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Abstract: An Aspergillus fumigatus KMM 4631 strain was previously isolated from a Pacific soft coral
Sinularia sp. sample and was found to be a source of a number of bioactive secondary metabolites.
The aims of this work are the confirmation of this strain’ identification based on ITS, BenA, CaM, and
RPB2 regions/gene sequences and the investigation of secondary metabolite profiles of Aspergillus
fumigatus KMM 4631 culture and its co-cultures with Penicillium hispanicum KMM 4689, Amphichorda
sp. KMM 4639, Penicillium sp. KMM 4672, and Asteromyces cruciatus KMM 4696 from the Collection
of Marine Microorganisms (PIBOC FEB RAS, Vladivostok, Russia). Moreover, the DPPH-radical
scavenging activity, urease inhibition, and cytotoxicity of joint fungal cultures’ extracts on HepG2 cells
were tested. The detailed UPLC MS qTOF investigation resulted in the identification and annotation
of indolediketopiperazine, quinazoline, and tryptoquivaline-related alkaloids as well as a number of
polyketides (totally 20 compounds) in the extract of Aspergillus fumigatus KMM 4631. The metabolite
profiles of the co-cultures of A. fumigatus with Penicillium hispanicum, Penicillium sp., and Amphichorda
sp. were similar to those of Penicillium hispanicum, Penicillium sp., and Amphichorda sp. monocultures.
The metabolite profile of the co-culture of A. fumigatus with Asteromyces cruciatus differed from that of
each monoculture and may be more promising for the isolation of new compounds.

Keywords: Aspergillus fumigatus; phylogeny; identification; secondary metabolites; co-cultivation;
UPLC MS qTOF

1. Introduction

Marine microbial ecosystems are characterized by high competition and an uneven
ratio between prokaryotes and eukaryotes. Studies of the microbiome of marine commu-
nities are often limited to prokaryotes, and only a few relevant papers include studies of
both prokaryotes and eukaryotes. Their results show that against the background of a large
diversity of species of bacteria and archaea, fungi are represented by only a few phyla [1,2].
This interspecific competition for resources stimulates the production of various secondary
metabolites by all members of the community. Moreover, a marine bacteria–fungus sym-
biosis was discovered, in which the bacterium can stimulate the fungus to produce an
antibiotic, spiromarmycin, to protect against other bacteria [3].

Understanding the interactions of microbial communities led to the development of
chemical ecology-related cultivation-based strategies, now called the “one strain many
compounds” (OSMAC) approach, in which the microbial co-culture is used to stimulate the
production of new metabolites [4]. One of the first reports was about the isolation of new
diketopiperazines glionitrins A and B from a laboratory co-culture of Aspergillus fumigatus
fungal strain KMC-901 and Sphingomonas bacterial strain KMK-001 [5,6]. Glionitrin A had
high antibacterial and cytotoxic activity [5], while glionitrin B inhibited the invasion of
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DU145 cancer cells [6]. This example confirms the leading role of microbial exolites in
regulating relationships in microbial communities.

For about two decades, this approach has been successfully used to obtain a variety of
low-molecular weight compounds from the co-culture of terrestrial and marine microor-
ganisms. Caudal et al., from 2010 to 2020, reviewed three papers on marine fungi–bacteria
co-cultivation, 11 papers on marine bacteria–bacteria co-cultivation, and 14 papers on two
marine fungal strain co-cultures [7]. Co-culture has the potential to induce the production
of novel metabolites, increase the yield of specific target metabolites with pharmacological
potential, or inhibit the production of metabolites found in axenic culture.

Since the diversity of secondary metabolites allows fungi to adapt more or less success-
fully to various environmental conditions, in some particularly successful cases fungi can
become pathogenic to humans. This happens with the widespread Aspergillus fumigatus.
A. fumigatus is a saprotrophic fungus that is pathogenic in highly immunocompromised
patients because it is found in high concentrations in the atmosphere; it grows faster
than any other airborne fungi at 40 ◦C [8]. The A. fumigatus genome sequence and a
metabolomics analysis revealed the potential for synthesizing more than 200 compounds
and the presence of over 30 gene clusters associated with secondary metabolites. The non-
ribosomal peptide gliotoxin, anthraquinone-derived trypacidin, meroterpenoids fumagillin
and pyripyropene A, heteropolymer dihydroxynaphthalene melanin, tryptophan-derived
indole alkaloids fumigaclavines, diketopiperazine alkaloids fumitremorgins and verrucu-
logen, and fusidane-type triterpenoid helvolic acid are the primary described secondary
metabolites which provide high environmental stability and defensive function against (mi-
crobial) predators [9]. However, the comparative investigation of the secondary metabolite
profile of several A. fumigatus strains isolated from human as well as soil samples showed
that soil-derived A. fumigatus conidia and culture media did not produce toxic compounds
as toxic as fumitremorgins A–C, pyripyropenes E and O, fumigaclavines A–C, helvolic
acid, and pseurotins A, B, D [10].

A. fumigatus fungi are also common in a variety of marine ecosystems. The marine
fungus Aspergillus fumigatus KMM4631 associated with the soft coral Sinularia sp. was
reported as a producer of a number of diketopiperazine and quinazoline alkaloids as well
as triterpenoids, and some of them show promising bioactivity [11–13].

Moreover, promising marine fungal strains such as Penicillium hispanicum KMM 4689,
Amphichorda sp. KMM 4639, Penicillium sp. KMM 4672, and Asteromyces cruciatus KMM 4696
were found and stored in the Collection of Marine Microorganisms (KMM, Vladivostok,
Russia). Recently, some new secondary metabolites were isolated from the co-culture of
Amphichorda sp. KMM 4639 with Aspergillus carneus KMM 4638 [14] and continuing this
investigation is promising.

There are several methods of metabolomic analysis, including NMR, GC-MS, LC-MS,
and FTIR (Fourier transform infrared spectroscopy), each of which has its own limitations
and capabilities. At the same time, the LC-MS method has the best combination of simplicity,
speed, selectivity, and repeatability, and therefore is most widely used for the analysis
of metabolomes [15].

The aim of the present work is the investigation of the secondary metabolite profiles
of Aspergillus fumigatus KMM 4631 culture and its co-cultures with Penicillium hispanicum
KMM 4689, Amphichorda sp. KMM 4639, Penicillium sp. KMM 4672, and Asteromyces
cruciatus KMM 4696, using the UPLC-MS-qTOF technique. Moreover, the DPPH-radical
scavenging activity, urease inhibition, and cytotoxicity of joint fungal cultures’ extracts on
HepG2 cells were tested.

2. Materials and Methods
2.1. General

An Olympus CX41 microscope (Olympus Corporation, Tokyo, Japan) equipped with
an Olympus SC30 camera (Olympus Corporation, Tokyo, Japan) was used for the examina-
tion of fungal cultures and the preparation of photography.
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2.2. Fungal Strains

The fungal strain KMM 4631 was isolated from soft coral Sinularia sp. collected
near Kunashir Island (Kuril islands, north west Pacific Ocean) and identified based on
morphological features as Aspergillus fumigatus [11]. The fungal strain KMM 4639 was
isolated from a sediment sample collected in Van Phong Bay (the South China Sea, Vietnam)
and identified based on molecular features as Amphichorda sp. [14]. The fungal strain KMM
4672 was isolated from brown algae Padina sp. collected in Van Phong Bay (the South
China Sea, Vietnam) and identified based on molecular features as Penicillium sp. [16].
The fungal strain KMM 4689 was isolated from identified soft coral collected near Con
Co Island (the South China Sea, Vietnam) and identified based on molecular features as
Penicillium hispanicum [17]. The fungal strain KMM 4696 was isolated from brown algae
Sargassum pallidum (Vostok Bay, the Sea of Japan) and identified based on molecular features
as Asteromyces cruciatus [18].

All used fungal strains are stored in the Collection of Marine Microorganisms (PIBOC
FEB RAS, Vladivostok, Russia). The strain Penicillium hispanicum KMM 4689 also stored in
the collection of the Nhatrang Institute of Technology Research and Applications under the
code VO49-30.5.

2.3. DNA Extraction and Amplification

The fungal mycelia (mycelium) grew on MEA (malt extract agar) at 25 ◦C for 7 days,
and then genomic DNA was isolated using the MagJET Plant Genomic DNA Kit (Thermo
Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s protocol. PCR
was conducted using GoTaq Flexi DNA Polymerase (Promega, Madison, WI, USA). The
ITS region and partial BenA gene were amplified and sequenced as described in [14]. For
amplification of the partial CaM gene, the standard primer pair cmd5 and cmd6 was
used [19]. The reaction profile was 95 ◦C for 300 s, 35 cycles of 95 ◦C for 30 s, 55 ◦C for 45 s,
and 72 ◦C for 90 s, and finally 72 ◦C for 300 s. For amplification of the partial RPB2 gene,
the standard primer pair RPB2-5F and RPB2-7CR was used [20]. The reaction profile was
an initial denaturation at 95 ◦C for 300 s, followed by 5 cycles at 95 ◦C for 30 s, 60 ◦C for
45 s, 72 ◦C for 120 s, then 5 cycles at 95 ◦C for 30 s, 58 ◦C for 45 s, 72 ◦C for 120 s, and finally
30 cycles of 95 ◦C for 30 s, 54 ◦C for 45 s, 72 ◦C for 120 s, and a final elongation at 72 ◦C for
420 s. The amplified partial CaM and RPB2 genes were purified and sequenced as described
in [14]. Gene sequences were deposited in GenBank under accession numbers OR578448
for ITS, OQ466614 for the partial BenA, OR600992 for the partial CaM, and OR600993 for
the partial RPB2 (Table 1).

Table 1. The strains of the species used in multi-locus phylogenetic analysis and their GenBank
accession numbers.

Species Strain Number
GenBank Accession Number

ITS BenA CaM RPB2

Aspergillus takakii CBS 137454T MN431378 AB787221 AB787566 MN969097
Aspergillus laciniosus CBS 117721T AB299413 AY870756 AY870716 MN969080
Aspergillus spinosus CBS 483.65T EF669988 EF669844 EF669914 EF669775

Aspergillus fumisynnematus CBS 141446T AB250779 AB248076 AB259968 MN969073
Aspergillus lentulus CBS 117885T EF669969 EF669825 EF669895 EF669756

Aspergillus fumigatiaffinis CBS 117186T MN431367 DQ094885 DQ094891 MN969072
Aspergillus oerlinghausenensis CBS 139183T KT359601 KT359603 KT359605 MN969162

Aspergillus fumigatus CBS 133.61T EF669931 EF669791 EF669860 EF669719
Aspergillus fumigatus KMM 4631 OR578448 OQ466614 OR600992 OR600993

Aspergillus fischeri CBS 544.65T EF669936 EF669796 EF669865 EF669724
Aspergillus novofumigatus CBS 117520T MN431372 DQ094886 DQ094893 MN969083

Talaromyces marneffei CBS 388.87T JN899344 JX091389 KF741958 KM023283
T—ex-type strain
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2.4. Phylogenetic Analysis

The ITS region, the partial BenA, CaM, and RPB2 gene sequences of the fungal strain
KMM 4631 and members of genus Aspergillus section Fumigati series Fumigati were aligned
via MEGA X software version 11.0.9 [21] using the Clustal W algorithm. The ex-type
homologs were searched in the GenBank database (http://ncbi.nlm.nih.gov, accessed on
7 September 2023) using the BLASTN algorithm (http://www.ncbi.nlm.nih.gov/BLAST,
accessed on 14 September 2023). The phylogenetic analysis was carried out using MEGA
X software [21]. The ITS region and partial BenA, CaM, and RPB2 gene sequences were
concatenated into one alignment. A phylogenetic tree was constructed according to the
Maximum Likelihood (ML) algorithm based on the Kimura 2-parameter model [22]. The
tree topology was evaluated via 1000 bootstrap replicates. The Talaromyces marneffei CBS
388.87T was used as outgroup (Table 1).

2.5. Cultivation of Fungi

Before co-cultivation, fungal strains were grown in test tubes on slanted wort agar
in sea water for 7 days at 22 ◦C. Pairs of fungal strains were inoculated onto rice medium
simultaneously by transferring a small block of agar medium containing mycelium and
conidia. Inoculation of each strain in a pair was carried out at three points and at some
distance from each other. Co-cultivation was carried out for 21 days at 22 ◦C in 500 mL
Erlenmeyer flasks, each containing natural sea water (Vodolaznaya bay, Troitsa bay, the Sea
of Japan), rice (20.0 g), yeast extract (20.0 mg), and KH2PO4 (10 mg). Fungal monocultures
were obtained in a similar manner.

2.6. Extraction and HPLC MS Analysis
2.6.1. Extraction of Fungal Cultures

Each fungal culture with medium was extracted using EtOAc (100 mL) and then
evaporated in vacuo to prepare a crude extract (Table 2). Then, each extract was dissolved
in methanol and passed through column with C18-SiO2 (YMC Gel ODS-A, 12 nm, S—75 µm,
YMC Co., Ishikawa, Japan).

Table 2. Amounts of the extracts of the fungal cultures.

Fungal Culture Sample Code Mass of Crude Extract, mg

Aspergillus fumigatus KMM 4631 Af 21.1
Aspergillus fumigatus KMM 4631+

Amphichorda sp. KMM 4639 AfAs 14.5

Amphichorda sp. KMM 4639 As 12.7
Aspergillus fumigatus KMM 4631+

Penicillium sp. KMM 4672 AfPs 87.0

Penicillium sp. KMM 4672 Ps 102.1
Aspergillus fumigatus KMM 4631+
Penicillium hispanicum KMM 4689 AfPh 365.0

Penicillium hispanicum KMM 4689 Ph 233.1
Aspergillus fumigatus KMM 4631+
Asteromyces cruciatus KMM 4696 AfAc 39.5

Asteromyces cruciatus KMM 4696 Ac 56.3

The masses of the purified extracts are presented in Table 2.

2.6.2. HPLC MS Analysis of Fungal Extracts

HPLC MS analysis was performed using a Bruker Elute UHPLC chromatograph
(Bruker Daltonics, Bremen, Germany) connected to a Bruker Impact II Q-TOF mass spec-
trometer (Bruker Daltonics, Bremen, Germany). An InfinityLab Poroshell 120 SB-C18
column (2.1 × 150 mm, 2.7 µm, Agilent Technologies, Santa Clara, CA, USA) was used
for chromatographic separation. Chromatographic separation and mass spectrometric
detection were performed as previously described [17].

http://ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/BLAST
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2.6.3. UHPLC-Q-TOF Data Analysis

UHPLC-Q-TOF data were converted from Bruker “.d” formatting to “.mzXML” using
MSConvert 3.0 (part of ProteoWizard 3.0 package, Palo Alto, CA, USA) [23], and further
processing was performed using MZMine (version 2.53) [24] as described previously [17].

Metabolite dereplication was also carried out with an in-house MS/MS spectral library,
comparing experimental spectra and retention times (RTs) with the spectra and RTs ob-
tained for reference compounds. A set of compounds previously isolated from Aspergillus
fumigatus KMM 4631, Penicillium hispanicum KMM 4689, Amphichorda sp. KMM 4639, Peni-
cillium sp. KMM 4672, and Asteromyces cruciatus KMM 4696 was used as standards for the
microbial secondary metabolites. Structures of these compounds were established using
various methods including 1D and 2D NMR spectra. Compounds were dissolved in 75%
MeCN (0.1 µg/mL) and 3 µL of solution was subjected to UHPLC-Q-TOF MS analysis in
the same condition as the studied samples. The full list of the standards for the microbial
secondary metabolites is given in the Supplementary Materials.

In addition, the annotation of some metabolites was performed by comparing the
experimental MS/MS spectra with compounds from the PubChem database using in-silica
fragmentation via the MetFrag service [25].

2.7. Principal Component Analysis (PCA)

PCA analysis, a hierarchical dendrogram, and visualization of the resulting graphs
were performed using the “google colab” web resource based on Python 3.8 using Pan-
das, Seaborn, and Matplotlib libraries. Below is a link to the notepad with the code
used in the analysis: https://drive.google.com/drive/folders/1qov-yZHRKp-L3Qq6
9iiLTakfzxGOpBYI?usp=drive_link (accessed on 7 September 2023).

2.8. Bioassays
2.8.1. Urease Inhibition Assay

The inhibitory activity of the extracts on urease (from Canavalia ensiformis, 1U final
concentration) was estimated by determining ammonia production using the indophenol
method. A reaction mixture consisting of 25 µL enzyme solution and 5 µL of extracts
(100.0 µg/mL final concentration) was preincubated at 37 ◦C for 60 min in 96-well plates.
Next, 55 µL of phosphate-buffered solution with 100 µM urea was added to each well and
incubated at 37 ◦C for 10 min. Next, 45 µL of phenol reagent (1% w/v phenol and 0.005%
w/v sodium nitroprusside) and 70 µL of alkali reagent (0.5% w/v NaOH and 0.1% active
chloride NaClO) were added to each well for 50 min. The pH was maintained at 7.3–7.5 in
all assays. DMSO (5%) was used as a positive control. Optical density at 630 nm was
measured after 50 min at 630 nm using a MultiskanFS microplate reader (Thermo Scientific
Inc., Beverly, MA, USA).

2.8.2. DPPH Radical Scavenger Assay

DPPH (Sigma-Aldrich, Steinheim, Germany) solution at a concentration of 7.5 × 10−3 M
was used for this assay. The concentrations of the test extracts in the mixtures were
100 µg/mL. The mixtures were shaken and left to stand for 30 min, and the absorbance of
the resulting solutions was measured at 520 nm using a microplate reader MultiscanFC
(Thermo Scientific, USA). The radical scavenging activity of the extracts was presented as
% to the control (MeOH).

2.8.3. Cell Culture

The human hepatocarcinoma HepG2 cells were purchased from ATCC (Manassas,
VA, USA). The cells were cultured in DMEM with 10% of fetal bovine serum and 1% of
penicillin/streptomycin (BioloT, St. Petersburg, Russia). For experiments, HepG2 cells were
seeded at concentrations of 5 × 103 cell/well and the experiments were started after 24 h.

https://drive.google.com/drive/folders/1qov-yZHRKp-L3Qq69iiLTakfzxGOpBYI?usp=drive_link
https://drive.google.com/drive/folders/1qov-yZHRKp-L3Qq69iiLTakfzxGOpBYI?usp=drive_link
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2.8.4. Cell Viability Assay

The cells were treated with the extracts at a concentration of 10 µg/mL for 24 h, and cell
viability was measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay, which was performed according to the manufacturer’s instructions (Sigma-
Aldrich, St.-Louis, MO, USA). Optical density at 570 nm was detected using a MultiskanFS
microplate reader (Thermo Scientific Inc., Beverly, MA, USA). The results were presented
as percentages of the control (vehicle) data.

2.8.5. Statistical Data Evaluation

All bioassay data were obtained in three independent replicates, and the calculated val-
ues are expressed as a mean ± standard error mean (SEM). Student’s t-test was performed
using SigmaPlot 14.0 (Systat Software Inc., San Jose, CA, USA) to determine statistical
significance. Differences were considered statistically significant at p < 0.05.

3. Results
3.1. Molecular Identification of the Fungal Strain

To clarify the taxonomic position of the strain KMM 4631 we sequenced the molecular
markers, such as ITS, the partial BenA, CaM, and RPB2 regions. Approximately 1300 bp frag-
ments of the ITS region, about 650 bp fragments of the partial BenA, and about 650 bp and
1200 bp fragments of the CaM and RPB2 genes, respectively, were successfully amplified. A
BLAST search showed that the ITS region, the partial CaM, and RPB2 gene sequences were
100% identical with the sequences of the ex-type strain Aspergillus fumigatus CBS 133.61T,
while the partial BenA gene sequence was more than 99% identical. Phylogenetic ML tree
of the concatenated ITS-BenA-CaM-RPB2 gene sequences clearly showed that the strain
KMM 4631 clusters with the ex-type strain Aspergillus fumigatus CBS 133.61T (Figure 1).
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3.2. Aspergillus fumigatus KMM 4631 Monoculture Metabolites

The UHPLC MS chromatogram of the extract of Aspergillus fumigatus KMM 4631
monoculture (Af) is presented in Figure 2.

In total, 20 compounds were identified in the extract of the monoculture of A. fumigatus
using an in-house database or proposed based on MetFrag and the GNPS database (Figure 3,
Table A1). The detailed characteristics of the annotated compounds are presented in
Appendix A (Table A1).
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The peak detected at 3.2 min (m/z 195.0649) corresponded to the molecular formula
C10H10O4, the same as scytalone (14), which was suggested based on MS/MS comparison
using MetFrag [25]. The peaks detected at 4.2 (m/z 299.1759) and 4.8 min (m/z 239.1519)
corresponded to the molecular formulas C18H22N2O2 and C16H18N2, the same as fumiga-
clavine A (17) and agroclavine (16), respectively; those were suggested based on MS/MS
comparison using MetFrag [25].

The peaks detected at 7.1 and 7.2 min (m/z 432.1664) corresponded to the molecular
formula C22H25NO8, the same as isomeric pseurotin A (11) and D (15), and were suggested
based on MS/MS comparison using GNPS database and MetFrag, respectively. The
peaks detected at 7.6 and 10.4 with m/z 394.1754 and m/z 396.1920 were identified as
6-methoxyspirotriprostatin B (8) and spirotriprostatin A (7), respectively, based on an exact
mass value and RT comparison with an in-house database.

The peaks detected at 7.8 and 8.0 min with m/z 403.1396 corresponded to the molec-
ular formula C22H18N4O4, which can be associated with the stereoisomeric compounds
tryptoquivaline F (9) and tryptoquivaline J (5). The compounds were identified based on
an exact mass value and MS/MS with an in-house database and MetFrag [25].

The peak detected at 8.7 min (m/z 359.1494) corresponded to the molecular formula
C21H18N4O2 and was suggested to be fumiquinazoline F (10) via the GNPS database.
The peaks detected at 9.0 and 9.2 min with m/z 444.1671 corresponded to the molecular
formula C24H21N5O4, which can be associated with the isomeric quinazoline-containing
indole alkaloids fumiquinazoline C (3) and fumiquinazoline D (4). The compounds were
identified based on an exact mass value and MS/MS with an in-house database and
GNPS (MQScore 0.95).

The peak detected at 9.4 min (m/z 359.1480) corresponded to the molecular formula
C21H18N4O2, the same as fumiquinazoline G (19), and it was annotated based on MS/MS
comparison using MetFrag. The peaks detected at 10.1 min with (m/z 380.1971) and at
15.0 (m/z 512.2402) corresponded to the molecular formulas C22H16N4O2, the same as
fumitremorgin C (2), and C27H33N3O7, the same as verruculogen (1), respectively. Both
compounds were identified based on an exact mass value and RT comparison with an
in-house database.



Metabolites 2023, 13, 1138 8 of 46

Metabolites 2023, 13, x FOR PEER REVIEW 8 of 38 
 

 

corresponded to the molecular formulas C18H22N2O2 and C16H18N2, the same as fumi-
gaclavine A (17) and agroclavine (16), respectively; those were suggested based on MS/MS 
comparison using MetFrag [25]. 

The peaks detected at 7.1 and 7.2 min (m/z 432.1664) corresponded to the molecular 
formula C22H25NO8, the same as isomeric pseurotin A (11) and D (15), and were suggested 
based on MS/MS comparison using GNPS database and MetFrag, respectively. The peaks 
detected at 7.6 and 10.4 with m/z 394.1754 and m/z 396.1920 were identified as 6-methox-
yspirotriprostatin B (8) and spirotriprostatin A (7), respectively, based on an exact mass 
value and RT comparison with an in-house database. 

 
Figure 3. The secondary metabolites detected in Aspergillus fumigatus KMM 4631 monoculture. 

The peaks detected at 7.8 and 8.0 min with m/z 403.1396 corresponded to the molec-
ular formula C22H18N4O4, which can be associated with the stereoisomeric compounds 
tryptoquivaline F (9) and tryptoquivaline J (5). The compounds were identified based on 
an exact mass value and MS/MS with an in-house database and MetFrag [25]. 

Figure 3. The secondary metabolites detected in Aspergillus fumigatus KMM 4631 monoculture.

The peak detected at 10.2 min (m/z 357.1338) corresponded to the molecular formula
C21H25N3O3, which can be associated with the fumiquinazoline K (6). The compound
was identified based on an exact mass value and MS/MS with an in-house database
and MetFrag.

The peaks detected at 11.9 min (m/z 584.2507) and 13.8 min (m/z 305.0200) corre-
sponded to the molecular formulas C31H37NO10, the same as pyripyropene A (18), and
C15H9ClO5, the same as 2-chloroemodin (13), respectively, which were proposed based on
MS/MS comparison using MetFrag.

The peak detected at 18.4 min (m/z 281.2487) corresponded to the molecular formula
C18H32O2 and was suggested to be conjugated linoleic acid (10E, 12Z) (12) using the GNPS
database. The peak detected at 20.4 (m/z 429.3348) corresponded to the molecular formula
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C28H44O3, the same as ergosterol peroxide (20). The compound was identified based on
MS/MS and RT comparison with an in-house database as well as a GNPS database.

All identified and annotated compounds were reported for various strains of A. fumiga-
tus [26]. Verruculogen (1), [11] fumitremorgin C (2) [11], fumiquinazolines C (3), D (4) [12],
and K (6) [13], tryptoquivalines J (5) [12] and F (9) [13], 6-methoxyspirotriprostatin B (8) [13],
and spirotriprostatin A (7) [13] were previously isolated from this strain. Compounds 10–20
had not previously been isolated from this strain.

The most intensive peaks detected at 3.4 (m/z 227.0908), 8.2 (m/z 195.1003), 11.7 (m/z
380.1139), 12.7 (m/z 389.1924), 15.1 (m/z 256.2989), 15.8 (m/z 301.1407), 17.6 (m/z 377.2653),
18.4 (m/z 353.2654), and 20.4 (m/z 413.2657) min were not annotated using any available
database and were not associated with common A. fumigatus metabolites.

3.3. Aspergillus fumigatus KMM 4631 and Penicilliun hispanicum KMM 4689
Co-Culture Metabolites

The UHPLC MS chromatograms of extracts of the Penicillium hispanicum KMM
4689 monoculture (Ph) and the co-culture of Aspergillus fumigatus KMM 4631 and Peni-
cillium hispanicum KMM 4689 (AfPh) are presented in Figure 4.
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Emodin (21), desoxyisoaustamide alkaloids 24–32, desoxybrevianamide E (33), bre-
vianamide F (34), austamide (35), citreorosein (36), 2-chlorocitreorosein (37), endocrocin
(38), nephrolaevigatins A–C (39–41), isochromene derivative 43, and ergosterol peroxide
(20), which were earlier identified in this fungal strain using the HPLC MS technique [17]
were detected in Ph extract using an in-house database and GNPS (Figure 5, Table A1).

In AfPh, a total of 28 compounds were identified. They were compounds 12–16, 18,
20, 21, 24–41, and 43. Nephrolaevigatin D (42) and 3,4-dimethoxycinnamic acid (44) were
found in the peaks at 15.0 and 4.9 min, respectively. These compounds were previously
reported as metabolites of Penicillium hispanicum KMM 4689 [17]. Moreover, the peaks
at 10.0 (m/z 329.1005) and 19.8 (m/z 443.3138) were detected only in AfPh and were not
associated with any of the compounds in the used databases.

The content of the compounds identified as the peak areas in in the Af, Ph, and AfPh
extracts, detected in the HPLC MS chromatogram, was visualized in a heatmap (Figure 6).
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The content of 3β-hydroxydeoxyisoaustamide (30), (+)-deoxyisoaustamide (32), nephro-
laevigatin B (40), and 7-hydroxy-3-(2-hydroxypropyl)-5-methylisochromen-1-one (43) was
higher in the AfPh extract in comparison with the Af. Moreover, nephrolaevigatin D (42)
as well as 3,4-dimethoxycinnamic acid (44) were detected in the AfPh extract only. Only
the conjugated linoleic acid (10E, 12Z) (12), 2-chloroemodin (13), scytalone (14), and agro-
clavine (16) observed in the Af extract were also detected in the AfPh. Ergosterol peroxide
(20) was identified in all extracts in equal amounts.

3.4. Aspergillus fumigatus KMM 4631 and Amphichorda sp. KMM 4639 Co-Culture Metabolites

The UHPLC MS chromatograms of extracts of the Amphichorda sp. KMM 4639 mono-
culture (As) and the co-culture of Aspergillus fumigatus KMM 4631 and Amphichorda sp.
KMM 4639 (AfAs) are presented in Figure 7.
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A total of 19 compounds (20, 45–47, 49–58, 60–64) were identified and annotated in
the As extract (Figure 8).

The peaks at 7.1 (m/z 353.1587), 7.2 (m/z 275.1279 [M−H2O+H]+) and 9.7 (m/z
335.1487) min corresponded to the molecular formulas C18H24O7, C16H20O5, and C18H22O6,
which can be associated with the chromene derivatives oxirapentyns F (47), E (46), and B
(45), respectively. This was additionally proven through a comparison of exact mass values
and RT comparison with an in-house database.

The peaks detected at 2.9 min (m/z 371.1711) corresponded to the molecular formula
C18H26O8, which may be associated with isomeric oxirapentyns H (49) and I (50). The RTs
of the reference compounds were very close, and both of the compounds may be contained
in this peak. The peaks at 5.7 (m/z 313.0910), 3.7 (m/z 207.1014), and 10.4 (m/z 231.1009)
min corresponded to the molecular formulas C14H16O8, C12H14O3, and C14H14O3, the same
as isariketide A (52), acremine S (53), and diorcin (54). The compounds were identified
based on an exact mass value and RT comparison with an in-house database.

The peak at 6.2 (m/z 353.1587) min corresponded to the molecular formula C18H24O7,
the same as oxirapentyn J (51). The compound was identified based on an exact mass value
and RT comparison with an in-house database. The main peak was detected at 13.7 (m/z
656.4010) min in the HPLC MS chromatogram. It corresponds to the molecular formula
C35H53N5O7, the same as isaridin E (55). This was suggested through the comparison
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of experimental MS/MS spectra with the GNPS database (MQScore 0.81). It should be
noted that the earlier compounds 45–55 were reported as metabolites of the Amphichorda
sp. KMM 4639 strain [27].
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Many Cordycipitaceae fungi are known to produce various cyclodepsipeptides. The
strain KMM 4639 is no exception. In addition to the main peptide isaridin E (55), we were
able to detect other related metabolites. Unfortunately, their concentration in the extracts
was low and we were unable to obtain MS/MS data to identify them more accurately, so
the presence of these peptides was assumed based on the exact mass values.

Thus, the peaks detected at 12.8 (m/z 642.3870), 13.2 (m/z 642.3870), 13.5 (m/z
596.3997), 14.0 (m/z 670.4187), 14.1 (m/z 670.4187), and 16.0 (m/z 638.4495) min corre-
sponded to the molecular formula C34H51N5O7, C34H51N5O7, C30H53N5O7, C36H55N5O7,
C36H55N5O7, and C33H59N5O7, and were associated with desmethylisaridin E (61), isaridin
F (62), isaridin B (56), psuedodestruxin C (60), isarfelin A (57), and isariin (58).

None of the peptides 56–62 have previously been isolated from the strain KMM 4639.
The peaks detected at 7.5 (m/z 254.0795) and 14.2 (m/z 315.1947) min corresponded

to the molecular formulas C15H11NO3 and C20H26O3, and were associated with viridica-
tol (64) and 1,4a-dimethyl-9-oxo-7-propan-2-yl-3,4,10,10a-tetrahydro-2H-phenanthrene-1-
carboxylic acid (63), based on MS/MS comparison with the GNPS database.

In the AfAs extract a total of 37 compounds were identified. They were compounds 2–6
and 8–20, which were identified in the Af extract, and compounds 45–58 and 60–63, identi-
fied in the As extract. Moreover, the peaks detected in the AfAs extract at 2.2 (m/z 311.1504),
11.8 (m/z 568.3692), and 9.7 (m/z 540.3395) min corresponded to the molecular formulas
C16H22O6, C28H49N5O7, and C26H45N5O7, which can be associated with oxirapentyn G
(48), isariin C (59), and D (65). These compounds were suggested based on exact mass
values. No new unidentified intensive peaks were observed in the AfAs chromatogram.

The content of the compounds identified as the peak areas in the Af, As, and AfAs
extracts, detected in the HPLC MS chromatogram, was visualized in a heatmap (Figure 9).
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3.5. Aspergillus fumigatus KMM 4631 and Penicillium sp. KMM 4672 Co-Culture Metabolites 

Figure 9. The heatmap of the content of compounds identified in the fungal extracts Af, As, and
AfAs. Each cell presents a peak area in the HPLC MS chromatogram.

The Af metabolites 2–6, 9–12, and 18 were observed in the AfAs extract in equal
amounts compared with the Af, while compounds 1, 7, 13, and 16 were not detected in
the AfAs, and 8, 14 were detected in a smaller amount. Only fumigaclavine A (17) was
produced in the AfAs extract in higher amount than in the Af.

The As metabolites 45–47, 51–57, and 60–63 were observed in the AfAs extract in equal
amounts in comparison with the As, while 50, 58, and 64 were not detected. The amount of
oxirapentyn H (49) was higher in the AfAs than in the As extract, and oxirapentyn G (48),
isariin C (59) and isariin D (65) were detected only in the AfAs extract.
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3.5. Aspergillus fumigatus KMM 4631 and Penicillium sp. KMM 4672 Co-Culture Metabolites

The combined UHPLC MS chromatograms of the extracts of Penicillium sp. KMM
4672 monoculture (Ps) and the co-culture of Aspergillus fumigatus KMM 4631 and Penicillium
sp. KMM 4672 (AfPs) are presented in Figure 10.
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In total, 16 compounds were identified and annotated in the Ps extract (Figure 11,
Table A1).
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The main peak in the HPLC MS chromatograms was detected at 5.4 min. The base
peak with m/z 237.0670 corresponded to the molecular formula C14H8N2O2, the same as
quinolactacide (66) [28]. The compound was identified based on an exact mass value and
RT comparison with an in-house database.

The peaks at 2.2 (m/z 211.0603) and 3.0 (m/z 195.0654) min corresponded to the molec-
ular formulas C10H10O5 and C10H10O4, which can be associated with 4-hydroxyscytalone
(79) and 4-hydroxy-6-dehydroxyscytalone (80) [29]. The compounds were identified based
on exact mass values and RT comparisons with an in-house database.

The peaks at 2.4 (m/z 233.0925), 2.6 (m/z 176.0717), and 2.7 (m/z 141.0548) min
corresponded to the molecular formulas C12H12N2O3, C10H9NO2, and C7H8O3, which can
be associated with the melatonin derivative hydroxy-N-acetyl-β-oxotriptamine (74) [30],
4-methoxyisoquinolin-1(2H)-one (71), and 4-hydroxy-3,6-dimethyl-2-pyrone (73) [31]. The
compounds were identified based on exact mass values and RT comparisons with an
in-house database.

The peak at 4.4 min with m/z 339.0979 corresponded to the molecular formula
C18H16N2O6 ([M−H2O+H]+ ion), the same as citriperazine D (75) [32]. This was addition-
ally proven through a comparison of experimental MS/MS spectra and RT comparison
with an in-house database.

The peaks detected at 4.6 (m/z 193.0856) and 7.5 (m/z 239.0913) min corresponded to
the molecular formulas C11H14O4 ([M−H2O+H]+) and C12H14O5, the same as anserinone
B (68) and formylanserinone B (69) [33], respectively. The compounds were identified based
on exact mass values and RT comparisons with an in-house database.

The peaks at 5.3 (m/z 207.0651, [M−H2O+H]+), 8.7 (m/z 209.1175), and 9.7 (m/z
192.1390) min corresponded to the molecular formulas C11H12O5, C12H16O3, and C12H17NO,
the same as 6-methylcurvulinic acid (70) [34], 3,5-dimethyl-8-methoxy-3,4-dihydro-1H-
isochromene-6-ol (67) [35], and N,N-diethyl-3-methylbenzamide (72) [36]. The compounds
were identified based on exact mass values and RT comparisons with an in-house database.

The peaks at 5.4 (m/z 513.0988) and 8.1 (m/z 531.0662) min corresponded to the
molecular formulas C21H24N2O9S2 and C21H23ClN2O8S2, the same as pretrichodermamide
C (76) and N-methylpretrichodermamide B (77) [16,37], respectively. The compounds were
identified based on exact mass values and RT comparisons with an in-house database. The
peak at 5.9 min (m/z 513.0988) corresponded to the molecular formula C21H24N2O9S2, the
same as pretrichodermamide D (78). This was additionally proven through a comparison
of experimental MS/MS spectra and RT comparison with an in-house database. Moreover,
ergosterol peroxide (20) was detected in the Ps extract.

The earlier compounds 66–82 were reported as metabolites of Penicillium sp.
KMM 4672 [16,29,30,32,36].

In the AfPs extract the compounds 5, 12–20, 66–68, and 70–80 were identified. More-
over, the peak at 2.6 min with m/z 183.0659 in the HPLC MS chromatogram of the AfPs
extract corresponded to the molecular formula C9H10O4, which can be associated with
3-methylorsellinic acid (81). The compound was suggested based on an exact mass value.
Compound 81 was also previously isolated from this fungal strain [30].

In addition, the intensive peaks at 12.7 (m/z 214.2518), 16.3 (m/z 498.3788), and
23.4 (m/z 791.5300) were detected both in AfPs and Ps extracts, but their intensities in the
AfPs extract were more than 20 times higher than in the Ps.

The content of the compounds identified as the peak areas in the Af, Ps, and AfPs
extracts, detected in the HPLC MS chromatogram, is visualized in a heatmap (Figure 12).

The Af metabolites 5, 12, and 14 were detected in the AfPs extract in equal amounts
compared with the monoculture. The content of 15 and 17–19 was less than in the Af extract
and 1–4, 6–11, and 13 were not detected in the AfPs. Only the amount of agroclavine (16)
was higher in the AfPs extract than in the Af.

The Ps metabolites 70 and 73–81 were detected in the AfPs extract in equal amounts,
and only formylanserinone B (69) was not detected in the AfPs extract. The amounts of
67 and 68 were less in the AfPs extract than in the Ps, while the content of quinolactacide
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(66), 4-methoxyisoquinolin-1(2H)-one (71), and N,N-diethyl-3-methylbenzamide (72) was
higher in the AfPs extract than in the Ps.
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3.6. Aspergillus fumigatus KMM 4631 and Asteromyces cruciatus KMM 4696
Co-Culture Metabolites

The UHPLC MS chromatograms of the Asteromyces cruciatus KMM 4696 monoculture
(Ac) and the co-culture of Aspergillus fumigatus KMM 4631 and Asteromyces cruciatus KMM
4696 (AfAc) extracts are presented in Figure 13.
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In total, 13 compounds were identified and annotated in the Ac extract (Figure 14,
Table A1).
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Figure 14. The compounds identified in Ac and AfAc extracts.

The peak at 4.6 min with m/z 206.0810 corresponded to the molecular formula
C11H11NO3. It was suggested to be indolelactic acid (94) [38] based on MS/MS comparison
using the GNPS database.

The peak at 4.9 min with m/z 239.0895 corresponded to the molecular formula
C12H14O5, the same as trans-3,4-dihydroxy-3,4-dihydroanofinic acid (89) [39]. This was
proven through a comparison of experimental MS/MS spectra and RT comparison with an
in-house database.

The peak at 6.2 min with m/z 191.0707 corresponded to the molecular formula
C11H10O3, the same as 7-hydroxymethyl-1,2-naphthalenediol (91) [40]. The compound was
identified based on an exact mass value and RT comparison with an in-house database.

The peaks detected at 6.4 (m/z 277.1063) and 5.2 (m/z 277.1062) min corresponded to
the molecular formula C15H16O5, which can be associated with the isomeric anthraquinone
derivatives acruciquinone A (82) [41] and rubrumol (87) [42]. The comparison of exper-
imental MS/MS spectra and an RT comparison with the values obtained for reference
compounds showed that the RTs of 6.4 and 5.2 min correspond to acruciquinone A (82) and
rubrumol (87), respectively.

The peaks detected at 4.6 (m/z 279.1226) and 4.9 (m/z 279.1226) min corresponded to
the molecular formula C15H18O5, which can be associated with the isomeric anthraquinone
derivatives acruciquinone C (83) and coniothyrinone D (85). The comparison of experi-
mental MS/MS spectra and an RT comparison with the value obtained for the reference
compound showed that a RT of 4.9 min corresponds to coniothyrinone D (85) [43]. The
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peak detected at 4.6 min with the same m/z very likely corresponds to acruciquinone C
(83) [41], but this peak was detected in extracts only in trace quantities, so we have no
MS/MS for exact identification.

The peak detected at 3.8 min with m/z 291.0853 corresponded to the molecular formula
C15H14O6, the same as pleosporon (84) [44]. The compound was identified based on an
exact mass value and RT comparison with an in-house database.

The peaks detected at 7.0 (m/z 263.1272) and 10.1 (m/z 255.0652) corresponded to the
molecular formula C15H18O4 and C15H10O4, which can be associated with coniothyrinone B
(86) [43] and 9,10-anthracenedione (88). This was additionally proven through a comparison
of experimental MS/MS spectra and RT comparison with an in-house database.

The peak detected at 7.8 min with m/z 221.0819 corresponded to the molecular formula
C12H12O4, the same as quadricinctapyran A (90) [45]. The compound was identified based
on an exact mass value and RT comparison with an in-house database.

The peaks detected at 8.3 (m/z 355.1160) and 4.1 (m/z 231.0777) corresponded to the
molecular formula C16H22N2O3S2 and C11H15ClO3, which can be associated with gliovictin
(92) [46] and acrucipentyn A (93) [18]. This was additionally proven through a comparison
of experimental MS/MS spectra and an RT comparison with an in-house database.

In the AfAc extract the compounds 2, 5, 6, 8, 9, 11–16, 18–21, 89, 91, and 94 were
identified. Moreover, the peaks at 7.3 (m/z 426.2035, C23H27N3O5) and 7.4 (m/z
357.0936, C15H20N2O4S) min were associated with cyclotryprostatin B (22) and
bisdethiobic(methylthio)gliotoxin (23). They were previously isolated from Aspergillus
fumigatus KMM 4631 [11,12], but in the present study both these compounds were identi-
fied in the AfAc extract only.

In addition, the intensive peaks at 5.4 (m/z 470.1496) and 5.5 (m/z 877.3782) min were
detected only in the AfAc chromatogram, while the intensive peaks found at 2.3 (m/z
113.0598), 4.8 (m/z 183.0649), and 13.7 (m/z 233.1154) min were 10–20 times more intensive
in the AfAc chromatogram than in the Ac.

The content of the compounds identified as the peak areas in the Af, Pc, and AfAc
extracts, detected in the HPLC MS chromatogram, is visualized in a heatmap (Figure 15).
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Figure 15. The heatmap of the content of compounds identified in the fungal extracts Af, Ac, and
AfAc. Each cell presents a peak area in the HPLC MS chromatogram.

The Af metabolites 2, 8, 9, 14, 16, and 18 were detected in the AfAc extract in equal
amounts compared with the Af. The amount of 6, 11, 12, 15, and 19 was less in the AfAc
extract than in the Af, while 1, 3, 4, 7, 10, 13, and 17 were not detected in the AfAc extract.
It was surprising that the content of tryptoquivaline J (5) was significantly higher in the
AfAc extract than in the Af.
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The Ac metabolites 82–88, 90, 92, and 93 were not detected in the AfAc extract and only
89, 91, and 94 were observed in the AfAc extract in equal amounts in comparison with the
monoculture. Emodin (21), cyclotryprostatin B (22), and bisdethiobis(methylthio)gliotoxin
(23) were detected only in the AfAc extract.

3.7. PCA Analysis of the HPLC MS Chromatograms of Fungal Extracts

Principal component analysis (PCA) was utilized to differentiate between the extracts
analyzed via UHPLC MS. The PCA model revealed an optimal number of principal com-
ponents (PCs) equal to two, so two PCs (PC1 and PC2) were chosen to describe ≈40%
of the variation in the samples. The first principal component describes approximately
21% of the variance, and ≈19% of the variation is described by the second principal
component (Figure 16).
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Figure 16. The principal component analysis (PCA) of all studied extracts.

The results of the PCA analysis showed that the extracts of both Penicillium strains
Ph and Ps are very close to their co-cultures with A. fumigatus, AfPh and AfPs, in terms of
the two principal components. The AfAc extract is the closest to the Af in PC1, and the Ac
extracts is the most different from other extracts in PC1. The AfAs extract is a bit closer to
the As than to the Af extract in PC2.

The studied extracts were divided into three clusters based on the PCA of the UHPLC
MS data, which was visualized in a dendrogram (Figure 17).

The dendrogram confirms the relationships between the extracts visualized on the
PCA plot.

3.8. Influence of Co-Cultivation on the Biological Activity of Fungal Extracts

The joint cultivation of different fungal strains induces cell wall integrity (CWI) stress,
the limitation of nutrition and O2, and oxidative stress, which results in the activation of
various adaptive strategies including the production of direct or indirect antioxidants or
secondary metabolites targeting the suppression of a competitor’s viability. Oxidative stress
induces the production of reactive oxygen and nitrogen species which can be scavenged by
direct antioxidants. Urease (urea amino hydrolase), which hydrolyzes urea to ammonia
and carbamate, is an important virulent factor for some fungi like Helicobacter pylori and
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other bacteria [47]. The inhibition of urease activity can result in a decrease of urease-
producing strains’ virulence, so, it may be one of the defense strategies in joint fungus–
fungus cultivation [48]. Also, secondary metabolites with cytotoxic properties are produced
during fungal co-cultivation [49,50].
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Thus, the effect of fungal mono- and co-culture extracts on DPPH radical scavenging,
urease activity, and human hepatocarcinoma HepG2 cell viability was investigated, and
some data are presented in Figure 18.

The DPPH radical scavenging activity of the Af extract was 22.9%. The AfPh extract
scavenged 46.6% of DPPH radicals, while the Ph extract scavenged only 16.0% of DPPH
radicals (Figure 18a).

The extract of AfAc scavenged 53.4% of DPPH radicals, while the Ac extract decreased
the quantity of DPPH radicals by only 48.5% (Figure 18c).

The extract of Af inhibited the activity of urease only by almost 1% while the AfPh
and AfAc extracts inhibited urease activity by 5.7% and 8.5%, respectively.

The extract of Af decreased HepG2 cell viability by 10.0% while the AfAs extract was
more toxic and decreased HepG2 cell viability by 30.5% (Figure 18b).

The cytotoxicity, as well as the DPPH radical scavenging and urease inhibition activi-
ties, of the AfPs extract did not differ from those of the Af extract.
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4. Discussion

In the present work, the metabolite profiles of marine A. fumigatus strain KMM 4631
and other marine fungi Amphichorda sp. KMM 4639, Penicillium sp. KMM 4672, and
Asteromyces cruciatus KMM 4696 were investigated for the first time. This helps us to study
the metabolite profiles of co-cultures of A. fumigatus with Amphichorda sp., Penicillium sp.,
Asteromyces cruciatus, and Penicillium hispanicum KMM 4689.

In total, 20 known compounds were analyzed in this marine A. fumigatus strain and
some of them had not yet been isolated from this fungus. A number of secondary metabo-
lites such as gliotoxin, fumagillin, fumigaclavines, fumitremorgins, and fumiquinazolines
have previously been described as the main virulence factors of A. fumigatus [51]. The
strains isolated from environmental sources may display a decreased production of these
metabolites [10], which can result in the higher stress sensitivity of non-pathogenic strains.
It has been reported that non-pathogenic A. fumigatus Af293, isolated from decaying or-
ganic and plant matter, exhibits moderate tolerance to the cell wall stress caused by Congo
Red and Calcofluor White, and moderate sensitivity to the oxidative stress induced by
menadione and H2O2 [52]. Fusidane-type triterpenoid helvolic acid [53], which aids in
the colonization of mammalian cells by A. fumigatus, decreasing the beat frequency of
the ciliated respiratory epithelium, as does as fumagillin [51], was not identified in the
marine isolate of A. fumigatus studied in the present investigation. On the other hand, an
unusual nordammarane triterpenoid was isolated from this marine A. fumigatus strain [13],
and its biological role may be related to adaptation to marine environments like the anti-
inflammatory nordammarane triterpenoid decurrencyclic A [54]. Moreover, nine intensive
peaks in the LC-MS chromatogram of the A. fumigatus extract were not annotated with any
common metabolites of A. fumigatus, and this 15-year-ago-investigated strain may have
become “second born”, via the use of actual techniques for the isolation and identification
of minor natural compounds.

The joint cultivation of fungi mimics natural communities and can have significant
effects on the biosynthesis of secondary metabolites. In addition to resource limitations,
physical contact during co-culture induces cell wall integrity (CWI) stress [55], both of
which cause changes in the production of compounds that act as second messengers or
directly (e.g., direct antioxidants).

The metabolite profiles of co-cultures of A. fumigatus with two Penicillium strains, KMM
4672 and KMM 4689, were very close to the profiles of the monocultures of those Penicillium
fungi. Nevertheless, their co-cultivation with P. hispanicum KMM 4689 resulted in the
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detection of two new unidentified compounds. Furthermore, three previously unidentified
compounds were detected in significantly higher amounts in the co-culture of A. fumigatus
and Penicillium sp. KMM 4672. The mixed cultivation of A. fumigatus and P. hispanicum
resulted in the increased DPPH radical scavenging and urease inhibition activities of the
co-culture extract. However, these activities have not been previously reported for the
known metabolites identified in the A. fumigatus and Penicillium hispanicum co-culture.

The metabolite profile of the co-culture of A. fumigatus with Amphichorda sp. was like
that of the Amphichorda sp. monoculture. Three metabolites that were previously reported
for Amphichorda sp. were detected only in the co-culture extract, but no new unidentified
compounds were observed when A. fumigatus was cultivated with Amphichorda sp. A
significant increase in cytotoxic activity was observed for an extract of this co-culture and
it was accompanied by the detection of oxirapentyn G, isariin C, and isariin D in this
extract. Isariin C has been reported as insecticidal against Galleria mellonella [56], as has
isariin D [57], but cytotoxic activity has not yet been published for these depsipeptides. The
cytotoxic activity of oxirapentyn G has also not been reported. Thus, the extract of the A.
fumigatus and Amphichorda sp. joint culture may contain unidentified cytotoxic compounds.

The metabolite profile of the co-culture of A. fumigatus with Asteromyces cruciatus
is more distinct from those of each monoculture. Three known fungal metabolites were
detected only in this co-culture and three unidentified compounds were observed in signif-
icantly higher amounts compared with the monocultures. In addition, the co-cultivation of
A. fumigatus with Asteromyces cruciatus resulted in the production of two new unidentified
compounds in significant amounts.

As noted above, gliotoxin was not identified in the extract of A. fumigatus KMM
4631, and its derivative bisdethiobis(methylthio)gliotoxin was observed only in the co-
culture of A. fumigatus with Asteromyces cruciatus. Gliotoxin via the action of gliotoxin
bis-thiomethyltransferase (GtmA) can transform into bisdethiobis(methylthio)gliotoxin [58].
This mechanism of self-protection against toxicity induced by cycling between the ox-
idized and reduced dithiol form and the generation of reactive oxygen species was re-
ported for A. fumigatus [59], but could also be true for other fungi. Thus, gliotoxin, dehy-
droxybisdethiobis(methylthio)gliotoxin, and bisdethiobis(methylthio)gliotoxin were isolated
also from a marine Pseudallescheria fungus [60]. It was previously reported that the produc-
tion of gliotoxin was changed in response to contact with other microorganisms during
co-cultivation [61]. So, gliotoxin plays a double role, i.e., it can both regulate the growth of a
competitor fungus [62] and protect the producing fungus, as an antioxidant [63] during CWI
stress. In the present work, the derivative of gliotoxin was detected only in the co-culture
of A. fumigatus with Asteromyces cruciatus. At this stage of our investigation it is difficult to
say which of them is responsible for the production of this gliotoxin derivative—it could
be either the result of A. fumigatus’ self-protection or the result of a defense strategy of
Asteromyces cruciatus.

The co-culture extract exhibited a significant increase in both DPPH radical scavenging
and urease inhibition activities. Previously, urease inhibition activity has been reported for
trans-3,4-dihydroxy-3,4-dihydroanofinic acid and 7-hydroxymethyl-1,2-naphthalenediol
from Asteromyces cruciatus [41], but the detection of only these two metabolites in the
co-culture of A. fumigatus and Asteromyces cruciatus cannot explain the increase in the urease
inhibition activity of the joint culture extract. Furthermore, the observed increase in DPPH
radical scavenging activity of the co-culture extract raises further questions.

These results confirm that competition between fungi in the communities is carried
out, among other things, through chemical communication. Exolites that are capable of
scavenging active radicals play a protective role in the interactions between community
members. An increase in the radical scavenging activity of extracts directly indicates the
activation of the defense system of one or both fungi in their joint culture [64]. The urease
enzyme is important in modifying microenvironmental conditions and is utilized by a
wide range of prokaryotes and microeukaryotes, including fungi [65]. The inhibition of
urease activity can reduce the virulence and the viability of its producers. Therefore, the
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effectiveness of a well-known drug targeted at Helicobacter pylori is based on the suppression
of urease activity [66]. The enhanced ability to inhibit urease activity found in extracts of A.
fumigatus and Asteromyces cruciatus, as well as the A. fumigatus and P. hispanicum co-cultures,
indicates that fungi use a tactic involving affecting another member of the community. An
increase in the cytotoxic activity of the extract of another joint culture also confirms the use
of an aggressive strategy by fungi in the community [67].

5. Conclusions

Thus, the joint cultivation of the marine non-pathogenic strain Aspergillus fumigatus
KMM 4631 with two marine Penicillium fungi may result in the production of some novel
compounds. The co-cultivation of Aspergillus fumigatus with Asteromyces cruciatus KMM
4696 resulted in more pronounced changes in secondary metabolite biosynthesis and may
be the most promising for the isolation of unknown compounds or for enhancing the
production of known bioactive metabolites.
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Appendix A

Table A1. The secondary metabolites identified in Aspergillus fumigatus KMM 4631 (Af), Penicillium hispanicum KMM 4689 (Ph), Amphichorda sp. KMM 4639 (As),
Penicillium sp. KMM 4672 (Ps), and Asteromyces cruciatus KMM 4696 (Ac) monoculture extracts and the Aspergillus fumigatus co-cultures with other investigated fungi.

N Name Structure RT Exact Mass (Measured) Exact Mass (Calcd) ∆, ppm Score

1 Af verruculogen
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Table A1. Cont.

N Name Structure RT Exact Mass (Measured) Exact Mass (Calcd) ∆, ppm Score
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Table A1. Cont.

N Name Structure RT Exact Mass (Measured) Exact Mass (Calcd) ∆, ppm Score
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N Name Structure RT Exact Mass (Measured) Exact Mass (Calcd) ∆, ppm Score
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Table A1. Cont.

N Name Structure RT Exact Mass (Measured) Exact Mass (Calcd) ∆, ppm Score
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Table A1. Cont.

N Name Structure RT Exact Mass (Measured) Exact Mass (Calcd) ∆, ppm Score

43 Ph
AfPh
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(2-hydroxypropyl)-

5-methylisochromen-
1-one
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Table A1. Cont.

N Name Structure RT Exact Mass (Measured) Exact Mass (Calcd) ∆, ppm Score

49 As
AfAs oxirapentyn H

Metabolites 2023, 13, x FOR PEER REVIEW 30 of 38 
 

 

43 Ph 
AfPh 

7-hydroxy-3-(2-
hydroxypropyl)-

5-methyli-
sochromen-1-one  

5.2 235.0949 
[M+H]+ 235.0965 −6.8  

44 AfPh 
3,4-dimethox-

ycinnamic acid 

 

4.9 
209.0805 
[M+H]+ 209.0804 0.5  

45 
As 

AfAs oxirapentyn B 

 

9.7 
335.1487 
[M+Н]+ 335.1489 −0.6  

46 
As 

AfAs oxirapentyn E 

 

7.2 
275.1279 

[M-H2O+Н]+ 275.1278 0.4  

47 As 
AfAs 

oxirapentyn F 

 

7.1 353.1587 
[M+Н]+ 

353.1595 −2.3  

48 AfAs oxirapentyn G 

 

2.2 
311.1504 
[M+Н]+ 311.1489 4.8  

49 As 
AfAs 

oxirapentyn H 

 

2.9 371.1704 
[M+Н]+ 

371.1700 1.1  

50 
As 

AfAs oxirapentyn I 

 

2.9 
371.1704 
[M+Н]+ 371.1700 1.1  

51 
As 

AfAs oxirapentyn J 

 

6.2 
353.1587 
[M+Н]+ 353.1595 −2.3  

52 
As 

AfAs isariketide A 

 

5.7 
313.0910 
[M+Н]+ 313.0918 −2.6  

2.9 371.1704
[M+H]+ 371.1700 1.1

50 As
AfAs oxirapentyn I

Metabolites 2023, 13, x FOR PEER REVIEW 30 of 38 
 

 

43 Ph 
AfPh 

7-hydroxy-3-(2-
hydroxypropyl)-

5-methyli-
sochromen-1-one  

5.2 235.0949 
[M+H]+ 235.0965 −6.8  

44 AfPh 
3,4-dimethox-

ycinnamic acid 

 

4.9 
209.0805 
[M+H]+ 209.0804 0.5  

45 
As 

AfAs oxirapentyn B 

 

9.7 
335.1487 
[M+Н]+ 335.1489 −0.6  

46 
As 

AfAs oxirapentyn E 

 

7.2 
275.1279 

[M-H2O+Н]+ 275.1278 0.4  

47 As 
AfAs 

oxirapentyn F 

 

7.1 353.1587 
[M+Н]+ 

353.1595 −2.3  

48 AfAs oxirapentyn G 

 

2.2 
311.1504 
[M+Н]+ 311.1489 4.8  

49 As 
AfAs 

oxirapentyn H 

 

2.9 371.1704 
[M+Н]+ 

371.1700 1.1  

50 
As 

AfAs oxirapentyn I 

 

2.9 
371.1704 
[M+Н]+ 371.1700 1.1  

51 
As 

AfAs oxirapentyn J 

 

6.2 
353.1587 
[M+Н]+ 353.1595 −2.3  

52 
As 

AfAs isariketide A 

 

5.7 
313.0910 
[M+Н]+ 313.0918 −2.6  

2.9 371.1704
[M+H]+ 371.1700 1.1

51 As
AfAs oxirapentyn J

Metabolites 2023, 13, x FOR PEER REVIEW 30 of 38 
 

 

43 Ph 
AfPh 

7-hydroxy-3-(2-
hydroxypropyl)-

5-methyli-
sochromen-1-one  

5.2 235.0949 
[M+H]+ 235.0965 −6.8  

44 AfPh 
3,4-dimethox-

ycinnamic acid 

 

4.9 
209.0805 
[M+H]+ 209.0804 0.5  

45 
As 

AfAs oxirapentyn B 

 

9.7 
335.1487 
[M+Н]+ 335.1489 −0.6  

46 
As 

AfAs oxirapentyn E 

 

7.2 
275.1279 

[M-H2O+Н]+ 275.1278 0.4  

47 As 
AfAs 

oxirapentyn F 

 

7.1 353.1587 
[M+Н]+ 

353.1595 −2.3  

48 AfAs oxirapentyn G 

 

2.2 
311.1504 
[M+Н]+ 311.1489 4.8  

49 As 
AfAs 

oxirapentyn H 

 

2.9 371.1704 
[M+Н]+ 

371.1700 1.1  

50 
As 

AfAs oxirapentyn I 

 

2.9 
371.1704 
[M+Н]+ 371.1700 1.1  

51 
As 

AfAs oxirapentyn J 

 

6.2 
353.1587 
[M+Н]+ 353.1595 −2.3  

52 
As 

AfAs isariketide A 

 

5.7 
313.0910 
[M+Н]+ 313.0918 −2.6  

6.2 353.1587
[M+H]+ 353.1595 −2.3

52 As
AfAs isariketide A

Metabolites 2023, 13, x FOR PEER REVIEW 30 of 38 
 

 

43 Ph 
AfPh 

7-hydroxy-3-(2-
hydroxypropyl)-

5-methyli-
sochromen-1-one  

5.2 235.0949 
[M+H]+ 235.0965 −6.8  

44 AfPh 
3,4-dimethox-

ycinnamic acid 

 

4.9 
209.0805 
[M+H]+ 209.0804 0.5  

45 
As 

AfAs oxirapentyn B 

 

9.7 
335.1487 
[M+Н]+ 335.1489 −0.6  

46 
As 

AfAs oxirapentyn E 

 

7.2 
275.1279 

[M-H2O+Н]+ 275.1278 0.4  

47 As 
AfAs 

oxirapentyn F 

 

7.1 353.1587 
[M+Н]+ 

353.1595 −2.3  

48 AfAs oxirapentyn G 

 

2.2 
311.1504 
[M+Н]+ 311.1489 4.8  

49 As 
AfAs 

oxirapentyn H 

 

2.9 371.1704 
[M+Н]+ 

371.1700 1.1  

50 
As 

AfAs oxirapentyn I 

 

2.9 
371.1704 
[M+Н]+ 371.1700 1.1  

51 
As 

AfAs oxirapentyn J 

 

6.2 
353.1587 
[M+Н]+ 353.1595 −2.3  

52 
As 

AfAs isariketide A 

 

5.7 
313.0910 
[M+Н]+ 313.0918 −2.6  5.7 313.0910

[M+H]+ 313.0918 −2.6

53 As
AfAs acremine S

Metabolites 2023, 13, x FOR PEER REVIEW 31 of 38 
 

 

53 
As 

AfAs acremine S 
 

3.7 
207.1014 
[M+Н]+ 207.1016 −1.0  

54 As 
AfAs 

diorcin 

 

10.4 231.1009 
[M+Н]+ 

231.1016 −3.0  

55 As 
AfAs 

isaridin E 

 

13.7 656.4010 
[M+Н]+ 

656.4018 −1.2 0.81 a 

56 As 
AfAs isaridin B 

 

13.5 596.3997 
[M+Н]+ 596.4018 −3.5  

57 As 
AfAs 

isarfelin A 

 

14.0/14
.1 

670.4187 
[M+Н]+ 

670.4174 1.9  

58 As 
AfAs 

isariin 

 

16.0 638.4495 
[M+Н]+ 

638.4487 1.3  

59 AfAs isariin C 

 

11.8 
568.3692 
[M+Н]+ 568.3705 −2.3  

3.7 207.1014
[M+H]+ 207.1016 −1.0

54 As
AfAs diorcin

Metabolites 2023, 13, x FOR PEER REVIEW 31 of 38 
 

 

53 
As 

AfAs acremine S 
 

3.7 
207.1014 
[M+Н]+ 207.1016 −1.0  

54 As 
AfAs 

diorcin 

 

10.4 231.1009 
[M+Н]+ 

231.1016 −3.0  

55 As 
AfAs 

isaridin E 

 

13.7 656.4010 
[M+Н]+ 

656.4018 −1.2 0.81 a 

56 As 
AfAs isaridin B 

 

13.5 596.3997 
[M+Н]+ 596.4018 −3.5  

57 As 
AfAs 

isarfelin A 

 

14.0/14
.1 

670.4187 
[M+Н]+ 

670.4174 1.9  

58 As 
AfAs 

isariin 

 

16.0 638.4495 
[M+Н]+ 

638.4487 1.3  

59 AfAs isariin C 

 

11.8 
568.3692 
[M+Н]+ 568.3705 −2.3  

10.4 231.1009
[M+H]+ 231.1016 −3.0



Metabolites 2023, 13, 1138 35 of 46

Table A1. Cont.

N Name Structure RT Exact Mass (Measured) Exact Mass (Calcd) ∆, ppm Score

55 As
AfAs isaridin E
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Table A1. Cont.

N Name Structure RT Exact Mass (Measured) Exact Mass (Calcd) ∆, ppm Score

58 As
AfAs isariin
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