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Abstract: Identifying and translating hepatocellular carcinoma (HCC) biomarkers from bench to
bedside using mass spectrometry-based metabolomics and lipidomics is hampered by inconsistent
findings. Here, we investigated HCC at systemic and metabolism-centric multiomics levels by
conducting a meta-analysis of quantitative evidence from 68 cohorts. Blood transcript biomarkers
linked to the HCC metabolic phenotype were externally validated and prioritized. In the studies
under investigation, about 600 metabolites were reported as putative HCC-associated biomarkers; 39,
20, and 10 metabolites and 52, 12, and 12 lipids were reported in three or more studies in HCC vs.
Control, HCC vs. liver cirrhosis (LC), and LC vs. Control groups, respectively. Amino acids, fatty
acids (increased 18:1), bile acids, and lysophosphatidylcholine were the most frequently reported
biomarkers in HCC. BAX and RAC1 showed a good correlation and were associated with poor
prognosis. Our study proposes robust HCC biomarkers across diverse cohorts using a data-driven
knowledge-based approach that is versatile and affordable for studying other diseases.

Keywords: hepatocellular carcinoma; lipidomics; metabolomics; transcriptomics; meta-analysis

1. Introduction

Hepatocellular carcinoma (HCC) accounts for 90% of all liver cancers and is among
the leading causes of cancer-related mortality worldwide [1,2]. Infection with hepatitis B
and C viruses and alcoholic and nonalcoholic steatohepatitis are the leading risk factors
for HCC [3]. HCC pathogenesis is highly heterogeneous and depends on multifactorial
etiologies. Further research is required to elucidate the pathophysiology and the main
drivers of HCC [4]. Despite advancements in molecular characterization and drug targets
for HCC, limited therapies have successfully translated into improved clinical manage-
ment [5]. HCC treatment is not remarkably effective; only a limited number of patients
with early diagnoses receive curative treatment. Likewise, there are limited options for
patients with advanced diseases [6]. Therefore, understanding the mechanisms underlying
disease progression and identifying diagnostic biomarkers are essential.

Although metabolic reprogramming is a hallmark of cancer, the detailed analysis of
aberrant metabolism in HCC requires extensive work [7]. Certainly, metabolomics can
reveal accurate and deep insights into cancer biology and metabolism. Furthermore, the
number of studies that employ metabolomics for identifying cancer biomarkers has in-
creased exponentially, demonstrating its potential in clinical application [8]. Plasma and
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serum are the most conveniently and least invasively acquired samples and are commonly
employed to discover biomarkers for cancer screening, diagnosis, prognosis, and thera-
peutic response [9]. Nonetheless, highly inconsistent finding for HCC is a well-regarded
obstacle that hamper the translation into clinical implementations. Study design and ex-
perimental procedures, such as sample collection and preparation and statistical analysis,
contribute to these differences, along with the application of different analytical plat-
forms [10]. Essential information needed for accurately interpreting the results, including
fasting conditions, quality control, and precise p-values, is often missing, furthermore the
inconsistency and heterogeneity of the findings, resulting from the lack of standardization
in clinical metabolomics, hamper high-quality meta-analysis in clinical metabolomic and
lipidomic studies. Hence, a comprehensive and multimodal data mining approach is
required to obtain insights into the molecular biology and metabolism of HCC and select
biomarker candidates.

In this study, we investigated systemic and metabolism-centric multiomics levels of
biologically relevant processes involved in HCC. A comprehensive search was conducted to
gather all appropriate studies, and quantitative evidence of reported metabolites and lipids
was provided. We further partially validated metabolite and gene biosignatures that could
support the diagnosis of HCC. Our findings could provide insights into clinically relevant
diagnosis as a more direct and practical approach to hopefully reducing the HCC burden.

2. Materials and Methods
2.1. Literature Search

We conducted a systematic search using three databases: PubMed, EMBASE, and Web
of Science. A systematic review and meta-analysis were conducted following PRISMA
2020 guidelines (Supplementary File S1) [11]. The following queries were used to re-
trieve data from the databases: “(liver OR hepatocellular) AND (tumor OR tumor OR
malignancy OR neoplasm OR cancer OR carcinoma OR adenoma) AND (“metabolite
profiling” OR “metabolite analysis” OR “metabolic profiling” OR “metabolic fingerprint-
ing” OR “metabolic characterization” OR metabolome OR metabolomics OR lipidome OR
lipidomics OR lipidemia) AND (blood OR plasma OR serum)”. There was no restriction in
the search period. The data were first obtained in September 2021 and updated periodically
until January 2022.

2.2. Data Selection

The data gathered from all the databases were combined, and duplicates were re-
moved. All records were used for title and abstract screening. Consideration of an article
for full-text reading was based on the following: (1) clinical study involving blood (serum
or plasma) metabolite or lipid profiling; (2) comparison of two of three groups: healthy
control (Control), liver cirrhosis (LC), and HCC; and (3) inclusion of a mass spectrometry
(MS)—based method or nuclear magnetic resonance (NMR) spectroscopy. The following
exclusion criteria were used: (1) nonclinical study; (2) irrelevant control group; (3) spec-
imens other than serum or plasma; (4) duplicated or parts of a more extensive study;
and (5) review, abstract, case report, or conference papers. The qualified articles were
collected for full-text evaluation and extraction of relevant data. At least two independent
authors screened all the data. Any conflict was discussed and resolved by a third author
via discussion or consensus.

2.3. Data Extraction

We extracted the study design and population characteristics (cohort allocation, sample
size, sex, viral status, tumor stage, and reference diagnostic method). Next, the information
on sample type (serum or plasma), instrument platform (LC−MS, GC−MS, and NMR),
study procedure (sample preparation, sample storage, and internal standard), and statis-
tical analysis (univariate, multivariate, and p-value adjustment methods) was extracted.
Concerning metabolites and lipid reporting, the p-value, fold change, and expression pro-
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files in HCC were recorded when applicable. Two independent authors extracted the data
and discussed any conflicts to conclude.

2.4. Metabolite and Lipid Identification

Reported compounds were classified into either “metabolite” or “lipid,” owing to the
differences in the subsequent analyses. In addition, the abbreviated notation was used
for fatty acid (FA) and the conjugated and acetylcarnitine classes. Different metabolite
synonyms were combined into one common name according to the Human Metabolome
Database (HMDB) identification. If the HMDB ID was absent, the PubChem ID was used
instead. LipidLynxX was used to convert all lipid compounds to lipid species level for
further analysis because the reported practice of lipid nomenclature was inconsistent [12].
Regarding quality risk assessment, there is no generally approved risk assessment in omics
research, particularly metabolomics and lipidomics in this work. Furthermore, we used a
vote-counting method that did not incorporate statistical data from the included studies
(e.g., mean, standard deviation). Therefore, in this study, the quality assessment step was
skipped. Instead, study characteristics that could potentially affect study results were
extracted and summarized to ensure the reproducibility of future studies.

2.5. Transcriptomics Meta-Analysis

Two peripheral blood mononuclear cell (PBMC) transcriptomic datasets comparing
HCC vs. Controls—GSE49515 [13] and GSE58208—were retrieved from the Gene Expres-
sion Omnibus (GEO) repository. An individual dataset was processed and normalized
using affy and lima packages before conducting a meta-analysis on NetworkAnalyst ver-
sion 3.0 [14]. The Probe ID was mapped to the Entrez ID for nomenclature. Batch effect
removal was applied using the Combat algorithm. A combined effect size with the random
effects method was used to conduct a transcriptomic meta-analysis. GEO2R was used to
analyze PBMC transcriptomics between cirrhosis and HCC (GSE10459) [15].

2.6. Pathway Enrichment Analysis

Pathway enrichment analysis was conducted to reveal the involvement of the molec-
ular processes in HCC. Specifically, metabolites or lipids reported in at least two studies
with vote counting different from zero were examined against the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database using MetaboAnalyst 5.0 [16]. Bile acids (Bas)
and their derivatives were integrated with other metabolites, as they are curated well in
KEGG. Three metabolite lists (HCC vs. Control, HCC vs. LC, and LC vs. Control) were
analyzed separately.

The protein–protein interaction (PPI) network was used to analyze the PBMC tran-
scriptomic data to explore the biological pathways associated with cancer progression. In
particular, the blood tissue-specific module in NetworkAnalyst 3.0 was used to create the
PPI network from a list of differentially expressed genes (DEGs).

2.7. Gene–Metabolite Interaction Network and Lipid-Related Gene Network

Gene–metabolite interaction network (GMIN) analysis was performed for two com-
parisons, HCC vs. Control and HCC vs. cirrhosis, using the Network Analysis module
in MetaboAnalyst 5.0. In brief, lists of significant metabolites defined in the previous
sections and significant genes were inputted to construct the gene–metabolite pathway
related to HCC. Pathway analysis was subsequently conducted using the KEGG database.
Significant lipid classes in the lipid class enrichment analysis were inputted to generate the
lipid-related gene network using Lipidsig [17]. All genes related to the significant pathway
were then overlapped with a significant gene list of corresponding comparisons and were
considered potential biomarkers for disease progression.
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2.8. Bioinformatics, Survival Analysis, Immunohistochemistry (IHC), and Machine
Learning Model

The promising genes retrieved from gene–metabolite interaction and lipid-related
gene network were further examined in liver transcriptomics. The survival analysis was
also conducted to suggest prognosis biomarkers. In detail, RNA-sequencing (seq) data from
The Cancer Genome Atlas (TCGA) [5] and the Genotype-Tissue Expression (GTEx) [18]
databases were utilized to examine the expression of the biomarkers. Microarray data
from the Oncopression database were also used [19]. IHC images of normal and cancer
samples were retrieved from the Human Protein Atlas (https://www.proteinatlas.org,
accessed on 16 February 2022) [20]. Overall survival analysis was conducted on GEPIA [21],
Kaplan–Meier Plotter [22], and the Human Protein Atlas. The top candidates that show
consistency in terms of gene expression and survival analysis among searched databases
were selected for logistic modeling. In addition, we selected genes exhibiting upregulation
in the cancer group with significant unfavorable survival. For logistic modeling, we first
retrieved RNA-seq data from TCGA and GTEx via the TCGAbiolink package (last accessed
on April 2022) [23] to fit a logistic regression model. A logistic model was fitted using the
caret package. RNA-seq data for 371 HCC and 136 Control samples were divided into
training and test subsets at a ratio of 7:3. This was repeated 10 times to avoid a specific
pair of training/test data. The receiver operating characteristic (ROC) curve with the area
under the curve (AUC) was used to evaluate the performance of each model. The mean
and standard deviation (SD) of AUC from 10 datasets were determined.

2.9. Exploratory Data Analysis and Visualization

The vote-counting results were illustrated using the Amanida package. Heatmap
visualization was performed using the GraphBio web app [24]. GMIN was run using
MetaboAnalyst 5.0 and reconstructed using Gephi software version 0.9.2 [25]. The lipid-
related gene network was visualized using the ggplot2 package [26]. The ROC curve was
drawn using the pROC package [27].

2.10. Statistical Analysis

Vote-counting statistics were performed using the Amanida package [28]. In brief, a
metabolite or lipid was regarded as “1” if reported as upregulated and “−1” if downreg-
ulated. The vote result was calculated based on the sum of the reported votes. Positive
and negative vote results indicated overall upregulation and downregulation, respectively,
whereas “0” indicated an equally reported number in both directions. We performed the
sign test to determine whether this result occurred by chance. This is a nonparametric
method requiring few assumptions for data and thus applies to general situations. It
measures the possibility of vote results based on a binomial distribution and establishes
how plausible it is to observe such results by chance. Metabolites and lipids reported in
less than six studies were not tested owing to the lack of statistical power. A false discovery
rate (FDR) was controlled using the Benjamini–Hochberg procedure. A p-value < 0.05 or
FDR < 0.05 or <0.2 was considered to indicate statistical significance.

3. Results
3.1. Compendium Biomarker Report for HCC

A total of 55 studies involved 68 cohorts that consisted of an estimated 3325 pa-
tients with HCC, 2109 patients with LC, and 1693 healthy individuals (Control). Among
them, 41 [29–69], 31 [29–48,70–83], and 14 [29–41,49] studies reported metabolic differ-
ences in HCC vs. Control, HCC vs. LC, and LC vs. Control groups, respectively. Many
metabolomics and lipidomics datasets are not currently publicly available from data reposi-
tories. Therefore, we conducted a systematic search and comprehensive data synthesis of
the currently reported blood metabolites and lipids in HCC. As a result, a compendium
of metabolites and lipids in HCC with approximately 600 reported compounds was estab-
lished. Figure 1 presents the workflow of this study.

https://www.proteinatlas.org
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Figure 1. Workflow of this study. HCC: hepatocellular carcinoma, GEO: Gene Expression Omnibus.

Most studies were conducted in Asia (n = 40), followed by the United States (n = 9)
and Europe (n = 6). In most studies, population characteristics were sufficiently reported
(e.g., age, sex, and hepatitis B and/or hepatitis C viral status). Serum was primarily used
for metabolic phenotyping and exploring metabolite and lipid differences (43 studies).
In addition, only approximately half (n = 30) of the included studies involved sample
collection in the fasting state; the fast/fed status was unknown in other studies. After
sample collection, the samples were stored at −80 ◦C until their subsequent use in most
studies. Notably, one study in which samples were stored at 4 ◦C was retained in our
study, as we aimed to comprehensively reflect the current status of research. We noted
that LC−MS was the most employed analytical platform (43 studies), followed by GC−MS
(15 studies). An untargeted approach (n = 31) was commonly employed to characterize
metabolite and lipid phenotypes over a targeted approach (n = 11). In addition, 13 studies
used complementary untargeted and targeted analyses. The internal standard was used in
41 of the 55 studies for quality control and assessment purposes, whereas the use of pooled
quality-control samples was described in 40 of the 55 studies. Figure 2 summarizes the key
characteristics of the studies included in our investigation. More detailed information is
presented in Table S1.

Metabolite reporting was classified based on the Metabolomics Standards Initiative
(MSI) level. Interestingly, most included studies reported identification levels from level
1 to level 2. However, nine studies did not report the identification level. We noted that
only 20 studies used the adjusted p-value to correct multiple hypotheses testing. The
p-value was rarely reported beside the significance note (e.g., p-value < 0.05). The included
studies spanned various demographics, etiologies, and instrument platforms, introducing a
significant heterogeneity into the findings. The expression of approximately 600 molecules
was significantly changed between stages of cancer progression (i.e., Control > LC > HCC)
because cirrhosis is the most potent risk factor for HCC development. An overview of
reported metabolites is shown in Figure 2B. The expression of 204, 144, and 105 metabolites
was significantly altered (HCC vs. Control, HCC vs. LC, and LC vs. Control, respectively).
The expression of amino acids, peptides, and analogs was the most commonly altered,
following carbohydrates and carbohydrate conjugates. With respect to lipids, the expression
of 274, 116, and 138 lipids was significantly altered in HCC vs. Control, HCC vs. LC, and
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LC vs. Control, respectively. BAs, FAs, and glycerophosphocholines (GPCs) were the most
common altered lipid classes. Table S2 shows the full list of metabolites reported in each
study. Notably, as aforementioned in the methods section, we did not conduct assessments
of risk of bias for each included study because the appropriate tool is unavailable to
metabolomics research.
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Figure 2. Study characteristics and overview of reported biomarkers in the included studies.
(A) Characteristics of the included studies. (B) Metabolite and lipid reporting across the stud-
ies. HC: healthy control, HCC: hepatocellular carcinoma, LC: liver cirrhosis, MS: mass spectrometry,
MSI: Metabolomics Standards Initiative, ND: not described, NMR: nuclear magnetic resonance.
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3.2. Vote-Counting Meta-Analysis for Robust Reported Compounds

A robust meta-analysis of metabolomics and lipidomics was essential owing to the
heterogeneity and lack of consistency in reporting the study results. With respect to
the metabolites reported in HCC (compared with those in Control), we observed that
the expression of L-tyrosine was mainly upregulated in patients with HCC when using
vote-counting analysis (VCS = 10/13). In addition, L-phenylalanine and L-glutamic acid
showed a high frequency of upregulation (VCS = 10/14 and VCS = 5/7, respectively).
On the contrary, the levels of L-tryptophan seemed to decrease in patients with HCC
(VCS = 6/7). In comparison with LC group, L-Glutamic acid was the metabolite with
the highest reported levels, and the sign test revealed that the expression of L-glutamic
acid was significantly upregulated in patients with HCC(VCS = 7/7, FDR = 0.03). We
observed that the levels of L-valine (VCS = 5/5) and L-serine (VCS = 4/5) were primarily
upregulated. In contrast, the expression of L-glutamic acid (VCS = 4/5, p-value = 0.19) was
more substantially downregulated in LC than in Control. Overall, amino acids were the
most reported metabolites. In particular, L-tyrosine, L-phenylalanine, L-glutamine, and
L-glutamic acid seem to be the most robustly validated biomarkers across studies for HCC.

Lipids were reported more frequently than hydrophilic metabolites. BAs, lysoPCs
(LPCs), and FAs were reported in many studies. Vote counting revealed that the levels
of glycocholic acid (GCA) (VCS = 14/15, FDR = 0.007) and glycochenodeoxycholic acid
(GCDCA) (VCS = 9/9, FDR = 0.004) increased consistently, whereas those of taurocholic
acid (TCA) (VCS = 6/6, FDR = 0.034) decreased in HCC vs. Control. Interestingly, we
observed a consistent downregulation with a statistically significant trend of LPC in HCC
vs. Control, including LPC (16:0) (VCS = 12/12, FDR = 0.005), LPC (18:2) (VCS = 11/12,
FDR = 0.012), and LPC (18:0) (VCS = 11/11, FDR = 0.004). Similarly, HCC vs. LC also
revealed a dominant disturbance in the expression of BA, FA, and LPC classes. For instance,
FA (18:2) (VCS = 5/6) and FA (18:1) (VCS = 4/4) exhibited increased levels, whereas GCA
(VCS = 4/4) and LPC (18:2) (VCS = 4/4) showed the opposite trend.

Finally, in agreement with the results of the prior comparison, the alterations observed
in lipidomics between LC and Control were at the level of BAs, FAs, and LPCs. The levels
of GCDCA and GCA (both VCS = 4/4) showed an uptrend whereas those of LPC (16:0),
LPC (18:0), LPC (18:2), and LPC (22:6) (all VCS = 3/3) showed a downtrend. Notably, FAs
and BAs showed a discontinuous trend across HCC progression compared with LPCs.
The levels of most BAs increased in HCC compared with those in Control but decreased
compared with those in LC. Contrastingly, the levels of most LPC species consistently
decreased from Control to LC toward HCC. The most robust candidates across studies
included LPC (18:2), LPC (14:0), LPC (20:3), and LPC (20:5), which potentially serve as lipid
biomarkers for HCC progression. The vote-counting results of the most robust compounds
between each comparison are summarized in Table 1. The complete vote-counting results
and the sign test results (when applicable) are presented in Table S3.

We next conducted pathway analysis on the commonly reported metabolites to obtain
biologically meaningful insights. Based on this analysis, eight common significant path-
ways across the comparisons were identified. “Aminoacyl-tRNA biosynthesis”, “alanine,
aspartate, and glutamate metabolism”, “phenylalanine, tyrosine, and tryptophan biosyn-
thesis”, and “primary bile acid biosynthesis” were the notable pathways commonly shared
among the comparisons. The results of pathway enrichment analysis are shown in Table 2
and Table S4A, Figure S1. With respect to lipid subclass enrichment, LPC, PC, and FAs and
conjugates were the typical lipid classes altered among the comparisons. The result of lipid
subclass enrichment analysis is presented in Table S4B.
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Table 1. Vote-counting results of the most robust significantly reported metabolites and lipids.

Polar Metabolite/Lipid Votes a Number of
Articles Vote Counting a FDR Type

HCC versus HC

L-phenylalanine 6 14 0.43 0.54 Metabolite

L-tyrosine 7 13 0.54 0.83 Metabolite

L-leucine 0 8 0.00 1.00 Metabolite

L-serine 0 8 0.00 1.00 Metabolite

L-tryptophan −5 7 −0.71 0.56 Metabolite

L-glutamic acid 3 7 0.43 1.00 Metabolite

L-proline 3 7 0.43 0.82 Metabolite

Ornithine 2 6 0.33 1.00 Metabolite

Taurine −2 6 −0.33 0.88 Metabolite

Creatine −1 5 −0.20 NA Metabolite

Creatinine −3 5 −0.60 NA Metabolite

L-alanine 1 5 0.20 NA Metabolite

L-methionine 3 5 0.60 NA Metabolite

Uric acid 1 5 0.20 NA Metabolite

D-glucose 0 4 0.00 NA Metabolite

Glycerol −2 4 −0.50 NA Metabolite

Hypoxanthine 0 4 0.00 NA Metabolite

L-aspartic acid −2 4 −0.50 NA Metabolite

L-isoleucine −2 4 −0.50 NA Metabolite

L-valine −2 4 −0.50 NA Metabolite

Myo-inositol −2 4 −0.50 NA Metabolite

Oxoproline 0 4 0.00 NA Metabolite

Phenylalanyl phenylalanine −4 4 −1.00 NA Metabolite

Uridine 0 4 0.00 NA Metabolite

LPC (16:0) −12 12 −1.00 0.005 b Lipid

Glycocholic acid 13 15 0.87 0.007 b Lipid

LPC (18:0) −11 11 −1.00 0.004 b Lipid

Glycochenodeoxycholic acid 9 9 1.00 0.013 b Lipid

LPC (18:1) −9 9 −1.00 0.010 b Lipid

LPC (20:4) −9 9 −1.00 0.009 b Lipid

LPC (18:2) −10 12 −0.83 0.012 b Lipid

LPC (14:0) −8 8 −1.00 0.013 b Lipid

LPC (20:3) −7 7 −1.00 0.023 b Lipid

LPC (20:5) −7 7 −1.00 0.020 b Lipid

LPC (22:6) −7 7 −1.00 0.018 b Lipid
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Table 1. Cont.

Polar Metabolite/Lipid Votes a Number of
Articles Vote Counting a FDR Type

Taurocholic acid 6 6 1.00 0.034 b Lipid

CAR (10:0) −6 6 −1.00 0.031 b Lipid

CAR (18:1) 5 5 1.00 NA Lipid

PC (32:1) 5 5 1.00 NA Lipid

LPC (17:0) −5 5 −1.00 NA Lipid

PC (38:6) −5 5 −1.00 NA Lipid

FA (18:1) 4 6 0.67 NA Lipid

FA (18:2) 4 6 0.67 NA Lipid

CAR (2:0) 3 5 0.60 NA Lipid

CAR (8:0) −3 5 −0.60 NA Lipid

FA (20:4) 0 8 0.00 NA Lipid

CAR (16:1) 4 4 1.00 NA Lipid

CAR (18:2) 4 4 1.00 NA Lipid

FA (16:1) 4 4 1.00 NA Lipid

PC (32:0) 4 4 1.00 NA Lipid

Taurochenodesoxycholic
acid 4 4 1.00 NA Lipid

FA (22:6) 2 4 0.50 NA Lipid

CAR (16:0) 0 4 0.00 NA Lipid

Oleamide 0 4 0.00 NA Lipid

PE (38:6) 0 4 0.00 NA Lipid

FA (20:5) −2 4 −0.50 NA Lipid

LPC (15:0) −4 4 −1.00 NA Lipid

LPC (18:3) −4 4 −1.00 NA Lipid

HCC versus LC

L-glutamic acid 7 7 1.00 0.0312 b Metabolite

L-phenylalanine −1 7 −0.14 1 Metabolite

L-serine 3 5 0.60 NA Metabolite

L-valine 5 5 1.00 NA Metabolite

L-isoleucine 2 4 0.50 NA Metabolite

L-methionine 0 4 0.00 NA Metabolite

L-proline 0 4 0.00 NA Metabolite

L-tyrosine −2 4 −0.50 NA Metabolite

1-methyladenosine 3 3 1.00 NA Metabolite

2-hydroxybutyric acid 3 3 1.00 NA Metabolite

Citric acid −1 3 −0.33 NA Metabolite

Creatine 1 3 0.33 NA Metabolite
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Table 1. Cont.

Polar Metabolite/Lipid Votes a Number of
Articles Vote Counting a FDR Type

Glycerol −1 3 −0.33 NA Metabolite

Glycine 1 3 0.33 NA Metabolite

Hypoxanthine 3 3 1.00 NA Metabolite

L-alanine 3 3 1.00 NA Metabolite

L-aspartic acid 3 3 1.00 NA Metabolite

Ornithine 3 3 1.00 NA Metabolite

Uric acid −1 3 −0.33 NA Metabolite

Xanthine −1 3 −0.33 NA Metabolite

FA (18:2) 4 6 0.67 NA Lipid

LPC (18:0) 1 5 0.20 NA Lipid

CAR (2:0) 2 4 0.50 NA Lipid

FA (18:1) 4 4 1.00 NA Lipid

Glycocholic acid −4 4 −1.00 NA Lipid

LPC (16:0) 2 4 0.50 NA Lipid

LPC (18:2) −4 4 −1.00 NA Lipid

CAR (0:0) 3 3 1.00 NA Lipid

CAR (18:1) −1 3 −0.33 NA Lipid

FA (18:3) 1 3 0.33 NA Lipid

FA (20:4) 1 3 0.33 NA Lipid

LPE (16:0) 1 3 0.33 NA Lipid

LC versus HC

L-phenylalanine 5 9 0.56 0.36 Metabolite

L-serine 0 6 0.00 1 Metabolite

L-tyrosine 4 6 0.67 NA Metabolite

L-glutamic acid −3 5 −0.60 NA Metabolite

L-methionine 4 4 1.00 NA Metabolite

Bilirubin 3 3 1.00 NA Metabolite

Glycine −1 3 −0.33 NA Metabolite

L-aspartic acid −1 3 −0.33 NA Metabolite

L-proline −1 3 −0.33 NA Metabolite

Ornithine 3 3 1.00 NA Metabolite

FA (18:2) 1 5 0.2 NA Lipid

FA (20:4) −1 5 −0.2 NA Lipid

FA (18:0) 2 4 0.5 NA Lipid

Glycochenodeoxycholic
acid 4 4 1 NA Lipid

Glycocholic acid 4 4 1 NA Lipid

CAR (2:0) 3 3 1 NA Lipid
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Table 1. Cont.

Polar Metabolite/Lipid Votes a Number of
Articles Vote Counting a FDR Type

FA (16:1) 3 3 1 NA Lipid

FA (18:1) 3 3 1 NA Lipid

LPC (16:0) −3 3 −1 NA Lipid

LPC (18:0) −3 3 −1 NA Lipid

LPC (18:2) −3 3 −1 NA Lipid

LPC (22:6) −3 3 −1 NA Lipid

Three comparisons were performed: hepatocellular carcinoma (HCC) vs. healthy control (HC), HCC vs. liver
cirrhosis (LC), and LC vs. HC. a A positive value indicates the final upregulated direction of the reported
metabolites/lipids, whereas a negative value indicates the final downregulated direction of the reported metabo-
lites/lipids. b A significant trend by the two-sided sign test with FDR < 0.05. FA: fatty acid, LPC: lysophos-
phatidylcholine, LPE: lysophosphatidylethanolamine, PC: phosphatidylcholine, PE: phosphatidylethanolamine,
CAR: acylcarnitine, NA: not applicable, FDR: false-discovery rate.

Table 2. Results of pathway enrichment analysis.

Pathway Name
Significantly Enriched Pathways a

HCC vs. Control HCC vs. LC LC vs. Control

Alanine, aspartate, and glutamate metabolism o o o
Aminoacyl-tRNA biosynthesis o o o

Arginine and proline metabolism o o o
Arginine biosynthesis o o o

D-glutamine and D-glutamate metabolism o o x
Glyoxylate and dicarboxylate metabolism o o o

Nitrogen metabolism o o x
Phenylalanine metabolism o o o

Phenylalanine, tyrosine, and tryptophan
biosynthesis o o o

Primary bile acid biosynthesis o o o
Valine, leucine, and isoleucine biosynthesis o o x

Glutathione metabolism x o o
Ascorbate and aldarate metabolism o x x

Butanoate metabolism o x o
Citrate cycle (TCA cycle) o x o

Glycine, serine, and threonine metabolism o x x
Histidine metabolism o x o

Porphyrin and chlorophyll metabolism o x o
Pyruvate metabolism o x x

Taurine and hypotaurine metabolism o x x
a FDR < 0.2; HCC: hepatocellular carcinoma, LC: liver cirrhosis, o: significant enrichment, x: nonsignificant
enrichment, TCA: taurocholic acid.

3.3. Association of Blood Transcriptomics with HCC Pathogenesis

Principal component analysis showed an apparent separation between samples in
the HCC group and Control (Figure 3A). Combined effect-size meta-analysis revealed
that the expression of 436 DEGs significantly changed in HCC vs. Control (Figure 3A and
Table S5A). The blood–specific protein interaction network revealed pathways associated
with hepatocarcinogenesis-related aspects, including viral carcinogenesis, hepatitis B, hep-
atitis C, and cell cycle (Figure 3B).
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Figure 3. Results of blood transcriptomics analysis. (A) Principal component analysis and heatmap
of the transcriptomics meta-analysis from two datasets: GSE49515 and GSE58208. (B) Blood-specific
protein–protein interaction (PPI) network of differentially expressed genes (DEGs) from transcrip-
tomics meta-analysis of hepatocellular carcinoma (HCC) vs. Control. Whole-blood PPI network was
generated, and five representative PPI networks are presented. (C) Blood-specific PPI network of
DEGs from single transcriptomics analysis of HCC vs. liver cirrhosis. Whole-blood PPI network was
generated, and five representative PPI networks are presented.

Likewise, using GEO2R to analyze single transcriptomics, we retrieved 482 DEGs from
the cohort comparing HCC and LC. Interestingly, the blood-specific PPI pathway was also
linked to cancer pathogenesis. Many pathways overlapped with those in the PPI network
of HCC vs. Control, such as hepatitis B, hepatitis C, viral carcinogenesis, and cell cycle
(Figure 3C). Blood transcriptomics suggested a connection between PBMCs and HCC. The
full DEG list for each comparison is in Table S5. Table S6 lists all the pathways from the
blood-specific PPI analysis.

3.4. Gene–Metabolite Network Analysis and Lipid-Related Gene Network

Next, a GMIN was constructed. Only HCC vs. Control and HCC vs. LC comparisons
were subjected to the analysis. GMIN revealed the interplay among highly reported
metabolites and DEGs. With respect to HCC vs. Control, the metabolites identified to play
a central role using GMIN were primarily amino acids, such as l-glutamic acid, l-tyrosine,
l-phenylalanine, and l-glutamine.

Under HCC vs. Control, metabolites presented in the GMIN of HCC vs. LC were fre-
quently reported. Genes and metabolites interacting in GMIN are intermediaries of various
pathways, including “arginine biosynthesis”, “aminoacyl-tRNA biosynthesis pathway”,
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and “alanine, aspartate, and glutamate metabolism”. These pathways were also found to
be significant in previous metabolite pathway enrichment analyses. In GMIN, glutamine,
glutamate, glycerol, and arginine were hub-interacting metabolites, whereas ASS1, AGR2,
LDHA, and EEF1E1 were the most interacting genes in the networks. The consistent results
indicate the potential role of these genes and metabolites in HCC progression. An overview
of GMIN for two comparisons is presented in Figure 4A,B, and GMIN pathway enrichments
and potential genes and metabolites in the networks are shown in Table S7.
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Figure 4. Gene–metabolite interaction network (GMIN) and lipid-related gene networks from two
comparisons: hepatocellular carcinoma (HCC) vs. Control and HCC vs. liver cirrhosis. (A) GMIN of
HCC vs. Control comparison. (B) HCC vs. Control and HCC vs. liver cirrhosis. Color was assigned
based on the modular similarity calculation. (C) Lipid-related gene network of HCC vs. Control.
(D) Lipid-related gene network of HCC vs. liver cirrhosis. The human KEGG pathway was suggested
based on the input of lipid classes; lipid genes belonging to significant pathways were overlapped
with differentially expressed genes to find common genes.

In terms of the lipid-related gene network, several pathways related to cancer-altered
signaling and metabolism were found, including “PI3K-Akt signaling pathway”, “ether
lipid metabolism”, and “alpha-linolenic acid metabolism”. Among gene-related lipid
metabolism pathways, we found 12 and 2 genes that overlapped with the DEGs from HCC
vs. Control and HCC vs. LC, respectively. More importantly, a group of genes encoded
enzymes for phospholipid metabolism, particularly LPC. These genes might explain the
behavior of LPC in our study report. The details of the lipid-related gene pathway are
shown in Figure 4C,D and Table S8.

3.5. Bioinformatic Analysis and Prediction Model

Genes involved in GMIN and lipid-related gene network were further examined in
the tumor. mRNA expression, protein expression, and prognosis of the most potential
candidates were analyzed using data from TCGA, Human Protein Atlas, GEPIA, and
Oncopression. Many genes were significantly and differentially expressed or significantly
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associated with prognosis and high/low protein expression in HCC tissue compared with
that in Control. BAX, EEF1E1, LPCAT1, and RAC1 showed upregulation in expression
and were also associated with poor prognosis in HCC. These four genes were highly
differentially expressed in HCC compared with those in the control group (TCGA-GTEx
RNA-seq and Oncopression). In addition, their expression investigated using IHC tended
to be higher in HCC than in Control. Overall survival analysis showed that patients with
HCC who showed higher expression of these genes had significantly shorter survival
periods than patients who showed lower expression. BAX, EEF1E1, LPCAT1, and RAC1
appear to play an essential role in HCC pathophysiology. Detailed information for all
potential genes is presented in Figure 5 and Table S9.
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Figure 5. Bioinformatic analysis of potential protein biomarkers derived from the gene–metabolite
interaction network and the lipid-related gene network. (A) BAX. (B) EEF1E1. (C) LPCAT1. (D) RAC1.
RNA-seq data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx)
databases were retrieved to evaluate the expression levels of the candidates. The box plot repre-
sents the RNA-seq expression of each candidate in hepatocellular carcinoma (HCC) compared with
matched TCGA normal and GTEx data; immunohistochemistry image for each candidate was re-
trieved from The Human Proteome Atlas. The overall survival Kaplan–Meier plot of each candidate
was examined with a median cutoff. The receiver operating characteristic (ROC) curve of the logistic
regression model was built using the TCGA-GTEx combined RNA-seq data with 10 times repeated
data splitting (7:3); mean area under the curve (AUC) and SD values across 10 models are presented.
However, only the first five ROC curves are presented in the graph, colors indicate logistic regression
models * Indicates significance with FDR < 0.05. SD: standard deviation.
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Furthermore, to evaluate the diagnostic ability of these markers, we built a logistic
regression model using combined TCGA and GTEx transcriptomic data. The RNA-seq
data available was for 371 tumors and 136 controls. Then, samples were divided at 7:3
for a training and test set, and the analysis was repeated 10 times. Interestingly, BAX and
RAC1 showed promising performance with respect to distinguishing between HCC and
Control. The mean AUC of BAX and RAC1 was 0.932 and 0.884, whereas that for EEF1E1
and LPCAT1 was 0.665 and 0.662, respectively (Figure 5). A model combining these four
genes achieved satisfactory accuracy, with a mean AUC of 0.950 (Figure S2). Evidence
indicates that BAX and RAC1 can serve as promising biomarkers for HCC progression,
diagnosis, and prognosis.

4. Discussion

We performed an integrated meta-analysis on metabolomic, lipidomic, and transcrip-
tomic data to explore biomarkers for supporting the detection, diagnosis, and prognosis
of HCC. Overall, quantitative evidence from 55 metabolomic studies was synthesized
via a data-driven and knowledge-based framework, followed by an additional blood
transcriptome analysis to identify promising transcript biomarkers. This integrated ap-
proach provides new avenues to explore the interactions between genes and metabolites,
HCC-related biological pathways, and novel biomarkers.

Metabolic alteration has been considered a hallmark of cancer, including HCC. The
development of omics sciences and technologies has enabled the exploration of genetic
variants, alterations in the expression of functional molecules, and their dynamic interac-
tions with respect to cancer pathogenesis. Despite the tremendous success of metabolomics
in translational and clinical cancer research, standardization of instrumental and data
analyses remains unavailable. This, in addition to the diverse demographic and genetic
background of the studied population, subsequently resulted in significant heterogeneity
and inconsistent reporting across published studies.

Approximately six hundred disparate metabolites were reported in the studies un-
der investigation. This inconsistency can be explained by the diverse population char-
acteristics, quality control, sample handling, data acquisition, statistical methods, and
metabolite identification. The inconsistency in biomarker reporting has been emphasized
in various systematic reviews that consider metabolomics [84]. While time and effort are
needed to standardize metabolomic and lipidomic research, a systematic evidence synthesis
study could provide considerable advantages with respect to facilitating the next phase of
biomarker discovery and validation.

Among the 600 molecules, only 39, 20, and 10 metabolites and 52, 12, and 12 lipids
were reported in three or more studies in HCC vs. Control, HCC vs. LC, and LC vs. Control,
respectively. Inconsistency in molecular behavior was observed among comparisons. The
levels of amino acids (e.g., L-phenylalanine and L-glutamic acid), FAs (e.g., FA (18:1)
and FA (18:2)), BAs (e.g., GCA, GCDA, and TCA), and GPCs (e.g., several LPC and PC
species) were primarily altered during HCC progression and may be considered the most
promising biomarker candidates. At least two studies showed that the levels of glucose
and glutamine, the primary fuel sources in cancer cells, were robustly reduced in HCC vs.
LC or Control. A consistent elevation in glutamate levels has been reported in studies on
the progression from LC to HCC. Alone or combined with alpha-fetoprotein, metabolite
and lipid signatures can serve as a powerful approach for screening cancer progression
and timely diagnosis. These metabolites and lipids can serve as potential biomarkers for
each stage of disease progression. Deep insights into these metabolic alterations may also
provide novel therapeutic targets.

Amino acid metabolism and biosynthesis, including branched-chain amino acids
(BCAAs, e.g., leucine, isoleucine, and valine), aromatic amino acids (AAAs, e.g., tyrosine,
phenylalanine, and tryptophan), and arginine, were enriched. BCAAs are nitrogen donors
and important nutrient sources, which can buttress intrinsic cancer properties and partially
reflect the systemic metabolism alteration in cancer [85]. Unlike those of BCAAs, the
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functions of AAAs in cancer have not been comprehensively investigated yet. However,
a recent study revealed tryptophan-to-phenylalanine substitutions to be associated with
cancers that emerge under conditions of amino acid deprivation [86]. The effects of arginine
depletion therapy on numerous cancer types have been investigated in phase I clinical
trials [87]. Identification of systemic blood amino acid components could benefit biomarker
discovery or cancer therapy.

BAs are important steroids synthesized in the liver and play a crucial role in immune
responses, apoptosis, and glucose metabolism. Many studies reported decreased BA levels
when comparing HCC to LC. The excessive accumulation of BA results in hepatocyte necro-
sis and apoptosis. Existing evidence indicates that the levels of primary BAs significantly
increased in cirrhosis and HCC, with the highest level appearing at the cirrhosis stage. The
elevation of GCDCA and taurochenodeoxycholic acid levels induced hepatocyte damage,
hepatoxicity, and apoptosis. Some studies revealed that BAs are involved in the pathology
of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis that can progress to
HCC [88,89]. The regulatory function of BAs with respect to the gut microbiome and
immune responses has recently been reported. Likewise, prediagnostic serum-conjugated
primary BAs were promising HCC surveillance and diagnostic markers in a study with over
200 samples per group [90]. Another report showed that the suppression of BA synthesis
aids hepatocarcinogenesis in mice [91].

Furthermore, FAs are one of the main lipid classes altered during HCC progression
in our study. In most cases, FAs were continuously upregulated during liver cancer
progression. De novo synthesis of FAs has been well documented to be associated with
tumor growth. The alterations in the levels of FAs could be used as biosignatures for
HCC. Indeed, inflammation resulting in metabolic disturbance is a key phenomenon in
HCC, with FA homeostasis playing a crucial role. Previous studies have linked aberrant FA
transport to HCC progression and metastasis [92,93]. The levels of plasma membrane lipids,
particularly LPC and PC, are robustly and consistently decreased during HCC progression.
Recent reviews showed that membrane phospholipids work in concert with other lipids and
promote EGFR clustering at the plasma membrane, contributing to oncogenic signaling [94].
Oxidative stress is now considered one of the factors aiding HCC progression [3]. The
progression from LC to HCC is difficult to distinguish, resulting in late-stage diagnosis and
a high mortality rate. Evidence indicates that BAs, FAs, and LPCs can serve as potential
biomarkers for HCC progression.

Mutant genes associated with HCC evolution interacted with DEGs, such as TP53,
MYC, EGFR, and CTNNB1. The expression of RB1, another well-known HCC gene, was
elevated in HCC vs. LC. Finally, several DEGs with high degrees of interaction in the
PPI network were also associated with the pathophysiology of HCC. For instance, one
study reported that CUL3 deficiency altered the tumor microenvironment and induced
cholangiocarcinoma development [95]. Additionally, knockout of CAND1, a regulator
of Cullin–RING ubiquitin ligases, suppressed liver cancer cell proliferation by activating
apoptosis [96].

Many genes are associated with downstream metabolism, particularly metabolic regu-
lator genes. The expression of enzyme-coding genes, such as LPCAT in glycerophospholipid
metabolism and ELOVL7 in fatty acid elongation, was upregulated. In contrast, ALDH7A1
in lysine degradation was downregulated in HCC vs. Control. The expression of LPIN3
in glycerophospholipid metabolism was upregulated, while that of CAT in tryptophan
metabolism and glyoxylate and dicarboxylate metabolism was downregulated in HCC
vs. LC. Gene–metabolite analysis provided hints that may benefit subsequent mechanistic
studies. Our GMIN analysis found that many metabolism-related DEGs widely interact
with commonly reported metabolites. For instance, glutamic acid and glycerol were central
nodes interacting with oncogenic or metabolic genes in both comparisons (HCC vs. LC
and HCC vs. HC). Glutamic acid interacted with several genes related to HCC, includ-
ing CDKN1B [97] and ARG2 [98] in HCC vs. LC and EEF1E1 [99] and LDHA [100] in
HCC vs. Control. Further, glycerol, the backbone of glycerophospholipid, plays a central
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role in GMIN, which may explain why LPC and PC were dominantly reported across
studies. Other worth-mentioning genes and metabolites previously reported in cancer
progression are ASS1, CAT, ALDH7A1, arginine, glutamine, BCAAs, and AAAs. These hub
genes/metabolites may represent the systemic alterations of HCC metabolism and partially
provide evidence for the association of complementary gene and metabolite dysregulations
in HCC. Except for BA, most typical compounds originate from the liver. Most of the
metabolites interacting in GMIN were consistently reported among the included studies.
This again confirms the robustness and potential usability of these candidates as biomarkers
for HCC. Collectively, GMIN helps to explain the phenome alterations of the disease. It
also facilitates biomarker candidate prioritization and opens new avenues for developing
integrated assays aimed at detecting disease or predicting disease progression.

With respect to the lipid function, as we are far from constructing lipid pathways, our
approach connects the enrichment lipid class with lipid-related gene network. Interestingly,
the observed lipid-related gene pathways are also linked to cancer. For instance, the PI3K-
Akt signaling pathway is a well-known cascade in hepatocarcinogenesis [101], whereas
the Rap1 signaling pathway regulates hematopoietic stem cell survival and therapeutic
response of breast and colon cancer [102]. This suggests that lipid class systemic alteration
may reflect the metabolic signature of a specific cancer.

RAC1, BAX, EEF1E1, and LPCAT1, four highly interacted genes, showed differential
expression at gene levels in HCC and played essential roles in cancer cells. EEF1E1 was
recently mentioned as an independent prognostic factor in HCC and was correlated with
the tumor immune microenvironment [99]. LPCAT1 has been linked with the progression of
various types of cancer via the reprogramming of cholesterol metabolism [103] or regulating
oncogenic signaling [104]. It has also been reported to be involved in the proliferation,
invasion, and migration of HCC cells [105]. Further, active expression of RAC1 was usually
linked to the promotion of metastasis and drug resistance, and it was considered a targeted
cancer therapy in melanoma [106] and breast cancer [107]. Finally, BAX is a critical effector
of mitochondrial apoptosis linked to apoptosis-resistant cancer cells [108]. The upregulated
expression of these four genes was strongly correlated with poor outcomes in HCC and
other cancer types. Mainly, BAX and RAC1 could serve as surveillance and prognostic
biomarkers and therapeutic targets.

Our study provides comprehensive quantitative evidence regarding the association of
blood metabolites and lipids with HCC progression. A proper statistical approach was used
to detect significant trends and suggested amino acids, BAs, and FA levels were associated
with HCC progression. Furthermore, the integrated meta-analysis approach provided
mechanistic insights into the gene–metabolite interaction network and the lipid-related
gene network in HCC. However, there are several limitations to our approach. Only a few
metabolites could be statistically analyzed due to the limitation of the number of studies
used for analysis. In addition, studies with a relatively small sample size might lead to a
high rate of false positives, which may subsequently introduce bias into the vote-counting
approach. Second, potential sources of heterogeneity, such as different analytical platforms,
HCC etiology, study design, and gender, could lead to biased evidence summarization
and require further validation. Notably, we did not conduct quality assessment in this
study because there is no standardized quality assessment tool for metabolomic study. In
addition, most of the included studies were conducted in Asian. All of these issues could
limit the generalization of the findings as HCC is highly heterogeneous at different levels.
Therefore, subsequent studies are warranted to explore risk factors and ethnic differences
in HCC fully. Finally, the protein expression and association to the prognosis of proposed
candidates should also be further validated in independent cohorts to verify their clinical
validity. Additionally, the vote-counting evidence purely presents the general behavior of
metabolites and lipids associated to HCC. Therefore, a causative risk relationship should
not be stated between the highly reported metabolites and liver function impairment.
Our study proposed an approach to deriving meaningful biological insight and robust
biomarkers by integrating quantitative evidence. To ensure quality of candidates, future
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confirmatory analysis is warranted to confirm the validity of the biomarkers with a large
cohort. This approach is advantageous when more time is needed to standardize the
metabolomic and lipidomic reports.

5. Conclusions

Heterogeneity and inconsistency in the findings of clinical metabolomics hamper
the biomarker translation from the bench to the bedside. More effort is required to stan-
dardize the utilized methods and guarantee the reproducibility of the findings. In the
meantime, prioritizing the biomarker candidates using the data-driven and knowledge-
based framework is a practical solution. We suggest consistent biomarkers for HCC across
a diversity of cohorts, platforms, and workflows via a quantitative synthesis approach
and integrated meta-analysis. Our findings provide reasonably comprehensive blood
metabolomics of HCC progression and identified genes, metabolites, and lipid biomarkers
for HCC surveillance, diagnosis, and prognosis.
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LC versus HC, D. Overlapping pathways from all comparisons; Figure S2: Receiver operating
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