 of the 72 BMI-related metabolites were independent
predictors of BMI (i.e., 14 lipids, 12 amino acids, 3 peptides, 2 carbohydrates, 3 cofactors
and vitamins, 3 xenobiotics, 1 nucleotide, and 1 energy) (Figure S1), most of which also
had a large variable importance score in the random forest model (Figure S2). Then we
created a metabolomic signature based on the coefficients generated in LASSO (Table S2)
and the concentrations of selected metabolites. The signature was highly correlated with
BMI (r = 0.73, p < 0.0001) and explained 53% of the variation in BMI. In the secondary
analysis, we found that 59 metabolites were correlated with weight change over a period
from 20 years old to study baseline (p FDR < 0.05), 53 of which overlapped with BMI-related
metabolites (n = 72) (Table S3). In addition, 56 of 72 BMI-related metabolites were available
in the Jiangsu cohort, and we found that a total of 20 metabolites were validated to correlate
with BMI in the Jiangsu cohort (nominal p < 0.05) (Figure S3).
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Figure 1. Correlation between metabolites and body mass index (BMI) in the PLCO. Spearman’s
partial correlation was used to adjust for age, sex, smoking status, and pack-years of smoking. The
metabolites above the horizontal line had a statistically significant correlation with BMI (p FDR < 0.05).
Abbreviations: PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; FDR, false
discovery rate.

3.3. Metabolomic Signature and CRC Risk

As shown in Figure 2, there was a positive linear association between the metabolomic
signature and CRC risk in both cohorts (p for nonlinear = 0.68 and p for linear = 0.01
in the PLCO, p for nonlinear = 0.98 and p for linear = 0.03 in the Jiangsu cohort). The
multivariable analysis showed that per 1-SD increment of the signature was associated
with a 38% (95% CI: 9%–75%) higher risk of CRC (Table 2). The re-weighted metabolomic
signature, including 27 available BMI-related metabolites in the Jiangsu cohort, showed
excellent correspondence to the signature created in the PLCO (r = 0.92, p <0.0001). Per 1-SD
increment in the re-weighted metabolomic signature was also associated with an increased
risk of CRC in the Jiangsu cohort (OR = 1.28, 95% CI: 1.02–1.62) (Table 2). In the stratified
analyses by age, sex, smoking status, and median time to diagnosis, the association between
the metabolomic signature and CRC risk was similar across strata in both cohorts without
any statistically significant modification effect (p for interaction > 0.05) (Figure S4).

For the association between each BMI-related metabolite and CRC risk, we found that
glutamine (OR per 1-SD increment =0.72, 95% CI: 0.57–0.92), histidine (OR = 0.73, 95% CI:
0.57–0.92), and gamma-glutamyl glutamine (OR = 0.72, 95% CI: 0.56–0.93) were inversely,
and andro steroid mono sulfate 2 was positively associated with CRC risk in the PLCO.
Among the four metabolites, three were available in the Jiangsu cohort, and the negative
association between glutamine and CRC risk was replicated (OR = 0.50, 95% CI: 0.28–0.90).
Although the validation results were null for histidine and andro steroid mono sulfate 2,
their association directions with CRC risk were consistent in both cohorts (Table S4).
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colorectal cancer risk in the PLCO (A) and Jiangsu (B) cohorts. The association was examined by the
multivariable conditional logistic model with restricted cubic splines. Solid lines represent estimates
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Ovarian Cancer Screening Trial.

Table 2. Association between the metabolomic signature of obesity and colorectal cancer risk in the
PLCO and Jiangsu cohorts.

Cohort
Quartiles of Metabolomic Signature, OR (95% CI) p for

Trend
OR per 1-SD

IncreaseQ1 Q2 Q3 Q4

PLCO No. of cases 47 53 59 64

Age-adjusted model 1 (referent) 1.31
(0.75–2.28)

1.60
(0.93–2.77)

2.01
(1.13–3.57) 0.01 1.34

(1.09–1.65)

Multivariable model a 1 (referent) 1.46
(0.81–2.65)

1.82
(1.00–3.30)

2.21
(1.15–4.25) 0.01 1.38

(1.09–1.75)
Jiangsu No. of cases 41 45 50 54

Age-adjusted model 1 (referent) 1.27
(0.72–2.24)

1.52
(0.86–2.69)

1.87
(1.02–3.45) 0.01 1.34

(1.07–1.67)

Multivariable model a 1 (referent) 1.17
(0.65–2.12)

1.35
(0.74–2.46)

1.70
(0.90–3.19) 0.04 1.28

(1.02–1.62)
a Conditional logistic regression model adjusted for age, smoking status, pack-years of smoking, alcohol intake,
diabetes history, and in the PLCO, study center and family history of colorectal cancer. Abbreviations: PLCO,
Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; OR, odds ratio; CI, confidence interval; SD,
standard deviation.

3.4. Mediation Effect

In the PLCO, a higher BMI was associated with an increased risk of CRC, with an OR
of 1.27 (95% CI: 1.04–1.55), comparing obesity to non-obesity (Figure 3). When adding the
metabolomic signature into the model, the effect of BMI was attenuated to 1.17 (95% CI:
0.92–1.48). The mediation proportion of the signature was 35.7%. In the Jiangsu cohort,
the OR for CRC comparing obesity to non-obesity was 1.46 (95% CI: 1.13–1.88), which was
attenuated to 1.37 (95% CI: 1.05–1.78) when the metabolomic signature was added. The
mediation proportion was 17.0%.
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4. Discussion

Leveraging data from two nested case–control studies, we identified 72 BMI-related
metabolites and created a metabolomic signature for BMI. The signature incorporated
39 metabolites belonging to amino acids, lipids, peptides, carbohydrates, cofactors and
vitamins, xenobiotics, nucleotides, and energy. We found that the signature had a linear
positive association with CRC risk and partially mediated the association between BMI and
CRC in both US and Chinese populations. Therefore, our study provides a panel of blood
metabolites reflective of widespread metabolic disturbances caused by obesity and sheds
light on the underlying mechanisms of colorectal carcinogenesis. The created signature
also holds the potential to improve the identification of individuals at high risk of CRC for
early intervention.

To the best of our knowledge, 54 of 72 BMI-related metabolites identified in the
current study have been reported in previous studies [11,13,29–32]. For example, consistent
with our findings about amino acids, a metabolomic study based on the TwinsUK and
Health Nucleus cohorts also showed positive correlations of BMI with serum levels of
glutamate, N-acetylalanine, creatine, aromatic amino acids (C-glycosyltryptophan, tyrosine,
and phenylalanine), and branched-chain amino acid (leucine, isoleucine, and valine), as
well as inverse correlations with glutamine, asparagine, serotonin, histidine, and several
metabolites involved in glycine, serine and threonine metabolism [13]. Moreover, a two-
sample mendelian randomization study supported the causal effects of BMI on aromatic
amino acids, branched-chain amino acids, and glutamine [33]. The increase of aromatic
amino acids and branched-chain amino acids in obese individuals is thought to be related
to liver dysfunction in catalyzing the metabolites and abnormal expression of amino
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acid catabolic genes in adipose tissue [29]. Additionally, the reduction of glycine levels
with obesity is likely attributed to decreased gut absorption, weakened biosynthesis, and
increased catabolism or urine excretion [34].

In addition to amino acids, lipid derivatives represent another major group of metabo-
lites associated with BMI. In line with our results, several observational studies have
reported that BMI was positively correlated with serum levels of androsteroid mono sulfate
2, carnitine, bile acid derivates, 2-hydroxybutyrate, and 1-oleoylglycero, and was inversely
correlated with androgenic steroids (epiandrosterone sulfate and androsterone sulfate),
medium chain fatty acids, glycerophospholipid metabolites, palmitoyl sphingomyelin, cor-
tisol, and docosahexaenoic [11,13,30]. Adipose tissue is recognized as an important site for
the synthesis, metabolism, and storage of steroid hormones [35]. Functional impairments
of adipose tissue in obese individuals could lead to the imbalance of steroid biosynthesis
and other lipid perturbations [36]. Most of the other BMI-related metabolites in groups
of peptides, carbohydrates, cofactors and vitamins, xenobiotics, nucleotides, and energy
also have been reported in previous studies [11,13,31,32]. Besides, we identified 18 novel
BMI-related metabolites, including 2 amino acids, 11 lipids, 2 peptides, 2 xenobiotics, and
heme, thus providing more comprehensive metabolic disturbances present in obesity.

To further understand the role of obesity-related metabolic alterations in CRC devel-
opment, we established a metabolomic signature of BMI and demonstrated its positive
association with CRC risk. In a previous nested case–control study including 423 pairs of
CRC cases and controls from the EPIC cohort, there was a marginally significant positive as-
sociation between a BMI-related metabolomic signature and CRC risk (OR per 1-SD = 1.16,
95% CI: 0.99–1.35) before the adjustment for anthropometric measures including BMI [14].
Compared with the new signature in our study covering multiple metabolic pathways, the
EPIC signature was only enriched in lipids and amino acids, which might not sufficiently
reflect the effect of obesity on CRC development. A previous study reported that the
inclusion of age, sex, high-density lipoprotein, low-density lipoprotein, total cholesterol,
and triglycerides could explain 31% of the variance in BMI [13], while the metabolomic
signature in our study could explain 53%. Therefore, compared with conventional clinical
indicators, a metabolomic signature might provide additional information and be used to
identify individuals at high risk of CRC.

Among BMI-related amino acids, we observed that glutamine and histidine were
inversely associated with CRC risk in the PLCO. The results are in line with a nested case–
control study of multiple cancer types, including CRC within the EPIC cohort, supporting
that a reduction in the glutamine and histidine levels may precede CRC development [37].
Two hospital-based case–control studies also reported lower serum levels of glutamine
and histidine in CRC patients compared to healthy controls [38,39]. It has been proposed
that glutamine is a trophic and cytoprotective factor of the intestinal mucosa, which may
preserve mucosal integrity, maintain intestinal barrier function, and enhance intestinal
immunity [40,41]. For histidine, experimental studies have shown its anti-inflammatory
effect on intestinal epithelial cells by suppressing nuclear factor-kappa B activation and
proinflammatory cytokine production [42,43].

Moreover, our analysis in the PLCO identified a positive association of andro steroid
mono sulfate 2, an androgen metabolite in serum, with CRC risk. In support of the result, a
nested case–control study of Japanese postmenopausal women reported a positive associa-
tion between total plasma testosterone and CRC risk [44]. Testosterone has the potential
to stimulate the growth of colon cancer cells in vitro, and the effect could be inhibited by
anti-androgens [45]. The exact function of andro steroid mono sulfate 2 remains largely
unknown, and future studies are required to better understand its role in CRC development.
To the best of our knowledge, this study is the first observed inverse association between
gamma-glutamyl glutamine and CRC risk. Gamma-glutamyl glutamine belongs to the
class of organic compounds known as dipeptides. Gamma-glutamyl peptides play a role in
various physiological functions, including anti-inflammatory and antioxidant effects [46].
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However, the role of gamma-glutamyl glutamine in colorectal carcinogenesis needs further
investigation.

Our study has several strengths, including the prospective design, untargeted
metabolomics approach covering a wide range of metabolites, and an independent vali-
dation for the association between the metabolic signature and CRC risk. However, we
also acknowledge several limitations. First, BMI was calculated from self-reported height
and weight in the PLCO, which might introduce information bias. Meanwhile, we lacked
data on other indicators of excess body fat. Second, the correlation analysis for BMI and
metabolites was cross-sectional, limiting causal inference. However, the majority of identi-
fied metabolites are consistent with those reported in previous epidemiologic studies and
supported by biological evidence. Third, metabolomic profiling was conducted only once in
each cohort, and an individual’s metabolite levels may vary over time. However, previous
metabolomic studies of repeated assessments showed that the majority of metabolites in
the blood were stable over at least four years [47,48].

In conclusion, based on two nested case–control studies, we identified a metabolomic
signature of BMI involving multiple metabolic pathways and demonstrated its positive
association with CRC risk. Our study provides novel insights into the mechanisms underly-
ing the obesity–CRC association and informs future research to better identify individuals at
high risk of CRC. Future studies are warranted to uncover metabolic targets and approaches
for improved prevention of CRC.
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