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Abstract: South Africa is rich in diverse medicinal plants, and it is reported to have over 35% of the
global Helichrysum species, many of which are utilized in traditional medicine. Various phytochemical
studies have offered valuable insights into the chemistry of Helichrysum plants, hinting at bioactive
components that define the medicinal properties of the plant. However, there are still knowledge
gaps regarding the size and diversity of the Helichrysum chemical space. As such, continuous
efforts are needed to comprehensively characterize the phytochemistry of Helichrysum, which will
subsequently contribute to the discovery and exploration of Helichrysum-derived natural products
for drug discovery. Thus, reported herein is a computational metabolomics work to comprehensively
characterize the metabolic landscape of the medicinal herb Helichrysum splendidum, which is less
studied. Metabolites were methanol-extracted and analyzed on a liquid chromatography–tandem
mass spectrometry (LC-MS/MS) system. Spectral data were mined using molecular networking
(MN) strategies. The results revealed that the metabolic map of H. splendidum is chemically diverse,
with chemical superclasses that include organic polymers, benzenoids, lipid and lipid-like molecules,
alkaloids, and derivatives, phenylpropanoids and polyketides. These results point to a vastly rich
chemistry with potential bioactivities, and the latter was demonstrated through computationally
assessing the binding of selected metabolites with CDK-2 and CCNB1 anti-cancer targets. Molecular
docking results showed that flavonoids (luteolin, dihydroquercetin, and isorhamnetin) and terpenoids
(tiliroside and silybin) interact strongly with the CDK-2 and CCNB1 targets. Thus, this work suggests
that these flavonoid and terpenoid compounds from H. splendidum are potentially anti-cancer agents
through their ability to interact with these proteins involved in cancer pathways and progression. As
such, these actionable insights are a necessary step for further exploration and translational studies
for H. splendidum-derived compounds for drug discovery.

Keywords: natural products; anti-cancer; Helichrysum splendidum; computational metabolomics;
molecular networking; molecular docking

1. Introduction

The genus Helichrysum, also known as “impepho” in isiXhosa (a South African native
language) and “everlastings” in English, consists of around 600 species, the majority of
which are found in South Africa [1]. Helichrysum species have been utilized in folklore
medicine for at least 2000 years worldwide for the cure of several ailments such as gastric
ulcers and gastritis, stomach damage, acute hepatitis, fever, edema, diuretic effects, and
allergies [2–5]. Various Helichrysum spp. have also been reported to exhibit bioactive
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compounds that demonstrate a range of beneficial properties, including anti-inflammatory,
anti-HIV, antioxidant, antibiotic, anti-cancer, and antiviral activities [6–9]. Several studies
have investigated the phytochemistry of Helichrysum species, and most of these reports
have focused on phenolic compounds. These studies examined a wide range of phenolic
acids and flavonoids, which include both of free and glycosylated forms [10–12]. Both
traditional medicine claims and the growing literature indicate that Helichrysum plants are
a rich natural source of potential nutraceutical, pharmaceutical, and cosmetic candidates.
Despite this growing attention to the phytochemistry of Helichrysum, there are still grey
areas that hamper the full exploration of the plant. For instance, to date, the exploration of
Helichrysum species has been predominantly limited to a few species such as H. italicum, H.
arenarium, and H. stoechas; mostly, there is limited characterization of the metabolome of
the plants. Furthermore, phytochemical characterization of other Helichrysum species, and
a comprehensive interrogation of the Helichrysum metabolism, could illuminate the “dark
matter” in the chemistry of the plant and its nutraceutical, pharmaceutical, and cosmetic
potentials. Thus, reported herein is a computational metabolomics work to chart the
chemical space of the less-studied Helichrysum species, H. splendidum, and computationally
assess its anti-cancer potentials.

Over the last decade, metabolomics has been widely employed to assess the pharmaco-
logical efficacy and molecular processes of traditional herbal remedies [13,14]. Furthermore,
recently introduced computational metabolome mining strategies have been impactfully
driving the chemical and biological interpretation of untargeted metabolomics data, ex-
tracting functional information from spectral data. A recent study by Jan et al. (2022) [15]
used computational metabolomics to identify the specific metabolites associated with
the antioxidant and antidiabetic activities of four distinct varieties of Morus alba found
in Kashmir, namely Zagtul, Chtattatual, Chattatual Zaingir, and Brentul Kashmir. Simi-
larly, García-Pérez et al. (2021) [16] employed ultra-high-pressure liquid chromatography
coupled to a quadrupole-time-of-flight mass spectrometer (UHPLC-QTOF/MS) to deter-
mine the phenolic composition of three Bryophyllum species: Bryophyllum daigremontianum,
Bryophyllum × houghtonii, and Bryophyllum tubiflorum. The analysis revealed a total of
485 putatively annotated compounds, with flavonoids emerging as the most abundant
subfamily of phenolic compounds. The presence of these phenolic compounds has been
linked to the antioxidant, cytotoxic, anti-inflammatory, and antimicrobial activities ob-
served in Bryophyllum plants. Phenolics such as flavonoids and terpenoids have been
successfully isolated and purified from numerous plants such as Salvia apiana, Tagetes lucida,
Cussonia vantsilana, Helichrysum gymnocephalum, and many others [17–19]. The purification
of these abundant metabolites has allowed for further investigation into their potential
health benefits and medicinal properties. Additionally, the development of pharmaceutical
and nutraceutical products derived from these phenolics has led to new avenues for the
treatment and prevention of various diseases.

These accounts reflect that (medicinal) plants still represent a vastly rich resource
that can be further explored for potential drug leads, and this is the case for H. splendidum
reported in this study. However, traditional approaches in natural product (NP)-based drug
discovery processes present discouraging challenges. These include rediscovery of known
compounds, access to limited chemical space (of a medicinal plant) due to the lack of a
comprehensive metabolomic landscape of the plant, and very time-consuming processes.
As echoed above, with the rapid development of omics sciences, advancements in analytical
instrumentation, and artificial intelligence technologies, efficient approaches are being de-
veloped to facilitate and improve NP-based drug discovery. Computational metabolomics,
involving tandem mass spectrometry (MS/MS)-based molecular networking, combined
with computational methods such as network pharmacology and molecular docking, rep-
resent time- and cost-effective approaches to investigate potential compounds (drug leads)
prior to in vitro bioassays or chemical modifications for the (overall) accelerated drug
discovery process [20–22]. Thus, contributing to these efforts, this study is a computational
metabolomics work designed to comprehensively characterize the metabolome of H. splen-
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didum (a less-studied Helichrysum plant); to our knowledge, this is the first report on the
metabolomic map of this plant. Furthermore, this study intends to computationally assess
and predict the drug-likeness of chemical classes in the H. splendidum metabolome, the
molecular interaction between the proteins CDK-2 (cyclin-dependent kinase 2) and CCNB1
(cyclin B1) (involved in in the development and progression of cancer), and the inhibitors
(ligands) identified in the plant’s extracts. CDK-2 and CCNB1 are two key molecules
involved in cell cycle regulation, and they have been explored as potential anti-cancer
targets due to their critical roles in controlling cell division. Targeting these molecules can
disrupt the uncontrolled proliferation of cancer cells, making them attractive candidates
for cancer therapy [23,24].

2. Materials and Methods
2.1. Chemicals and Plant Materials

As reflected above, this study was designed as an integration of LC-MS/MS-based
molecular networking and molecular docking for a comprehensive characterization and
prediction of the metabolome of a medicinal plant, H. splendidum, one of the less-studied
Helichrysum plants. All chemicals used in this study were of pure grade quality and were
acquired from various manufacturers. The organic solvent, methanol, was LC-MS-grade
quality and was obtained from Romil (Cambridge, UK). Water was purified using a milli-Q
gradient A10 systems Siemens (Munich, Germany). Formic acid was purchased from Sigma
Aldrich (Munich, Germany).

The H. splendidum seeds were purchased from Seeds for Africa (https://www.seedsforafrica.
co.za, accessed on 17 March 2023) and were planted in 4 L pots filled with potting soil
mixed with Vita-Veg organic fertilizer (Talborne Organics, Bronkhorstspruit, South Africa).
Eight pots were used, with three plants in each pot, and were placed under natural light.
The plants were harvested at a 4-month growth stage. The stems and leaves of Helichrysum
splendidum were freeze-dried, crushed, and the powdered samples were stored in a dried
form at room temperature pending metabolite extractions.

2.2. Metabolite Extraction

One gram (1 g) of the powdered plant material was weighed and subjected to ex-
traction in 20 mL of 80% aqueous methanol. Subsequently, the crude extracts underwent
centrifugation at 2000 rpm for 30 min at 4 ◦C, followed by filtration through a 0.22 µm nylon
filter into pre-labeled glass vials equipped with 500 µL inserts. The filtered samples were
then stored at 4 ◦C until further analysis. To ensure experimental reproducibility, a total
of twenty-four independent biological replicates were prepared, and three instrumental
technical replicates were analyzed. In addition, quality control (QC) samples (pooled
samples) were also prepared to assess the performance of the analytical platform and the
quality of data generated and to correct any systematic errors.

2.3. LC-MS/MS Analysis

The prepared Helichrysum splendidum extracts were analyzed on a liquid chromatography–
quadrupole time-of-flight mass spectrometry instrument (LCMS-9030 qTOF, Shimadzu
Corporation, Japan) using a Shim-pack Velox C18 column (100 mm × 2.1 mm, 2.7 µm)
(Shimadzu Corporation, Kyoto, Japan) at 55 ◦C. An injection volume of three µL was
used, and a binary solvent system was utilized, comprising solvent A (0.1% formic acid
in Milli-Q water) and solvent B (methanol with 0.1% formic acid). The chromatographic
separation of analytes was carried out with a constant flow rate of 0.4 mL/min. A gradient
lasting 53 min was employed with the following separation conditions: 10% B maintained
for 3 min, a gradual increase from 10% to 60% B over 3 to 40 min, maintaining 60% B
from 40 to 43 min, followed by a change to 90% B between 43 and 45 min and holding
90% B for 3 min. The gradient was then returned to initial conditions between 48 and
50 min, followed by a 3 min column equilibration time. The chromatographic effluents
were subsequently subjected to analysis using a qTOF high-definition mass spectrometer

https://www.seedsforafrica.co.za
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(MS) operating in negative electrospray ionization (ESI) mode, based on preliminary
optimizations. The MS instrument parameters were set as follows: interface voltage of
4.0 kV, interface temperature of 300 ◦C, nebulization and dry gas flow of 3 L/min, heat
block temperature of 400 ◦C, DL temperature of 280 ◦C, detector voltage of 1.8 kV, and a
flight tube temperature of 42 ◦C. Sodium iodide (NaI) was utilized as a calibration solution
to ensure high mass accuracy. This solution contains NaI clusters with high masses and
accounts for the calibration of higher m/z (Vékey, K., 1989). Both MS1 and MS2 (data-
dependent acquisition, DDA) were simultaneously acquired for all ions with an m/z range
between 100 and 1000 Da, surpassing an intensity threshold of 5000 counts. Fragmentation
experiments were conducted using argon as a collision gas at a collision energy of 30 eV
with a spread of 5 eV.

2.4. Molecular Networking in the GNPS Analysis Environment

The raw data obtained from the Shimadzu LCMS-9030 were converted to an open-
source format (.mzML). The spectral data were then processed with MSDIAL, and the
outputs were exported into the Global Natural Product Social (GNPS) (https://gnps.ucsd.
edu, accessed on 17 March 2023) ecosystem for FBMN analysis [25,26]. The precursor ion
mass tolerance was set to 0.05 Da, while the MS/MS fragment ion tolerance was set to
0.05 Da. Subsequently, a molecular network was constructed, and edges within the network
were filtered to have a cosine score higher than 0.6 and a minimum of 4 matched peaks.
Furthermore, edges connecting two nodes were retained in the network only if both nodes
appeared in the respective top 10 of nodes most similar to each other. Additionally, the
maximum size of a molecular family was limited to 100, and the lowest-scoring edges were
eliminated from molecular families until the size of the family fell below this threshold. The
spectra in the network were then searched against various GNPS spectral libraries including
GNPS, SUPNAT, CHEBI, DRUGBANK, and FooDB. To retain matches between network
spectra and library spectra, a score higher than 0.7 and a minimum of 6 peaks were required.
The DEREPLICATOR tool was employed for the annotation of MS/MS spectra [27]. The
Cytoscape software [28] was employed to visualize the molecular networks. Empirical
formulae of all matched and some unmatched nodes were generated based on accurate mass
and fragmentation patterns obtained from MS2 analysis. These formulae were then verified
or tentatively annotated. Additionally, dereplication databases for natural products, such
as KNApSAck [29], ChemSpider [30], PubChem [31], Dictionary of Natural Products [32],
and available literature, were searched for further verification and annotation.

In order to enrich chemical structural information within the generated molecular
network, in silico structure annotations from GNPS Library Search and Network Annotation
Propagation (NAP) were incorporated into the network using the GNPS MolNetEnhancer
workflow (https://ccms-ucsd.github.io/GNPSDocumentation/molnetenhancer/ accessed
on 17 March 2023). The consensus and fusion scores were calculated based on the top
10 candidate structures. Chemical class annotations were performed using the ClassyFire
chemical ontology. Peptidic structural annotation was conducted using Dereplicator, while
substructure annotation was performed using the MS2LDA interface in GNPS, including
the Rhamnaceae, and GNPS Mass2Motifs in the search. Metabolite annotation was carried
out at confidence level 2 of the Metabolomics Standards Initiative (MSI) [33].

2.5. Network Pharmacology
2.5.1. Target Prediction, Data Acquisition, and Preprocessing

An unpublished Python script for target prediction was used, and the code for this
script is available upon request. The complete curated Binding DB dataset, known as
BindingDB_All.tsv, was downloaded from https://www.bindingdb.org/ (accessed on
23 May 2023). To ensure data consistency, any lines containing more than 283 tabs were
removed. From each line, Uniprot IDs and counts were extracted. The dataset was then
filtered to include only Homo sapiens, and a list of unique SMILES strings was generated
after the filtering process. Utilizing the RDKit Python library [34], each unique SMILES

https://gnps.ucsd.edu
https://gnps.ucsd.edu
https://ccms-ucsd.github.io/GNPSDocumentation/molnetenhancer/
https://www.bindingdb.org/
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string was converted into a molecule object and its corresponding Morgan fingerprint.
Compounds that could not be converted were excluded from further analysis.

2.5.2. Metabolite Similarity Analysis

Metabolite fingerprints were calculated, and the similarity between these fingerprints
and the SMILES strings was evaluated using the Dice and Tanimoto similarity metrics,
calculated with the RDKit Python library. A cutoff threshold of 0.6 was established to filter
out pairs with low similarity scores. Additionally, a dictionary was created to map SMILES
strings to their respective Uniprot IDs. For each key in this dictionary, the Uniprot IDs were
consolidated into a single set, and a new dictionary was constructed to store the following
information for each metabolite: SMILES strings with Dice and Tanimoto similarities, mean
Dice and Tanimoto similarity scores, and predicted target Uniprot IDs based on the Dice
and Tanimoto similarity metrics.

2.5.3. Output Preparation and Analysis

An output DataFrame was generated, containing information on the metabolites, mean
Dice similarity, mean Tanimoto similarity, and predicted targets based on the Dice and
Tanimoto cutoffs. The overlap between the predicted targets was calculated and included
in the output DataFrame. For each metabolite, the frequency of predicted targets based on
Dice and Tanimoto similarities was determined. These frequency scores were normalized
by dividing them by the total number of predicted targets and sorted in descending order.
The ranked targets based on the Dice and Tanimoto similarity rank scores were added
to the metabolite dictionary. The output DataFrame was augmented with mean Dice
and Tanimoto similarity scores, as well as rank scores for each metabolite based on the
cutoffs. To normalize the scores, they were divided by the target frequency. The normalized
scores for the Tanimoto and Dice filters were then computed and appended to the output
DataFrame.

2.5.4. Compound–Target Network

To compute the compound–target network, cancer targets were retrieved from GeneCard
human gene database [35], and the overlapping targets between the dataset’s retrieved
targets and the predicted ones were then used to generate the compound–target network.
The list of the overlapping targets was visualized in Cytoscape, and network graphs were
generated for each compound and its respective targets to identify the most bioactive H.
splendidum compounds.

2.5.5. Protein–Protein Interaction Network and Gene Ontology Enrichment Analysis

To gather protein–protein interaction (PPI) data, STRING [36] was utilized, set at a
minimum interaction score of >0.7 and limited to Homo sapiens, narrowing the data to
human-specific interactions. For visual representation of the network graphs, Cytoscape
was used. Highly connected sub-networks within the PPI network were then generated
by employing the Molecular Complex Detection (MCODE) plugin in Cytoscape. A gene
ontology (GO) enrichment analysis network of the cancer targets was conducted on Metas-
cape [37]. The gene identifiers of the targets in a list format were uploaded on the provided
input field, and the organism of interest (Homo sapiens) was specified to ensure accurate
enrichment analysis. Metascape then generated a comprehensive enrichment analysis
report, including enriched GO terms, associated biological processes, molecular functions,
cellular components, and pathway information.

2.6. Molecular Docking
2.6.1. Protein and Ligand Preparation

The crystal structures of human cyclin-dependent kinase 2 (CDK-2) (PDB ID: 2CCH)
and cyclin B1 (CCNB1) (PDB ID: 2B9R) proteins were obtained in .pdb format from the
Protein Data Bank (PDB) (https://www.rcsb.org/ accessed on 23 May 2023), a global

https://www.rcsb.org/
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repository used for accessing 3D structures of biological macromolecules [38]. The pro-
teins were prepared using Discovery Studio software (version 20) to ensure their optimal
structure and conformation for subsequent docking analysis. Preparation involved re-
moval of water molecules or ligands that might interfere with the docking process. The
initial 3D structures of the selected ligands were retrieved in .sdf format from PubChem
(https://pubchem.ncbi.nlm.nih.gov/ accessed on 23 May 2023), a public information sys-
tem for analyzing the bioactivity of small molecules [39], and were prepared using Open
Babel [40]. Structure optimization was employed by applying force-field-based energy
minimization algorithms to minimize steric clashes, correct bond lengths and angles, and
improve the overall ligand geometry.

2.6.2. Docking Method

Molecular docking was performed using Autodock Vina within the PyRx software en-
vironment [41]. To initiate the docking process, the prepared receptor structures (proteins)
and ligand structures were imported into PyRx. During the docking simulation, Autodock
Vina evaluated the binding energies of each docking pose based on a scoring function that
considered various factors, including steric clashes, hydrogen bonding, and electrostatic
interactions. The scoring function helped identify the most energetically favorable binding
pose, which represented the predicted binding mode of the ligand within the receptor. The
most favorable pose was then saved and visualized using Discovery studio. The visualiza-
tion facilitated the identification of key interactions between the ligand and receptor, such
as hydrogen bonds, hydrophobic interactions, or electrostatic interactions, which played a
crucial role in determining the binding affinity and biological activity of the ligand.

3. Results and Discussion
3.1. The Metabolomic Chart of H. splendidum Methanol Extracts

Chromatographically, the methanol extracts from the H. splendidum plant are highly
complex mixtures of metabolites with a wide range of polarities (Supplementary Figure S1A).
To further decode this chemical space, spectral data from the H. splendidum methanol
extracts were mined and visualized using molecular networking strategies housed in the
GNPS ecosystem (Section 2.4). The computed feature-based molecular network (FBMN)
contained 5710 nodes (Supplementary Figure S2). Among the total nodes observed from
the FBMN, 194 hits were matched to known metabolites present in the different databases
(Section 2.4), and 59 of these metabolites were further validated through manual confir-
mation by comparing the mirror spectra, mass differences, and retention times (Table 1),
to ensure the accuracy of metabolite identification to levels 2 and 3 as classified by the
Metabolomics Standard Initiative (MSI). Furthermore, to explore the fragmentome and
to predict molecular family and chemical class annotation, both MS2LDA and in silico
annotation tools (NAP and DEREPLICATOR) were applied, respectively (Section 2.4).
Integrating the outputs from FBMN, MS2LDA, and in silico tools in an enhanced molecular
network, the MolNetEnhancer workflow provides the putative chemical structural informa-
tion at the chemical superclass and subclass levels (Figure 1). MolNetEnhancer combines
library matching, discovery of molecular substructures, in silico fragmentation tools, and
chemical classification ontologies into a single molecular network [42]. By incorporating
experimental and predictive outputs into multi-informative MN layers, MolNetEnhancer
reveals molecular families, subfamilies, and structural nuances among family members,
thereby facilitating a more comprehensive metabolite assignment at different molecular
levels, ranging from broad chemical classes to diverse structural scaffolds and candidate
structures [42]. As such, MolNetEnhancer provides a comprehensive overview of chemical
space present in MS experiments. Thus, in this study, MolNetEnhancer offered the putative
chemical classification of compounds identified in the H. splendidum extracts at the sub-
class level, such as benzenoids, organoheterocylic compounds, phenylpropanoids, organic
oxygen compounds, lipids, organic acids, nucleosides, and alkaloids (Figure 1, Table 1).

https://pubchem.ncbi.nlm.nih.gov/
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Table 1. List of annotated metabolites from H. splendidum methanol extracts.

Compound Name Adduct Precursor m/z Library m/z Mass Diff (Da) Chemical Formula RT (min) Fragment Ions

Caffeic acid hexoside [M-H]− 341.087 341.087 9.16 × 10−5 C15H18O9 5.83 179, 135
4-O-Caffeoylquinic acid [M-H]− 353.09 353.09 0.002289 C16H18O9 5.99 191, 179, 173, 135
Quinic acid [M-H]− 191.056 191.055 0.000305176 C7H12O6 6.03 191, 173, 127, 111
1,4-Dicaffeoylquinic acid [M-H]− 515.119 515.12 0.000610352 C25H24O12 6.21 353, 191, 179, 135
Oryzanol A [M-H]− 602.9 601.1594 1.7406 C40H58O4 6.28 601, 439, 409
3-O-Feruloylquinic acid [M-H]− 367.103 367.103 0.000305176 C17H20O9 6.54 191, 173, 135
Pinicolic acid [M-H]− 453.137 453.1793 0.0424194 C30H44O34 6.69 453
1,3-Dicaffeoylquinic acid [M-H]− 515.119 515.12 0.000915527 C25H24O12 6.92 353, 191, 179, 135
5-O-Caffeoylquinic acid [M-H]− 353.09 353.0869 0.00198364 C16H18O9 7.01 191, 179, 173, 135
Vitamin P [M-H]− 609.146 609.146 0.000183105 C27H30O16 7.28 609, 301, 300
Isoquercetin [M-H]− 463.088 463.088 0.000396729 C21H20O12 7.31 463, 300, 271, 255
Quercetin-3-O-glucosyl-6′’-acetate [M-H]− 505.08 505.098 0.00189209 C25H22O13 7.51 505, 301, 300, 271
Ranolazine [M-H]− 429.26 429.21 0.05 C24H33N3O4 7.6 429, 249
Gibberellic acid 8 [M-H]− 363.145 363.145 0.000976562 C19H22O6 7.71 363,301, 275
Kaempferol-3-O-rutinoside [M-H]− 593.15 593.15 0.000915527 C27H30O15 7.72 593, 285, 284, 257
Kaempferol 3-glucuronide [M-H]− 461.072 461.073 0.000183105 C21H18O12 7.76 285, 257
Isorhamnetin-3-O-glucoside [M-H]− 477.104 477.104 9.16 × 10−5 C22H22O12 7.82 314, 299, 285, 271, 243
Viscidulin III [M-H]− 345.06 345.0609 0.00109863 C17H14O7 8.68 330, 315, 287
Isorhamnetin [M-H]− 315.05 315.05 0.000305176 C16H12O7 8.71 300, 271, 255
Eleutheroside E [M-H]− 741.239 741.261 0.0216675 C34H46O18 8.71 741, 579, 417
Dihydroquercetin [M-H]− 303.051 303.051 0.000396729 C15H12O7 8.84 175,125
Quercetin 3,7-dimethyl ether [M-H]− 329.062 329.066 0.00479126 C17H14O7 9.43 314, 299, 271, 243
Jaceidin [M-H]− 359.077 359.077 0.000305176 C18H16O8 9.49 344, 329, 314, 26
Cynarine [M-H]− 515.12 515.12 0.00012207 C25H24O12 9.72 353, 191, 179
Pinocembrine [M-H]− 255.066 255.066 0.000198364 C15H12O4 9.74 255, 213, 171, 151
Quercetin 3-O-glucuronide [M-H]− 477.067 477.067 0.000823975 C21H18O13 9.86 301, 179, 151
Betulin [M-H]− 442.7 441.1222 1.5778 C30H50O2 9.87 441, 260, 245, 231
Silybin [M-H]− 482.4 481.113 1.287 C25H22O10 10.01 327, 315, 312
5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-
3,6,7-trimethoxy-4H-chromen-4-one [M-H]− 373.093 373.093 0.00088501 C19H18O7 10.15 358, 343, 328

Quercetin 3-O-malonylglucoside [M-H]− 549.089 549.089 0.000427246 C24H22O15 10.16 300, 271,255
Kaempferol-3-O-glucoside [M-H]− 447.094 447.093 0.000427246 C21H19O11 10.56 285, 284, 255, 227
3,7-Dihydroxy-3′,4′-dimethoxyflavone [M-H]− 313.072 313.071 0.000183105 C17H14O6 10.59 298, 283, 255
Spiraeoside [M-H]− 463.089 463.088 0.000488281 C21H20O12 10.6 301, 179, 151
Velutin [M-H]− 313.072 313.071 0.000976562 C17H14O6 10.7 298, 283, 255



Metabolites 2023, 13, 1104 8 of 22

Table 1. Cont.

Compound Name Adduct Precursor m/z Library m/z Mass Diff (Da) Chemical Formula RT (min) Fragment Ions

Kaempferol-3-O-glucuronoside [M-H]− 461.073 461.073 0.00088501 C21H18O12 10.7 285, 257, 229
Tiliroside [M-H]− 593.151 593.116 0.015625 C30H26O13 10.79 593, 285, 255
Rhein [M-H]− 283.061 283.025 0.0357056 C15H8O6 11.31 268, 239, 211
9-hydroxy-10,12-octadecadienoic acid [M-H]− 295.228 295.227 0.00241089 C16H32O3 11.91 295, 277, 195
3,4-di-O-caffeoylquinic acid [M-H]− 515.12 515.12 0.000183105 C25H24O12 11.95 191, 179, 173
Luteolin [M-H]− 285.04 285.04 0 C15H10O6 12.51 175, 151, 133
Limocitrin [M-H]− 345.062 345.062 0.000396729 C17H14O8 12.64 315, 287
Dodecylbenzenesulfonic acid [M-H]− 325.184 325.184 0.000183105 C18H30O3S 12.86 325, 183
Isokaempferide [M-H]− 299.056 299.056 0.000213623 C16H12O6 13.98 255, 227
4′,5,7-Trihydroxy-3,6-dimethoxyflavone [M-H]− 329.067 329.067 0.00088501 C17H14O7 13.99 299, 271, 215
Irigenin [M-H]− 359.077 359.077 0.000305176 C18H16O8 14.62 329, 314,286, 258
3-O-Acetylpinobanksin [M-H]− 313.066 313.071 0.000183105 C17H14O6 15.13 253
Tricin [M-H]− 329.067 329.067 0.000396729 C17H14O7 15.3 314, 299, 271
Myricetin 3,7,3′,4′-tetramethyl ether [M-H]− 373.093 373.093 0.000183105 C19H18O8 15.67 343, 328, 300, 285, 257
Eupatilin [M-H]− 343.08 343.082 0.000305176 C18H16O7 16.89 298, 285, 270, 242
Decylbenzenesulfonic acid [M-H]− 297.142 297.153 0.0107117 C16H26O3S 19.05 297, 183
Thymol-beta-D-glucoside [M-H]− 311.15 311.168 0.0540771 C24H32O10 20.03 311, 183
Corosolic acid [M-H]− 471.348 471.348 0 C30H48O4 20.33 471, 407
Hydroquinidine [M-H]− 325.192 325.184 0.0105286 C20H26N2O2 21 325, 183
Canrenone [M-H]− 339.197 339.2 0.00271606 C22H28O3 22.19 339, 184, 183
Oleanolic acid [M-H]− 455.353 455.3533 0.000305176 C30H48O3 22.96 455
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Figure 1. Helichrysum splendidum chemical space visualization with molecular networking. Mol-
NetEnhancer network analysis of spectral data from H. splendidum methanol extracts. The network
shows three major metabolite classes (with different subclasses) identified, which define the H.
splendidum chemical space: lipid and lipid-like molecules, phenylpropanoids, and organic oxygen-
containing compounds. The colored nodes represent the MS/MS spectra matched to GNPS libraries,
and unmatched nodes are represented in grey.

Thus, our results indicate, for the first time, that the H. splendidum metabolomic chart
is characterized by a wide spectrum of chemical (sub)classes, which could be grouped
into superclasses ranging from lipid and lipid-like molecules to organic oxygen com-
pounds (Figure 1, Table 1). The predominant chemical superclasses in the H. splendidum
metabolomic landscape are (i) lipids and lipid-like molecules and (ii) phenylpropanoids
and polyketides (Figure 1). Functionally, lipids serve a range of biological roles in plant
cells, both structurally and as bioactive compounds. For instance, phospholipids and sphin-
golipids are cell membrane components that participate in cell signaling; galactolipids are
chloroplast membrane components that participate in photosynthesis, and triacylglycerols
(TAGs) are used for energy storage [43,44]. Furthermore, some of these specialized metabo-
lites have been documented to provide specific health benefits to humans. For instance,
depending on their modes of action, plant-derived lipids can stimulate the human immune
system, decrease inflammation, enhance bone health, support eye and brain function,
mitigate the risk of coronary heart disease, and exhibit antioxidant and anti-carcinogenic
properties [45–47]. Phenylpropanoids and polyketides (Figure 1), on the other hand, are
oxy-prenylated secondary metabolites that represent a unique group of natural products.
In the past two decades, oxy-prenylated specialized metabolites have gained significant
attention from researchers worldwide due to their noteworthy pharmacological activities,
therapeutic potential, and beneficial impact on human health [48]. These phytochemicals
have demonstrated in vitro and in vivo effects, making them promising candidates for the
prevention and treatment of acute and chronic diseases. Extensive studies have unveiled
the diverse interactions of oxy-prenylated secondary metabolites with various biological tar-
gets, leading to their recognized roles in anti-carcinogenesis, anti-inflammatory responses,
neuroprotection, immune modulation, blood regulation, and metabolic regulation [49]. The
richness of the two predominant chemical superclasses, i.e., lipids and lipid-like molecules
and phenylpropanoids and polyketides in H. splendidum (Figure 1), may therefore account
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for the medicinal properties of this plant reported in folklore such as anti-inflammatory
and anti-cancer activities [7,50].

3.2. Health Benefits from the H. splendidum Chemistry: The Case of Flavonoids and Terpenoids

As revealed in Section 3.1, the metabolic landscape of H. splendidum comprises a wide
spectrum of phytochemicals, some of which arguably exhibit various biological activities.
One of the chemical clusters of interest is the flavonoid family, which is in the superclass of
phenylpropanoids and polyketides (Figure 1). The flavonoid family comprises compounds
such as isoquercetin, isorhamnetin, tiliroside, silybin, rutin, luteolin, and dihydroquercetin
(Figure 2, Supplementary Figure S1B). Based on the MN philosophy, this flavonoid cluster
also contains unknown metabolites or ion features, which are structurally similar or related
to these known flavonoid metabolites. Such extrapolation suggests that there could be
more (novel) flavonoid-like molecules in H. splendidum methanolic extracts. Furthermore,
various studies have suggested that Helichrysum species represent an abundant source
of flavonoids, some of which possess activities such as antioxidant, anti-inflammatory,
wound-healing, antimicrobial, photoprotective, and anti-carcinogenic [50–53]. Isoquercetin,
isorhamnetin, tiliroside, silybin, rutin, luteolin, and dihydroquercetin have been previously
reported to have inhibitory effects on different cancerous cell lines [54–60]. Due to their
therapeutic properties, flavonoids derived from plants have been investigated for their
potential use in cancer chemotherapy. Flavonoids have shown efficacy against various
cancer types by impeding cell cycle progression, protecting cells against external damage,
suppressing mutations, inhibiting prostaglandin synthesis, and preventing carcinogenesis
in animal models [61]. Yagura et al. (2008) [62] reported on the presence of anti-carcinogenic
compounds in Helichrysum maracandicum where naringenin chalcone exhibited a strong
anti-proliferative activity against cultured cells of SENCAR (SENsitive to CARcinogenesis)
mouse strain (model) in an in vitro assay. Thus, the presence of a wide range of flavonoid
compounds in H. splendidum (Figures 1 and 2) qualitatively suggests flavonoid-linked
anti-cancer properties of the plant, which is worth investigating (Section 3.3).
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and luteolin.
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In addition to profiled flavonoids (part of the phenylpropanoids and polyketides
chemical superclass), the metabolome of H. splendidum is predominantly characterized by
lipids and lipid-like molecules (Figure 1), of which terpenoids have been reported to possess
anti-cancer activities. The H. splendidum terpenoid profile comprises betulin, oleanolic
acid, oryzanol A, pinicolic acid, and corosolic acid metabolites (Figure 3). Terpenoids
(oxygen-containing hydrocarbons) are a modified group of terpenes with diverse functional
groups and rearranged or eliminated oxidized methyl groups at different positions. The
classification of terpenoids is based on the number of carbon atoms they contain, ranging
from mono-, di-, tri-, and sesqui- to sesterpenoids. The majority of terpenoids, which
vary in their structural makeup, are physiologically active, and they are thought to be
potentially effective in cancer pharmacotherapy due to their ability to produce a wide
range of functional groups [63]. The structural features of terpenoids that confer anti-
cancer properties can also vary depending on the specific compound and the target cancer
cell type. Betulin (Figure 3) has been demonstrated to possess cytotoxic effects against
numerous human neoplastic cell lines, including cervical (HeLa), liver (HepG2, SK-HEP-1),
lung (A549), breast (MCF-7), melanoma (G361), colorectal carcinoma (HCT116, HT29),
and prostate tumor (PC-3) cell lines [64,65]. An increasing body of evidence suggests that
the anti-cancer activity of betulin is primarily mediated through apoptosis activation [66];
however, the precise molecular mechanisms underlying the anti-cancer action of betulin
still remain to be investigated. Similarly, ursane-type terpenoids, such as corosolic acid
and oleanane types, such as oleanolic acid (Figure 3), have been documented for their
anti-proliferative activities against gastric (NCI-N87), colorectal (HCT15), cervical (HeLa),
glioblastoma (U291, U373, and T98G), and colon (HT29) cancer cell lines [67,68]. The
potential anti-cancer activity of H. splendidum can therefore be ascribed to the presence of
the identified terpenoids in the methanol extracts such as oleanolic acid and corosolic acid
(Figure 3) with reported anti-proliferative properties together with the structurally similar
compounds as seen from the MN.
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Most flavonoids and terpenoids, found in a wide range of edible and medicinal plants,
have been suggested to possess chemo-preventive and cytotoxic effects against various
types of cancers via diverse mechanisms. However, the clinical use of these compounds is
still very limited and challenging due to various constraints and bottlenecks. These include
decoding the chemical space in which these compounds are found and their isolation and
purification from their natural resources; characterization and understanding the molecular
mechanisms governing the chemo-preventive and cytotoxic effects of these compounds;
the cost and time needed for epidemiological studies; and several pharmacokinetic chal-
lenges (e.g., bioavailability, drug–drug interactions, and metabolic stability). To address
some of these challenges, numerous approaches are being devised and applied, such as
the increasing development and exploration of computational and bioinformatics meth-
ods. These help to rapidly gain actionable insights into possible molecular mechanisms
that define bioactivities of (these) metabolites, modeling interactions at the atomic level
between the metabolites and predicted macromolecules [69]. Such emerging efforts, lever-
aging computational strategies such as network pharmacology and molecular docking,
represent a paradigm shift in the drug discovery process and are time- and cost-effective
approaches to determine potential (bioactive) compounds prior to in vitro bioassays or
chemical modification, subsequently accelerating the process. Thus, the work reported
herein contributes to these ongoing efforts, with a focus on H. splendidum chemistry and its
potential anti-cancer activities.

3.3. Network Pharmacology and Molecular Docking of Flavonoids and Terpenoids from
H. splendidum in the Binding Pocket of CDK-2 and CCNB1

Molecular docking is extensively employed to predict the mechanism of action and
elucidate the structure–activity relationships of natural products. Docking aims to accu-
rately determine the orientation of a ligand within a protein’s binding pocket and assess
the strength of the binding using a docking score [70]. The 3D structure of the protein in
question is obtained either from X-ray crystallography, NMR data, or generated through
homology modeling. Ligand molecules are then computationally positioned within the
binding pocket to analyze their potential interactions with the target, thereby identifying
the crucial binding features of the molecule. This in silico method represents a valuable
filtering tool in the quest for new bioactivities associated with natural products and can
be used to find and uncover novel activities for previously characterized plant-derived
natural products [69]. The potential of flavonoids and terpenoids to hinder cell proliferation
and trigger apoptosis or autophagy in human cancer cells has recently sparked significant
interest regarding their prospects as anti-cancer agents [71,72].

Several epidemiological studies substantiate the preventive properties of flavonoids
in relation to cancer, and numerous studies have sought to establish correlations between
the structural characteristics and anti-cancer activity of flavonoids. Despite extensive
research on flavonoids and terpenoids and their potential anti-cancer properties, there
is still limited understanding of how the structure of these compounds relates to their
anti-cancer activity. This lack of knowledge can be attributed to incomplete information
regarding the interactions between these compounds and their targets. As echoed above,
to address this gap, functional sites of protein molecular surfaces and protein and ligand
interactions can be computationally predicted [22,73]. These efforts, such as the study
reported herein, hold the potential for uncovering novel therapeutic agents.

Thus, in this study, to explore the potential molecular targets of flavonoids and ter-
penoids as promising anti-cancer agents, molecular docking was employed using various
enzymes and receptor proteins involved in cancer pathways. Firstly, network pharmacol-
ogy (NP), a drug discovery discipline that uses computational biological tools to elucidate
drug interactions with multiple targets, was employed [74]. NP integrates systems’ biology
and bioinformatic tools to decipher the complex relationship between drugs, potential
targets, and diseases, thus providing a promising approach for disease action mecha-
nisms and the identification of potential bioactive compounds [75]. In this study, network
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pharmacology was used to predict the bioactive flavonoids and terpenoids present in
the metabolomic map of the H. splendidum (Figures 1–3). Potential cancer targets were
computed using protein–protein interaction (PPI) network construction and analysis and
gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis. To identify the bioactive compounds in H. splendidum, which would be used for
molecular docking, a compound–target network was generated (Figure 4). A compound–
target network generates prediction interactions between chemical compounds and their
targets such as proteins or receptors. Thus, Figure 4 reveals isorhamnetin, luteolin, rutin,
and oleanolic acid as bioactive compounds due to the high number of interactions observed
between these compounds and the different cancer target proteins predicted from relevant
databases. In compound–target networking, a higher number of interactions (multiple
targets) is correlated with (potentially) increased bioactivity [76]. These compounds were
then chosen for the additional computational ligand–target interaction analysis.
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As mentioned above, PPI networking was used to predict specific protein targets that
are implicated in cancer disease. A total of 65 predicted protein targets were imported
into STRING to generate a PPI network (Figure 5A). PPI networks represent the physical
and functional interactions between proteins in a biological system under specified physio-
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logical conditions [77]. These networks therefore provide a systems-level perspective by
considering the interactions of target proteins rather than studying them in isolation. This
leads to a deeper understanding of the biological mechanism of the disease in question and
potential therapeutic applications. The MCODE plugin was then employed to identify the
most densely connected regions within the PPI network, and the top 10 core cancer targets
were CDK1, CDK2, CDK6, CCNB1, CDK4, CCND1, PLK1, AURKB, HIF1A, and GSK3B
(Figure 5B).
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To further analyze and interpret the functional characteristics of the target protein
candidates, GO enrichment analysis was employed (Figure 5C). During enrichment anal-
ysis, the input gene list (target proteins) is compared to numerous gene sets specified by
their involvement in specific biological processes and pathways [37]. The top 10 pathways
revealed by the GO enrichment analysis were then highlighted together with the network
of enrichment terms (Figure 5C). The enrichment analysis showed the direct participation
of the target proteins in the pathways known to be associated with cancer. The ten path-
ways emerged as the most significant, surpassing the rest of the pathways and biological
processes with a p-value of 10–20 (Figure 5C). These findings therefore suggest a strong
connection of the identified target proteins to cancer-related processes and shed light on the
significance of these pathways functionally. Following the identification of bioactive com-
pounds in H. splendidum using a compound–target network and target proteins through GO
enrichment analysis (Figures 4 and 5), exploration and investigation of metabolite–protein
interactions, using molecular docking, were then employed.

The molecular docking performed in this work was an attempt to forecast the likely
modes of interactions and mechanisms of the identified bioactive compounds in the H.
splendidum extract. Isorhamnetin, luteolin, rutin, and oleanolic acid (Figure 4) were docked
into binding sites of CDK2 (representative of the other CDKs identified by the PPI network)
and CCNB1 targets. Findings from the molecular docking study are presented in Supple-
mentary Table S1. From these, oleanolic acid and isorhamnetin had the highest docking
scores of −8.9 and −7.8. Figure 6 presents the interaction diagrams (3D and 2D) of the
respective compounds and their targets. For instance, the interactions between the CDK-2
enzyme and oleanolic acid were characterized with the strongest interaction formed by
hydrogen bonds with lysine (LYS300) and the amino acid fraction of the CDK-2 enzyme
(Figure 6A). Van der Waals interactions were also formed between the two molecules.
Isorhamnetin, on the other hand, in addition to hydrogen bonds formed by LYS302 and
cysteine (CYS193), formed pi-cations and pi-alkyl interactions. Pi-cation interactions occur
due to a positively charged amino acid residue of the protein and the aromatic system of
the compound, as observed in Figure 6B. Pi-alkyl interactions were also observed in which
the benzene ring of the compound and the alkyl side chain of the amino acid residues
form an interaction when in close proximity to stabilize the binding of the molecules.
Furthermore, the results reveal that hydroxyl groups (of both terpenoids and flavonoids)
are crucial in the metabolite–target interactions (Figure 6). As such, the molecular basis of
the bioactivities of H. splendidum-derived terpenoids and flavonoids were computationally
revealed, particularly the banding to the CDK-2, an anti-cancer target protein.

Thus, these results (Figure 6) reveal and demonstrate strong interactions between
H. splendidum-derived flavonoids/terpenoids and the CDK-2 protein, which implies that
these specialized metabolites are predictively able to alter CDK-2 structural conformations,
subsequently halting or inhibiting their activities. Cyclin-dependent kinases (CDKs) are
a group of twenty serine/threonine kinases that have essential roles in governing cell
proliferation, transcription, differentiation, and metabolism [78]. CDK-2, a member of the
CDK protein family, plays a crucial role in the transition from the G1 to S phase of the
cell cycle and is typically overexpressed in human malignancies while having minimal
expression in most normal tissues [79]. Interestingly, numerous studies have demonstrated
that inhibiting CDK-2 can induce apoptosis in cancerous cells while causing minimal harm
to normal cells [80–82]. From these observations, we can postulate that H. splendidum has
pharmaceutical potential as a source of bioactive and druggable compounds, particularly
from terpenoid and flavonoid structural classes (Figure 6), for cancer treatment. The chemi-
cal map of the plant shows richness in flavonoid content (Figure 2 and Table 1), and from
these computational models (Figure 6), it is evident that these specialized metabolites could
functionally inhibit cancer cell growth through their interactions with protein kinases. The
latter have become critical pharmacological targets due to the development of numerous
kinase inhibitors [83], and identifying molecular targets involved in cancer incidence has
become a critical step in developing prospective anti-cancer agents [84,85].
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Figure 6. Flavonoid and terpenoid molecular interactions with CDK2 protein residues. Two-
dimensional ligand-CDK2 diagrams of (A) oleanolic acid and (B) isorhamnetin with docking scores
of −8.9 and −7.8, respectively, visualized using Discovery studios.

For CCNB1, oleanolic acid and rutin both had the highest docking scores of −8.9.
These ligands also adopted a similar binding mode, in which the observed interactions
were mainly hydroxyl and carboxyl groups of the compounds interacting with the different
amino acid residues of CCNB1 and forming hydrogen bonds (Figure 7A). Computationally,
it was observed that oleanolic acid forms hydrogen bond interactions with the amino
residues (LEU129 and ARG68) of the CCNB1 enzyme. The high binding affinities observed
can be attributed to the hydrogen bonds and van der Waals interactions. Rutin similarly
formed hydrogen bond interactions with the CCNB1 target. The number of CCNB1 amino
acid residues forming these interactions with the compound was higher (ASN72, GLN71,
ARG68, ASN130, GLY134) as compared to oleanolic acid. Pi-alkyl interactions were also
observed between LEU17 and the benzene groups of rutin (Figure 7B). As such, these
results (Figure 7) computationally reveal and demonstrate strong interactions between
H. splendidum-derived flavonoids/terpenoids and the CCNB1 protein, which implies that
these specialized metabolites would alter the structural conformations of this protein and
subsequently halt or inhibit its activities. Cyclin B1 (CCNB1), a key protein involved in the
regulation of the cell cycle, plays a crucial role in cancer therapy. CCNB1 forms a complex
with CDK1 to aid in the progression of cells through the G2/M phase transition in the cell
cycle. This complex controls numerous processes which are required for cell division such
as entry into mitosis and chromosomal segregation [86].
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CCNB1 has emerged as a promising candidate for anti-cancer therapy due to its essen-
tial role in cell cycle control. Attempts have been made in the last decade to develop novel
CCNB1 inhibitors in response to the observed overexpression of CCNB1 in cancer cells
originating from various sources such as breast, colorectal, prostate, and hepatocellular
cancers [87–89]. Recently, Aljohani et al. (2022) [90] reported that high CCNB1 protein ex-
pression was associated with aggressive tumor behavior resulting in large tumor formation
in breast cancer. As a result, blocking CCNB1 signaling in both tumor endothelium and
malignant cells has emerged as a prospective target for developing novel cancer therapies.
In this same line of efforts, our study suggests that the Helichrysum splendidum metabolomic
landscape may contain potential CCNB1 inhibitors, as seen from the molecular docking
results. As previously mentioned, CCNB1 and CDKs form a complex in the cell cycle
which in turn phosphorylates a multitude of downstream targets that are responsible for
the progression of mitosis. Interestingly, the findings from our study highlighted that H.
splendidum extracts can potentially inhibit both proteins (Figures 6 and 7), suggesting a
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more aggressive disruption of the intricate network of the cell cycle, which could lead to
accelerated cell cycle arrest and inhibition of tumor growth.

Thus, the computational modeling reveals that H. splendidum-derived flavonoids and
terpenoids possess anti-cancer bioactivities through their molecular interactions with pro-
teins involved in cancer progression. Such actionable insights pave the way for in vitro and
in vivo confirmatory studies. Furthermore, extrapolating from the molecular networking
principles, i.e., structurally similar compounds are grouped together in a network cluster, it
can be postulated that structurally related metabolites, as revealed by a molecular network,
could possess similar bioactivities. This can be illustrated by the case of oleanolic acid,
which was found to have the highest binding score of -8.9 when docked into the binding
sites of CDK2 and CCNB1. From the molecular network (Figure 3), pinicolic acid is struc-
turally similar to oleanolic acid and could therefore possess similar anti-cancer bioactivity.
Similarly, isorhamnetin and rutin were found to form clusters in Figure 2, suggesting an
abundance of potential anti-cancer compounds within the H. splendidum extract. This
points to a large pool of potential anti-cancer compounds present in the H. splendidum
metabolomic map, and most of it is yet to be investigated. Thus, our study contributes to
ongoing efforts to comprehensively characterize the (bio)chemistries of medicinal plants,
particularly in South Africa. Combining molecular networking with molecular docking
allowed for the exploration of a broader chemical space of H. splendidum, the less-studied
Helichrysum plants. Furthermore, our findings point to the prioritization of candidate
compounds that hold the greatest promise for further investigation in anti-cancer research.

4. Conclusions

The computational metabolomics study reported herein provides, for the first time,
a global metabolic chart of the Helichrysum splendidum plant. The latter is characterized
by a wide spectrum of chemical (sub)classes, which could be grouped into superclasses
ranging from lipid and lipid-like molecules to organic oxygen compounds. The predom-
inant chemical superclasses in the H. splendidum metabolomic landscape are (i) lipids
and lipid-like molecules and (ii) phenylpropanoids and polyketides. This report on the
metabolome of H. splendidum is the first of its kind, providing actionable insights on the
chemical space of this plant. Further studies could include a comparative interrogation
of the metabolome of this plant with the metabolic profiles of other Helichrysum species.
Furthermore, computational methods were employed to predict potential anti-cancer com-
pounds from H. splendidum metabolomic space. Network pharmacology points to flavonoid
and terpenoid compounds, particularly rutin, luteolin, isorhamnetin, and oleanolic acid,
as potential anti-cancer agents. Molecular docking predictively simulated the interactions
between these compounds and CDK2 and CCNB1 proteins involved in cancer pathways
and progression. The reported docking scores and molecular interactions indicate that H.
splendidum extracts exhibit promising inhibitory activity against CDK2 and CCNB1 pro-
teins. Thus, leveraging emerging computational and bioinformatics strategies, this study
generates a metabolomic chart that describes the chemical space of H. splendidum, pointing
to its potential anti-cancer candidates (metabolites and structurally related unknowns)
from this plant. These actionable insights are a necessary step for further investigations
(such as in vitro cell-culture-based assays) into H. splendidum flavonoids and terpenoids for
confirmatory and translational studies towards anti-cancer drug discovery and treatments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13101104/s1, Figure S1: LC-MS analyses of methanol ex-
tracts from H splendidum; Figure S2: Feature-based molecular network of Helichrysum splendidum;
Table S1: Docking scores and glide energy of Helichrysum splendidum compounds with CNNB1 and
CDK2 targets.
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