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Abstract: Glioblastoma (GBM) is one of the most aggressive forms of cancer. Although IDH1
mutation indicates a good prognosis and a potential target for treatment, most GBMs are IDH1
wild-type. Identifying additional molecular markers would help to generate personalized therapies
and improve patient outcomes. Here, we used our recently developed metabolic modeling method
(genome-wide precision metabolic modeling, GPMM) to investigate the metabolic profiles of GBM,
aiming to identify additional novel molecular markers for this disease. We systematically analyzed
the metabolic reaction profiles of 149 GBM samples lacking IDH1 mutation. Forty-eight reactions
showing significant association with prognosis were identified. Further analysis indicated that
the purine recycling, nucleotide interconversion, and folate metabolism pathways were the most
robust modules related to prognosis. Considering the three pathways, we then identified the most
significant GBM type for a better prognosis, namely N+P−. This type presented high nucleotide
interconversion (N+) and low purine recycling (P−). N+P−-type exhibited a significantly better
outcome (log-rank p = 4.7 × 10−7) than that of N−P+. GBM patients with the N+P−-type had a
median survival time of 19.6 months and lived 65% longer than other GBM patients. Our results
highlighted a novel molecular type of GBM, which showed relatively high frequency (26%) in GBM
patients lacking the IDH1 mutation, and therefore exhibits potential in GBM prognostic assessment
and personalized therapy.

Keywords: metabolic modeling; metabolic pathway; GPMM; glioblastoma; cancer prognosis

1. Introduction

Glioblastoma (GBM) is the most common and devastating primary brain cancer [1].
This disease has a universally fatal prognosis, with over 85% of patients dying within two
years [2]. As such, much work has been carried out to understand GBM better, as well as to
develop effective treatments and improve the survival time of GBM patients. However,
while many drugs and targets have been proposed, most have failed [3]. Thus, finding
effective therapies against this lethal cancer remains a considerable challenge.

GBM patients can be classified into different types based on the mutation profiles
of different molecular markers [4]. As an important molecular marker, IDH1 mutation
in GBM indicates a better prognosis and a potential target for effective treatment, such
as targeted immunotherapy for tumor-specific epitopes of IDH1 mutation [5]. However,
the IDH1 mutation, which is associated with younger age, only occurs in 5%–10% of all
GBMs [5], with the vast majority being IDH1 wild-type. Thus, identifying new molecular
markers for prognosis in IDH1-wild-type GBMs could help generate personalized therapies
and improve patient outcomes.

An effective way to identify new molecular markers and generate new treatments for
malignancies is by targeting cancer metabolic dysfunction, an emerging cancer hallmark [6].
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Metabolic dysfunction data (metabolomics) include metabolic profiles and biochemical
mechanisms underlying metabolic reprogramming in cancer [7]. Recently, metabolomics
and metabolic fluxes have been found to correlate with the GBM patient outcome [8–10]. In
the current study, we hypothesized that GBMs with different molecular characteristics may
have distinct metabolic profiles and may display variable prognoses. Thus, we focused
on GBMs lacking the IDH1 mutation and attempted to identify a new molecular marker
independent of the IDH1 mutation by determining their metabolic features. As metabolites
and gene expression lack correlation [11], it is difficult to infer metabolic profiles using
typical gene expression analysis, such as differential gene expression and pathway analyses.
Recently, we have developed a novel metabolic modeling method, termed genome-wide
precision metabolic modeling (GPMM), by integrating enzyme kinetics, metabolites, and
proteomics, which can infer metabolic profiles using regular gene expression analysis and
has been successfully applied to disclose metabolic profiles in centenarians [12].

Here, we used GPMM to perform genome-wide metabolic modeling of GBMs lacking
IDH1 mutation and investigated their metabolic profiles. We found a new GBM type
independent of the IDH1 mutant, named N+P−, which exhibited a significantly better
prognosis than other GBM patients. This “good” prognosis type could potentially be used
to personalize cancer therapy and design anti-GBM drugs.

2. Materials and Methods
2.1. GBM Gene Expression Data

The GBM gene expression data were downloaded from the Genomic Data Commons
(GDC) web server using the R package in The Cancer Genome Atlas (TCGA) biolinks. As
the GPMM only supports FPKM input, we only downloaded FPKM values from the GDC.
We obtained 174 samples that have the FPKM values. The source code for downloading the
expression data can be found at: https://github.com/GonghuaLi/Code_for_publications/
tree/master/GPMM_Glioblastoma (accessed on 17 July 2020). The clinical dataset and
mutation information were downloaded from the TCGA cbioportal website (https://www.
cbioportal.org/study/summary?id=gbm_tcga). Of these 174 samples, 149 lacked IDH1
mutations and remained for further analysis.

2.2. Metabolic Modeling

The GPMM software version 1.0 was downloaded from the GitHub website (https:
//github.com/GonghuaLi/GPMM). The metabolic uptake rates of the brain were obtained
from previous literature and are shown in Supplementary Table S1. As the parameters
in GPMM have been optimized in our previous study, the GPMM parameters were also
set as per our centenarian study [12]. All of the settings were shown in “pars.txt” in
our upload code directory (https://github.com/GonghuaLi/Code_for_publications/tree/
master/GPMM_Glioblastoma). Briefly, the human metabolic map, metabolic flux unit,
and gene expression type parameters were set to curated Recon3D [13], µmol/min/L,
and FPKM, respectively. The GPMM first used a mathematical model to estimate relative
protein abundance [14], then used Michaelis–Menten kinetics to fix the upper and lower
flux bounds for each enzyme related to metabolic reactions. Next, the biomass reaction and
ATP production were set as the objective function to constrain the fluxes of the metabolic
network. Finally, Markov chain Monte Carlo (MCMC) sampling was performed to obtain
all metabolic reaction fluxes for each sample. To evaluate the performance of our method,
we have previously carried out a benchmarking analysis using experimental measurements
from the NCI-60 cancer cell lines and compared GPMM with other existing methods. The
result showed that GPMM dramatically improved the performance of the modeling with
an R2 of 0.86 between the predicted and experimental measurements over the performance
of existing methods (for details, see ref. [12]).

https://github.com/GonghuaLi/Code_for_publications/tree/master/GPMM_Glioblastoma
https://github.com/GonghuaLi/Code_for_publications/tree/master/GPMM_Glioblastoma
https://www.cbioportal.org/study/summary?id=gbm_tcga
https://www.cbioportal.org/study/summary?id=gbm_tcga
https://github.com/GonghuaLi/GPMM
https://github.com/GonghuaLi/GPMM
https://github.com/GonghuaLi/Code_for_publications/tree/master/GPMM_Glioblastoma
https://github.com/GonghuaLi/Code_for_publications/tree/master/GPMM_Glioblastoma
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2.3. Survival Analysis

The prognosis profiles of metabolic fluxes were analyzed using the R package from
Bioconductor (https://www.bioconductor.org). The GBM patients were classified using a
median flux cutoff, with samples divided into two subtypes: “high flux” (above median)
and “low flux” (below median) subtypes. Log-rank survival p-values and visualizations
were performed using the R survminer package. A log-rank p-value < 0.01 considered that
the flux is significantly associated with GBM prognosis.

2.4. Differential Gene Expression and Metabolic Flux Analysis

We first calculated the log2-transformed fluxes and then used the eBayes method in the
Limma R package in Bioconductor for differential flux analysis. The p-value cutoff was set as
0.01. By using a similar procedure, differential gene expression analysis was also conducted
using the eBayes method in the Limma R package (version 3.44.3) in Bioconductor.

2.5. Statistical Analysis for Identifying Metabolic Reactions Related to Prognosis

To obtain the robust metabolic reactions related to prognosis, we filtered the reac-
tions using the following criteria: (1) reaction flux significantly associated with prognosis
(p < 0.01); (2) reaction not singular, i.e., correlated with more than one significant reaction
(R > 0.8). After applying these strict criteria, we obtained 12 metabolic modules.

2.6. Flux Pathway Analysis

For flux pathway analysis, we used a similar method to the differential abundance
(DA) score to identify the overall flux changes in a pathway [11]. We used a weighted
differential abundance (WDA) score to analyze pathway abundance in GBM, which was
calculated as follows:

WDA = 100 × Weight × No. f luxes increased − No. f luxes decreased
No. f luxes in this pathway

(1)

where,

Weight =
No. f luxes increased in this pathway + No. f luxes decreased in this pathway

No. total signi f icant f luxes in metabolic network
(2)

3. Results
3.1. Metabolic Profiles of GBM by Metabolic Modeling

To investigate which metabolic pathways are associated with the prognosis of GBM,
we have analyzed the expression profile of metabolic-related genes of the 149 GBM pa-
tients (all lacking IDH1 mutation) based on their transcriptomic data (see Section 2). The
metabolism-related genes considered here were from the state-of-the-art human metabolic
map, Recon 3D, which contains 3288 genes. Among these genes, only 23 were significantly
associated with overall survival time in GBM (Supplementary Table S2), which did not
display enrichment in any metabolic pathway, suggesting that the signals captured by gene
expression data are quite different from that of metabolic modeling. So, additional methods
are required to study the metabolic changes in GBM.

We then used our recently developed metabolic modeling method GPMM to estimate
the metabolic profiles of GBM patients. The GPMM uses a state-of-the-art human metabolic
map and analysis toolbox (Cobra 3.0) [15]. We obtained the core GBM metabolic network
containing 3949 reactions and 1871 metabolites. To investigate which metabolic reactions
were associated with prognosis, we calculated prognosis-related metabolic reactions to
identify new GBM type(s) showing better prognosis.

Results showed that 48 metabolic reactions were linked with overall survival time in
GBM (Supplementary Tables S3 and S4), with 25 and 23 metabolic reactions found to be neg-
atively and positively correlated with survival time, respectively. Several metabolic path-
ways were correlated with poor prognosis, including NAD metabolism, folate metabolism,

https://www.bioconductor.org
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mitochondria transport, and fructose/mannose metabolism (Figure 1A). Interestingly, some
metabolic pathways, including starch and sucrose metabolism, leukotriene metabolism, nu-
cleotide interconversion, and glutathione metabolism, were associated with better outcomes.
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3.2. Robust Metabolic Modules Related to Prognosis

After applying two strict criteria (see Section 2), we obtained 12 robust metabolic
modules related to prognosis. Among them, three modules (purine recycling, nucleotide
interconversion, and folate metabolism) all contained at least three significant reactions
(Figure 1B). Specifically, the purine recycling metabolic module (including the exchange
reaction of 5-O-phosphonato-alpha-D-ribofuranosyl diphosphate: EX_prpp(e), adenine
reversible transport: ADEt, and AMP-pyrophosphate phosphoribosyltransferase: r0051)
(Figure 1B) and folate metabolism module (including dihydrofolate-NAD+ oxidoreductase:
r0512, dihydrofolate-NADP+ oxidoreductase: r0514, and facilitated diffusion of folate:
r0962) were negatively correlated with survival time, whereas the nucleotide interconver-
sion module (including cytidylate kinase (CMP, CTP): CYTK6, nuclear cytidylate kinase
(CMP): CYTK5n, and UMP kinase (UTP): UMPK3) was positively associated with survival
time. The reactions in each module were highly correlated with each other (R > 0.8).

3.3. Defining New GBM Type with Better Prognosis Than IDH1 Mutant-Type

The above three modules were all independent of IDH1 mutation, as all GBM sam-
ples with this mutation were previously disregarded. To define a new GBM type with a
better prognosis, we further performed the survival analysis of reactions in these three
modules. Since the fluxes in each module are highly correlated (rho > 0.8, Figure 1B), we
first selected a representative reaction for each module for prognosis analysis. For example,
Ex_prpp(e), r0512, and CYTY6 represented the purine recycling module, folate metabolism
module, and folate metabolism module, respectively. For each reaction, the patients were
classified into two types based on the flux values, adopted to evaluate whether the reac-
tion activity is associated with the prognosis. In this process, patients with a flux larger
than the median values are defined as having a higher flux class, and vice versa. The
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results showed that patients with lower Ex_prpp(e) reaction (purine recycling module) or
r0512 reaction (folate metabolism module) but higher CYTK6 reaction (nucleotide inter-
conversion module) lived much longer than other patients (p = 0.001, 0.0044, and 0.0012,
respectively; Figure 2A–C).

Metabolites 2023, 13, 172  6  of  11 
 

 

 

Figure 2. Survival profiles of three different reactions in GBM. (A–C): Survival curves of EX_prpp(e), 

CYTK6 and r0512. Patients with high and  low  flux are colored red and green, respectively.  (D): 

Survival curves of combining CYTK6 with EX_prpp(e) reactions, patients with high and low flux 

are colored red and green, respectively. (E): Survival curves of combining EX_prpp(e) with r0512 

reactions, patients with high and  low  flux are  colored  red and green,  respectively.  (F): Survival 

curves of combining R0521 with CYTK6, patients with high and low flux are colored red and green, 

respectively. 

By obtaining a genome‐wide metabolic change map (Figure 3B,C), we found that the 

elevated metabolic reactions were related to the synthesis and metabolism of androgen 

and estrogen, hyaluronan metabolism, lysosomal transport, nucleotide interconversion, 

and  tyrosine metabolism  (Figure  3B).  Furthermore,  the  decreased metabolic  reactions 

were related to the metabolisms of inositol phosphate, phosphatidylinositol phosphate, 

pyrimidine, glutathione, and nuclear transport (Figure 3B). 

3.5. Gene Expression Features of N+P‐ Type 

We performed differential gene expression analysis between N+P‐ and N‐P+ to guide 

GBM treatment through gene expression regulation potentially. Results  identified 1795 

up‐regulated genes and 1797 down‐regulated genes in N+P‐ compared with N‐P+ (Figure 

4A). Enrichment analysis showed that  the up‐regulated genes were enriched  in carbon 

metabolism, oxidative phosphorylation, glutathione metabolism, and the TCA cycle (Fig‐

ure  4B).  In  addition,  the AMPK  signaling,  phospholipase D  signaling,  endocrine  re‐

sistance, and phospholipid metabolic process pathways were all down‐regulated in N+P‐ 

(Figure 4C). Among the up‐regulated KEGG pathways, carbon metabolism was the most 

significant. Carbon metabolism includes one‐carbon metabolism and central carbon me‐

tabolism, which are both related to cancer cell survival [16,17]. Of note is that AMPK was 

the most notable down‐regulated KEGG pathway. AMPK  functions as a “conditional” 

tumor suppressor and “contextual” tumor promoter and exerts a double role in the de‐

velopment/progression of cancer cells by activating different downstream pathways in a 

context‐specific manner [18]. 

Figure 2. Survival profiles of three different reactions in GBM. (A–C): Survival curves of EX_prpp(e),
CYTK6 and r0512. Patients with high and low flux are colored red and green, respectively. (D): Sur-
vival curves of combining CYTK6 with EX_prpp(e) reactions, patients with high and low flux are
colored red and green, respectively. (E): Survival curves of combining EX_prpp(e) with r0512 reac-
tions, patients with high and low flux are colored red and green, respectively. (F): Survival curves of
combining R0521 with CYTK6, patients with high and low flux are colored red and green, respectively.

To determine whether a combination of markers could further improve the signifi-
cance of discrimination in GBM prognosis, we combined two modules out of the three
modules. For example, in the combination of nucleotide interconversion (representative
reaction: CYTK6) and purine recycling (representative reaction: EX_prpp(e)) (Figure 2D),
we compared the prognosis between the patients with higher nucleotide interconversion ac-
tivity (N+) but lower purine recycling activity (P−) and the patients with higher nucleotide
interconversion activity (N−) but lower purine recycling activity (P+). We found that the
combination of nucleotide interconversion and purine recycling (NP) has a hazard ratio
(HR) of 0.32 (log-rank p = 4.7 × 10−7, Figure 2D). For the combination of purine recycling
and folate metabolism, we obtained an HR of 2.67(log-rank p = 1.8 × 10−5, Figure 2E).
For the combination between nucleotide interconversion and folate metabolism, the HR is
0.43 with a log-rank p-value of 1.0 × 10−4 (Figure 2F). This suggested that the combination
of nucleotide interconversion and purine recycling exhibited the best prognosis for IDH1
wild-type GBM (Figure 2D–F). This molecular characteristic, termed N+P− here, showed
higher nucleotide interconversion activity (N+) but lower purine recycling activity (P−). Pa-
tients with N+P− lived significantly longer than those with N−P+ (log-rank p = 4.7 × 10−7).
In addition, N+P− patients exhibited a median overall survival time of 19.6 months and
lived 116% (10.3 months) longer than N−P+ patients (Figure 2D), 34% (12.9 months) longer
than P+ patients, and 65% longer than other GBM patients.
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3.4. Metabolic Profiles of N+P− Type

To examine the metabolic profiles of N+P−, we compared the differences between
N+P− and N−P+ and identified 151 up-regulated fluxes and 154 down-regulated fluxes
(Figure 3A). Among them, the most significantly up-regulated reactions were CYTK6 and
CYTK5n, both belonging to the nucleotide interconversion module. However, the most
significantly down-regulated reactions were EX_prpp(e), ADEt, and r0051, all belonging to
the purine recycling metabolic module.
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in N+P−. The overall metabolic map of Recon was downloaded from the Virtual Metabolic Hu-
man Database (https://vmh.uni.lu/). Three general metabolic pathways, including carbohydrate
metabolism, amino acid metabolism, and fatty acid metabolism, are colored green, orange, and
purple, respectively. The significantly up- and down-regulated reactions in N+P− are colored bold
red and bold blue, respectively.

By obtaining a genome-wide metabolic change map (Figure 3B,C), we found that the
elevated metabolic reactions were related to the synthesis and metabolism of androgen
and estrogen, hyaluronan metabolism, lysosomal transport, nucleotide interconversion,
and tyrosine metabolism (Figure 3B). Furthermore, the decreased metabolic reactions
were related to the metabolisms of inositol phosphate, phosphatidylinositol phosphate,
pyrimidine, glutathione, and nuclear transport (Figure 3B).

https://vmh.uni.lu/
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3.5. Gene Expression Features of N+P− Type

We performed differential gene expression analysis between N+P− and N−P+ to
guide GBM treatment through gene expression regulation potentially. Results identified
1795 up-regulated genes and 1797 down-regulated genes in N+P− compared with N−P+

(Figure 4A). Enrichment analysis showed that the up-regulated genes were enriched in
carbon metabolism, oxidative phosphorylation, glutathione metabolism, and the TCA
cycle (Figure 4B). In addition, the AMPK signaling, phospholipase D signaling, endocrine
resistance, and phospholipid metabolic process pathways were all down-regulated in
N+P− (Figure 4C). Among the up-regulated KEGG pathways, carbon metabolism was
the most significant. Carbon metabolism includes one-carbon metabolism and central
carbon metabolism, which are both related to cancer cell survival [16,17]. Of note is that
AMPK was the most notable down-regulated KEGG pathway. AMPK functions as a
“conditional” tumor suppressor and “contextual” tumor promoter and exerts a double
role in the development/progression of cancer cells by activating different downstream
pathways in a context-specific manner [18].
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Figure 4. Gene expression profile of N+P− GBM samples. (A): Volcano plot of differential gene
expression between the N+P− and N−P+. (B): GO enrichment analysis of up-regulated genes
(1795 genes). (C): GO enrichment analysis of down-regulated genes (1797 genes).

4. Discussion

Cellular metabolism is a complex network containing thousands of reactions and thou-
sands of genes [19,20]. Systematically characterizing the entire metabolic network by using
routine gene expression analysis remains challenging [21], largely due to the poor correla-
tion between cellular metabolite abundance and gene expression [11]. Meanwhile, it was
established that metabolic dysfunction plays an important role in the onset, development,
and metastasis of GBM [10]. Systematically understanding the metabolic characteristics of
GBM would help to provide deeper insights into the underlying mechanism or identify
novel molecular markers of the disease. In fact, although the well-known IDH1 mutation
is a good molecular predictor for favorable outcomes of GBM [4,10], unfortunately, the
majority of GBM patients lack the IDH1 mutation. Therefore, discovering additional novel
molecular markers could greatly help the prognostic assessment and individual treatment
of most GBM patients.

Here, we systematically estimated and analyzed metabolic reactions associated with
prognosis in IDH1-wild-type GBMs using our newly developed GPMM approach [12].
Based on the most recently updated Recon 3 [13], our method can capture thousands of
reactions and facilitate a better understanding of the metabolic profiles of certain diseases
of interest. We then estimated and analyzed the metabolic reaction profiles of 149 GBM
samples lacking the IDH1 mutation. Among the 3949 reactions identified, 48 showed
significant association with prognosis. Further analysis of these 48 reactions showed that
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the purine recycling, nucleotide interconversion, and folate metabolism pathways were the
most robust modules related to prognosis. We then obtained the most significant molecular
characteristics associated with GBM prognosis and defined a new molecular type (N+P−),
which exhibits higher nucleotide interconversion (N+) and lower purine recycling (P−).
Given that our metabolic modeling was constrained by the objective function of biomass
reaction and ATP production using flux balance analysis (FBA), it is possible that the
identified reaction modules might be related to biomass reaction and ATP production.
We performed a large-scale Markov chain Monte Carlo (MCMC) sampling after the FBA
analysis to address this issue. This strategy enables the GPMM to be more robust and, thus,
obtains more reactions that are less related to the biomass equation and ATP production
itself. For example, we used typical FBA analysis to find that 258 reactions are essential
for biomass reaction and ATP production (Supplementary Table S5). However, after large-
scale MCMC sampling was performed, we obtained 3949 reactions for the next step of
the analysis [12,13] (Supplementary Table S3), suggesting that the influence of FBA on
the obtained results is, to some extent, adjusted. In fact, the highlighted reactions in this
study, such as nucleotide interconversion and purine recycling, are less related to biomass
reaction and ATP production.

Interestingly, the molecular characteristics of the newly defined GBM type, namely,
purine recycling and nucleotide interconversion, have already been documented to play im-
portant roles in carcinogenesis, with either lower purine recycling (P−) or higher nucleotide
interconversion (N+) showing anticancer effects. Specifically, purine is an essential substrate
for nucleotide synthesis [22,23] and provides the necessary energy and cofactors to promote
cell survival and proliferation [8,22]. Purine can be produced by the complementary sal-
vage and de novo biosynthetic pathways. The complementary salvage pathway accounts
for most of the cellular requirements for purine by recycling degraded bases [21]. Overacti-
vation of purine recycling can generate additional inosine monophosphate (IMP), which
contributes to the production of various intermediates, such as adenosine, AMP, GMP, and
inosine [21]. Adenosine is known to participate in tumorigenesis [24], whereas AMP and
GMP are important second messengers in cellular signal transduction systems. Thus, these
intermediates could contribute to carcinogenesis. Supporting evidence comes from the
observation that patients with higher purine recycling activation have a significantly poorer
prognosis (Figure 2A).

We also investigated the protein abundance of nucleotide interconversion-associated
genes (HPRT1) and purine recycling-associated genes (CMPK1) and analyzed the rela-
tionship between the abundance of these proteins and GBM prognosis by using the GBM
proteome data reported recently [25]. Unfortunately, the protein abundances of these genes
were not associated with GBM patient survival (p > 0.05), likely because metabolic char-
acteristics are the main factor in our definition of GBM subtypes. A more comprehensive
investigation of metabolism and fluxes would be indispensable to address this issue.

As to nucleotide interconversion, by which extracellular ATP is produced from ADP,
AMP, GTP, and UTP [26], extracellular ATP is considered an anticancer substance [27]. It
can inhibit the growth of a variety of human tumors, induce resistance of nonmalignant
tissues to chemotherapy and radiation therapy [28], and may direct chemotherapeutic
drugs toward brain tumor cells [29]. Higher nucleotide interconversion activity produces
more extracellular ATP and may lead to better outcomes due to the anticancer effects
of extracellular ATP. Indeed, our results showed that patients with higher nucleotide
interconversion activity lived significantly longer (log-rank p = 0.0012). To the best of our
knowledge, this is the first study to link nucleotide interconversion with cancer prognosis.

To obtain the gene expression profile of the N+P− type, we performed gene ontology
(GO) enrichment analysis. The KEGG pathway analyses of GBM samples belonging to the
N+P− type revealed that the gene expression profiles were significantly enriched in the
AMPK signaling pathway. Recent GBM research demonstrated that AMPK rewires GBM
stem cell metabolism and promotes tumor growth [30], supporting our findings that the
AMPK signaling pathway was down-regulated in N+P−.
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Although we have identified a novel GBM subtype using the GPMM approach, using
metabolic reaction fluxes as clinical biomarkers is still challenging, partly due to technical
limitations in measuring them robustly and at scale. Therefore, finding other easily measur-
able value(s) closely related to flux biomarkers, such as metabolites, protein abundance,
etc., collecting more high-quality data, and further experimental validation will be our next
step in the future.

5. Conclusions

Using our newly developed GPMM approach, we investigated the metabolic profiles
of GBM patients lacking IDH1 mutation and successfully identified 48 metabolic reactions
significantly associated with prognosis. Importantly, we defined a novel GBM type (N+P−)
independent of the IDH1 mutant type, exhibiting a significantly better prognosis than other
GBM patients. This type displayed a relatively high frequency (26%) in GBM patients
lacking the IDH1 mutation, indicative of its considerable potential in GBM prognostic
assessment. The characteristics of the N+P− type suggest the possibility of personalized
therapies for IDH1 wild-type GBM by improving nucleotide interconversion and inhibiting
purine recycling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13020172/s1. Table S1: Brain metabolite uptake;
Table S2: Metabolism-related genes that are associated with GBM prognosis; Table S3: Genome-
wide precision metabolic modeling result of all GBM patients; Table S4: Reactions that link to
GBM prognosis; Table S5: Essential reactions for biomass reaction and ATP production.
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