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Abstract: The Omega-3 Index (O3I) reflects eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) content in erythrocytes. While the O3I is associated with numerous health outcomes, its
widespread use is limited. We investigated whether urinary metabolites could be used to non-
invasively monitor the O3I in an exploratory analysis of a previous placebo-controlled, parallel
arm randomized clinical trial in males and females (n = 88) who consumed either ~3 g/d olive oil
(OO; control), EPA, or DHA for 12 weeks. Fasted blood and first-void urine samples were collected
at baseline and following supplementation, and they were analyzed via gas chromatography and
multisegment injection–capillary electrophoresis–mass spectrometry (MSI-CE-MS), respectively. We
tentatively identified S-carboxypropylcysteamine (CPCA) as a novel urinary biomarker reflecting O3I
status, which increased following both EPA and DHA (p < 0.001), but not OO supplementation, and
was positively correlated to the O3I (R = 0.30, p < 0.001). Additionally, an unknown dianion increased
following DHA supplementation, but not EPA or OO. In ROC curve analyses, CPCA outperformed
all other urinary metabolites in distinguishing both between OO and EPA or DHA supplementation
groups (AUC > 80.0%), whereas the unknown dianion performed best in discriminating OO from
DHA alone (AUC = 93.6%). Candidate urinary biomarkers of the O3I were identified that lay the
foundation for a non-invasive assessment of omega-3 status.

Keywords: precision nutrition; metabolomics; omega-3 long-chain polyunsaturated fatty acids
(n3-LCPUFA); omega-3 index; dietary biomarkers; urinary metabolites

1. Introduction

The omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFA) eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) have recognized anti-inflammatory and
triglyceride-lowering properties [1,2] and are associated with reductions in coronary heart
disease mortality [3], neuropsychiatric disorders [4], and all-cause mortality [5]. EPA and
DHA are primarily obtained through the consumption of fatty fish and other marine foods,
but small amounts are also produced endogenously [6,7]. Due to the numerous health
benefits associated with n3-LCPUFA, monitoring their levels in the population is important
to help prevent and/or mitigate health risks.
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The two most common methods to determine a person’s n3-LCPUFA status are
through dietary assessment or through directly measuring their levels in the blood; however,
both methods have recognized limitations. Self-reported assessments of food intake, such
as food frequency questionnaires and diet records, are subject to reporting biases [8,9]
and are unable to account for individual differences in n3-LCPUFA digestion, absorption,
and metabolism that ultimately affect their levels in the body. The current gold standard
to determine a person’s n3-LCPUFA status is to directly measure EPA and DHA levels
in erythrocytes using gas chromatography–flame ionization detection (GC-FID) or mass
spectrometry [10]. The sum of EPA and DHA in erythrocytes is commonly known as
the Omega-3 Index (O3I). In contrast to fatty acids measured in serum, plasma, or whole
blood, the O3I is less sensitive to acute dietary changes and was reported to reflect n3-
LCPUFA membrane content in other tissues such as heart, liver, muscle, and kidney [11,12].
Consequently, the O3I has been positioned as a modifiable and diet-sensitive biomarker
that can be used to estimate cardiovascular disease (CVD) mortality and other health risks,
where an O3I value of <4% corresponds to high risk and >8% corresponds to low risk [13].
However, a major limitation with measuring the O3I is the need for a blood sample, which
presents a challenge in many people due to needle phobia [14,15], as well as the lack of a
globally accepted standardized methodology for calculating the O3I [16].

To overcome the challenges associated with dietary assessments, blood sampling, and
complicated sample workup procedures, researchers have begun to explore the use of uri-
nary metabolites to objectively and non-invasively monitor an individual’s dietary intake
and/or nutrient status [17–19]. Several studies have proposed candidate urinary biomark-
ers related to fish intake, including acetylcarnitine, methylbutyrylcarnitine, propionylcarni-
tine, and 3-methylhistidine [20]; however, these urinary metabolites remain to be indepen-
dently validated and may not be specific to n3-LCPUFA. The O3I was recently reported to
be inversely associated with the urinary albumin–creatinine ratio [21] and 8-hydroxy-2′-
deoxyguanosine (8-OHdG; [22]), while other studies have reported urinary metabolites
that change following n3-LCPUFA supplementation, such as trimethylamine-N-oxide
(TMAO) [23] and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) [24]. How-
ever, no study to date has investigated if urinary metabolites could serve as a biomarker
for the O3I. As such, identifying and validating urinary metabolites that reflect an indi-
vidual’s O3I could potentially lay the foundation for the development of a non-invasive
biomonitoring strategy for precision nutrition.

The present study is an exploratory secondary analysis of a previously reported
randomized control trial in which the differential effects of high-dose EPA and DHA
supplementation on the O3I and blood pressure regulation were investigated [25]. The
current analysis aimed to identify and evaluate candidate urinary metabolites that can serve
as non-invasive biomarkers of the O3I in a cohort of healthy young adults who consumed
EPA or DHA supplements for 12 weeks. We hypothesized that a small number of urinary
metabolites would be responsive and specific to changes in n3-LCPUFA status such that
they could perform reliably as a non-invasive biomarker of the O3I. An untargeted data
workflow was used to characterize changes in the urine metabolome via multisegment
injection–capillary electrophoresis–mass spectrometry (MSI-CE-MS) and identify novel
biomarkers temporally associated with EPA and/or DHA intake.

2. Materials and Methods
2.1. Participants and Study Design

Ninety healthy men and women aged 18–30 years were recruited from the University
of Guelph (Guelph, Ontario, Canada) between January 2017 and June 2017. Exclusion
criteria included smoking, history of cardiovascular disease, chronic use of pharmaco-
logical medications (except for oral contraceptives), >2 servings of fish or shellfish (or
other EPA/DHA fortified foods) per week, and fish oil supplementation in the previous
3 months. All participants provided written informed consent, and the study was approved
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by the Research Ethics Board at the University of Guelph. The trial was registered at
clinicaltrials.gov (NCT03378232).

Eighty-eight participants completed the 12-week double-blind, parallel arm, random-
ized trial in which the effects of ~3 g/day olive oil (OO; control), EPA, or DHA supple-
mentation were compared. Participants were randomized into one of 3 groups, (1) OO
supplement, (2) EPA supplement, and (3) DHA supplement, with block randomization
stratified by sex. Participants were instructed to maintain previous dietary and exercise
habits for the duration of the trial and one day prior to blood and urine collection [25].
Following an overnight fast, blood and first-void urine samples were collected before (base-
line) and after the 12-week supplementation period and stored at −80 ◦C until analysis.
Participant characteristics, including age, height, and weight, were measured at baseline.

2.2. Supplements

Olive oil and purified EPA and DHA (KD-PUR DHA700TG) oil supplements were
obtained from KD Pharma (Bexbach, Germany) and encapsulated using InnovaGel in
identical softgel capsules. Fatty acid (FA) purity (mean ± SEM) was determined via gas
chromatography and previously reported to be 75.7 ± 0.1% for oleic acid (18:1n-9) in the
olive oil supplement, 74.7 ± 0.09% EPA and 0.55 ± 0.01% DHA in the EPA oil supplement,
and 72.3 ± 1.3% DHA and 1.05 ± 0.11% EPA in the DHA oil supplement [26]. Quantitative
fatty acid purity levels were also reported previously [25], with the OO capsules containing
818 mg oleic acid and no detectable EPA or DHA, EPA capsules containing 813 mg EPA and
7 mg DHA, and DHA capsules containing 814 mg DHA and 7.5 mg EPA. Supplementation
of 4 capsules/d at these amounts corresponded to approximately 3 g/d of oleic acid,
EPA, and DHA. Participants were instructed to take 2 capsules twice daily with food for
12 weeks.

2.3. Erythrocyte Fatty Acid Content

Blood samples were collected from the antecubital vein into EDTA-treated vacutain-
ers to isolate erythrocytes. Samples were separated via centrifugation at 700× g at 4 ◦C
for 15 min. Erythrocyte samples were shipped to the Medical University of Białystok,
Poland, on dry ice for fatty acid composition analysis. Lipids were extracted according to
the Folch method [27]. Briefly, lipids from isolated erythrocytes were extracted in chloro-
form:methanol (2:1 vol:vol) containing butylated hydroxy-toluene (0.01%) as an antioxidant
and heptadecanoic acid (17:0) as an internal standard, as previously described [28]. After
lipid extraction and transmethylation with BF3/methanol, the lipid phase containing fatty
acid methyl esters (FAMEs) was dissolved in hexane and analyzed using a Hewlett-Packard
5890 Series II gas chromatograph with a Varian CP-SIL capillary column (100 m, internal
diameter 0.25 mm) and flame-ionization detector. Individual fatty acids were detected in
accordance with the retention times of standards. FAME and fatty acid standards were
purchased from Larodan. A total of 15 FAs were measured: myristic acid (14:0), palmitic
acid (16:0), palmitoleic acid (16:1n-7), stearic acid (18:0), oleic acid (C18:1n-9), linoleic acid
(18:2n-6), arachidic acid (20:0), α-linolenic acid (ALA; 18:3n-3), behenic acid (22:0), di-homo-
γ-linolenic acid (20:3n-6), arachidonic acid (20:4n-6), lignoceric acid (24:0), EPA (20:5n-3),
nervonic acid (24:1n-9), and DHA (22:6n-3). FAs were standardized to haemoglobin (Hb)
and reported as relative (% FA composition) values or quantitative (ng FA/mg Hb) values.
The O3I was calculated through summing the relative % of EPA and DHA.

2.4. Untargeted Urine Metabolite Analysis
2.4.1. Chemicals

All chemical standards and calibrants were purchased from Sigma-Aldrich (St. Louis, MO,
USA), including analytical grade ammonium acetate, ammonium bicarbonate, ammonium
hydroxide, formic acid, organic acids, sodium hydroxide, and recovery/internal standards,
including 4-aminobutyric acid-2,2,3,3,4,4-d6 (GABA-d6), choline-d9, 4-fluorophenylalanine
(F-Phe), 3-chlorotyrosine (Cl-Tyr), 4-fluorotyrosine (F-Tyr) and naphthalene-2 sulfonic acid

clinicaltrials.gov
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(NMS). All LC-MS grade solvents, including acetonitrile, isopropanol, methanol, and water,
were obtained from Caledon Laboratories Ltd. (Georgetown, ON, Canada). Calibrant
solutions for all analytes were prepared through the serial dilution of stock solutions
(50 mM) in LC-MS grade water and stored in a refrigerator (4 ◦C).

2.4.2. Preparation of Urine Samples and Quality Controls

Briefly, all urine samples were slowly thawed on ice and centrifuged at 10,000× g
for 5 min. Subsequently, 20 µL of urine was aliquoted into a centrifuge tube and diluted
five-fold with 60 µL deionized water, and a 20 µL mixture of internal standard (200 µM
Cl-Tyr and NMS) and recovery standards (200 µM GABA-d6, choline-d9, F-Phe, F-Tyr), for
a total volume of 100 µL. Centrifuge tubes were vortexed for 5 s; then, 20 µL was aliquoted
into a polypropylene vial, and each sample was analyzed in duplicate. Quality controls
(QCs) were made to represent the average of all combined samples, to be used to assess
instrument drift from run to run. Pooled QCs were prepared through aliquoting 2 µL from
each individual sample into a centrifuge tube to establish a representative average sample.
Then, a 20 µL aliquot was diluted five-fold with 40 µL deionized water, and 40 µL internal
and recovery standard mixture. This QC sample was analyzed in every analytical run
via MSI-CE-MS in randomized sample injection positions during data acquisition for the
evaluation of technical precision for each urinary metabolite that satisfied our selection
criteria (CV < 30% with detection frequency >60%) using a high-throughput MSI-CE-MS
metabolomics platform and standardized data workflow for biomarker discovery [29].
Three subgroups of QC samples were also prepared through aliquoting separately from
the control, EPA, and DHA supplement arms, which were used for nontargeted metabolite
profiling in conjunction with a blank sample. All diluted urine samples were stored at
−80 ◦C prior to analysis.

2.4.3. Urine Metabolome Analysis

An Agilent 6230B time-of-flight (TOF) mass spectrometer with an electrospray ioniza-
tion (ESI) source equipped to an Agilent G7100A capillary electrophoresis (CE) unit was
used for all experiments (Agilent Technologies Inc., Mississauga, ON, Canada). An Agilent
1260 Infinity isocratic pump and a 1260 Infinity degasser were applied to deliver sheath
liquid. A sheath liquid composition of 0.1% vol formic acid in (60:40 methanol:water) and
(70:30 methanol:water) at a flow rate of 10 µL/min were used for positive and negative
ion mode, respectively. For real-time mass correction, purine (20 µL) and hexakis(2,2,3,3-
tetrafluoropropoxy)phosphazine (HP-921, 20 µL) reference ions were spiked into the sheath
liquid (400 µL) at 0.02% vol to provide constant mass signals. The nebulizer spray was set
off during the serial sample injection before being switched on at 4 psi (27.6 kPa) following
voltage application. The source temperature was set to 300 ◦C, and drying gas was deliv-
ered at 4 L/min. The instrument was operated under a 2 GHz extended dynamic range for
positive and negative modes of detection. The Vcap, fragmentor, skimmer, and octupole RF
voltage were set to 3500 V, 120 V, 65 V, and 750 V, respectively. Separations were performed
on bare fused-silica capillaries with a 50 µm internal diameter, a 360 µm outer diameter,
and a total length of 135 cm (Polymicro Technologies Inc., Phoenix, AZ, USA). A capillary
window maker (MicroSolv, Leland, NC, USA) was used to remove 7 mm of the polyimide
coating on both ends of the capillary. All diluted urine and pooled QC samples were
analyzed via MSI-CE-MS under two different configurations with full data acquisition.
Sub-group analysis was also performed via MSI-CE-MS on pooled urine samples from
different sub-groups of participants. An acidic background electrolyte (BGE, 1.0 M formic
acid with 15% vol acetonitrile, pH 1.8) was used for resolving cationic metabolites under
positive ion mode while an alkaline BGE (50 mM ammonium bicarbonate, pH 8.5, adjusted
with ammonium hydroxide) was used for anionic metabolites under negative ion mode,
as described elsewhere [30,31]. Diluted urine samples were introduced hydrodynamically
at 100 mbar (10 kPa), alternating between 5 s for each sample plug and 75 s for each
BGE spacer plug, which was electrokinetically injected at 30 kV. In total, thirteen discrete



Metabolites 2023, 13, 1071 5 of 22

samples were analyzed within a single analytical run of 45 min. The applied voltage was
set to 30 kV at 25 ◦C for CE separations together with a gradient pressure of 2 mbar/min.
The structural elucidation of urinary metabolites associated with the O3I was performed
via collision-induced dissociation experiments at an optimum collision energy when using
a single-injection format in CE coupled to a 6550 quadrupole–time of flight–mass spectrom-
eter system (Agilent Technologies Inc.) under positive or negative ion modes [32]. The
structural elucidation of unknown metabolites associated with the O3I was also supported
with accurate mass database searches for putative candidate ions reported in the Human
Metabolome Database (HMDB 5.0) [33], as well as predicted MS/MS spectra generated in
silico via CFM-ID 4.0 [34].

2.4.4. Comprehensive Analysis of Ionic Urinary Metabolites with Quality Control

A targeted and nontargeted data workflow was applied for characterizing urinary
metabolites from spurious signals and background ions when using temporal signal pattern
recognition with multiplexed separations in MSI-CE-MS [29,35]. An iterative approach
was used to authenticate urinary metabolites primarily as their intact molecular ions (i.e.,
[M + H]+ or [M − H]−) while filtering out signal redundancy, such as in-source fragments,
isotopic contributions, and adducts. Briefly, a sub-group analysis was first performed
when using a dilution trend filter comprising 13 independent serial sample injections via
MSI-CE-MS under positive and negative ion mode [36], including a quadruple injection
of a pooled urine sample comprised of all individuals in the study at both time points
together with a single blank sample. An open-source software for data pre-processing of
metabolomic data sets, MZmine (version 2.53) [37], was used for reviewing, annotating,
and selecting molecular features based on their characteristic accurate mass (m/z) and
relative migration time (RMT) detected under positive (p) or negative (n) ion modes. Also,
an in-house urinary metabolite library was used for targeted analysis, where each urinary
metabolite was processed using vendor specific software (Agilent MassHunter Qualitative
Analysis, version 10.0). The integration of all urinary molecular features was normalized to
an internal standard (Cl-Tyr or NMS under positive and negative ion mode, respectively)
and reported as their relative peak area (RPA). Temporal signal pattern recognition when
using multiplexed separations in MSI-CE-MS [35] was used to reject spurious, background,
and redundant (i.e., in-source fragments, isotopic signals, salt adducts, and same ion
measured in both modes) molecular features when analyzing urine samples pooled from
OO, EPA, and DHA sub-groups. Overall, 125 urinary metabolites satisfied the following
inclusion criteria: (1) detected with adequate frequency (>60%) and technical precision
(coefficient of variance, CV < 30%) after a repeat analysis of 33 QC runs comprised of
pooled urine from all participants, and (2) detected with adequate frequency (>75%) in
participant data measured at both time points (n = 176). This filtering approach resulted in a
urine metabolome data matrix that excluded infrequently detected exogenous compounds
(e.g., acetaminophen glucuronide, saccharin, etc.). Additionally, recovery standards were
excluded from the urine metabolome data matrix (except F-Phe). Otherwise, urinary
metabolites not detected in certain samples were replaced with half the value of the
minimum response measured across the entire cohort if present below method detection
limits, whereas putative missing data due to potential isobaric interferences were excluded
from analysis. Lastly, the integrated response ratio for each metabolite to an internal
standard or RPA was normalized to creatinine for each respective participant to correct for
hydration status when relying on spot morning urine samples. Overall, urinary metabolites
associated with the O3I were identified with high confidence (level 1) when spiked with
authentic standards (if available), tentatively identified based on the annotation of MS/MS
spectra with a consistent electrophoretic mobility (level 2), or were unidentified with an
unknown chemical structure (level 3) if ion responses were too low to acquire MS/MS
spectra without a suitable candidate reported in the HMDB. In all cases, urinary metabolites
were annotated based on their characteristic accurate mass and relative migration time
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(m/z:RMT) under positive (p) or negative (n) ion mode together with their most likely
molecular formula.

2.5. Statistical Analysis

All statistical analyses were conducted in R (v 4.1.2) [38] with R Studio (v 2022.7.2.576) [39].
R scripts are available upon request.

2.5.1. Multivariate Analysis

Principal component analysis (PCA) was performed on the delta values of FAs, the
O3I, and urine metabolites to compare the effect of OO, EPA, and DHA supplementation
using the base-R stats function ‘princomp’ and ‘prcomp’ for fatty acid and metabolite data,
respectively. Scaled PCA visualization plots were created with the package ‘factoextra’ (v
1.0.7) [40]. Partial least square–discriminant analysis (PLS-DA) was performed on metabo-
lite variable delta values with the ‘mixOmics’ package (v 6.16.3) [41], where overall and
balanced error rates (BER) were plotted to determine the optimal number of components
for the final model. Sparse partial least square–discriminant analysis (sPLS-DA) was used
to select for metabolites that responded to OO, EPA, or DHA supplementation.

2.5.2. ANOVA Tests

Data normality and homogeneity of variance were assessed with the base-R Shapiro–
Wilk test and Levene’s test from the ‘rstatix’ package (v 0.7.0.999) [42], respectively. For
normal and non-normal data distributions, one-way analysis of variance (ANOVA) or
Kruskal–Wallis tests were used to compare supplement groups at baseline, respectively. To
determine the effects of EPA and DHA supplementation over time, creatinine-normalized
urinary metabolite data were log10-transformed to establish normal distribution, and a
linear mixed effects model (LMM) with random effects was fitted for each participant
(‘nlme’ R package, v 3.1.157) [43] prior to two-factor, repeated-measures ANOVA analysis
(‘stats’ R package, v 4.1.2) [38]. For metabolites with a significant group × time interaction
effect (Pint < 0.05), a Bonferroni control was applied to within-factor post hoc pairwise
t-tests using the ‘rstatix’ and ‘emmeans’ packages (v 1.4.8) [44]. For urinary metabolites
not normally distributed after log10 transformation, a one-way Kruskal–Wallis test was
performed at both time points followed by post hoc pairwise comparisons using Dunn’s
test with Bonferroni adjustment (‘rstatix’ package). For all post hoc pairwise comparisons,
p-adjusted values are reported. All analyses on erythrocyte FAs were conducted on relative
% data; however, when possible, we also investigated quantitative (ng FA/mg Hb) data to
confirm our findings.

2.5.3. Integrated Data

Erythrocyte FA and urine metabolome datasets were integrated in a single dataset,
with urinary metabolites as covariates and the O3I as the response variable. Isobaric
or highly colinear urinary metabolites were removed prior to feature selection. Urinary
metabolites in the integrated dataset were scaled from 0 to 10 to match the range in the O3I
(the outcome variable). Feature selection was performed with a regularized LMM to select
for relevant metabolites while including a random effect for participant. The LMM was
implemented with the R package ‘glmmLasso’ (v 1.6.2) [45] with an L1 penalty. The tuning
parameter lambda (λ) was selected through a grid search over a given range of λ values
from 2000 to 0.0001, where the λ value with the lowest Bayesian information criterion (BIC)
was selected for the final fitted model. All remaining metabolites in the final model with
non-zero coefficients and p < 0.05 were identified. As a confirmation, feature selection was
also conducted on a second integrated dataset with urine metabolites as covariates, but
this time using quantitative EPA + DHA (ng FA/mg Hb) as the response variable, which
was scaled from 0–700 to match the EPA + DHA (ng FA/mg Hb) range in the dataset. The
diagnostic ability of selected creatinine-normalized urinary metabolites and their ratios
were assessed using receiver operating characteristic (ROC) curves with the R package
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‘pROC’ (v 1.18.0) [46], where optimal thresholds were selected via optimality criterion
max(sensitivities + specificities), i.e., Youden’s J statistic.

2.5.4. Correlation Plots

Pearson correlation coefficient correlation plots were generated with ‘ggplot2′ (v 3.3.5) [47]
and ‘corrplot’ (v 0.92) [48] R packages. A correlation matrix comprised of FAs and urinary
metabolites was calculated with the ‘psych’ (v 2.2.9) R package [49]. p-value adjustment
was performed with the Holm–Bonferroni method.

3. Results
3.1. Patient Characteristics

A total of 90 participants were enrolled into the study, where 30 (15 males and 15 fe-
males) were randomly allocated to each supplement group (Figure 1). Two participants did
not provide final blood and urine samples, one in the EPA supplement group and one in the
OO control group, the former of which did not provide all baseline samples/measurements.
In total, data for 88 participants with matching blood and urine samples at both time points
were used for the present analysis.
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Figure 1. CONSORT flow diagram for the long-chain polyunsaturated omega-3 fatty acid randomized
controlled trial. Urine metabolome quality assessments were performed on 33 repeat quality controls
(QCs) of pooled urine and on participant data measured at both time points (n = 176), resulting in
124 creatinine-normalized urinary metabolites. Created with BioRender.com.

3.2. Baseline Participant Data Analysis in the Three Supplement Groups

Group means for baseline participant data were calculated and are reported in Table 1.
There were no significant differences between the three groups for baseline characteristics.
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Table 1. Participant baseline characteristics 1.

OO EPA DHA p-Value

M/F, n 15/15 15/14 15/15
Age, y 21.1 ± 1.9 21.4 ± 2.2 22.2 ± 2.3 0.184

Weight, kg 69.0 ± 10.9 71.0 ± 12.0 72.7 ± 14.9 0.616
BMI, kg/m2 24.1 ± 3.5 23.1 ± 2.8 23.7 ± 3.4 0.613

1 Values expressed as mean± SD. p-values were determined using one-way ANOVA. n for number of participants,
OO = olive oil, EPA = eicosapentaenoic acid, DHA = docosahexaenoic acid.

3.3. Blood Marker and Erythrocyte Fatty Acid Analyses

Fasted serum glucose, triglycerides, and cholesterol levels, as well as erythrocyte
EPA, DHA, and the O3I, were measured at both time points and are presented in Table 2.
No significant differences were observed between age, sex, and BMI-matched groups at
baseline for any parameters.

Table 2. Blood measurements at baseline and after olive oil, EPA, and DHA supplementation for
12 weeks 1.

OO (n = 30) EPA (n = 29) DHA (n = 30) ANOVA

Baseline Final Baseline Final Baseline Final Pint Ptreatment Ptime

Glucose,
mmol/L 4.6 ± 0.3 4.7 ± 0.4 4.8 ± 0.3 4.9 ± 0.3 4.7 ± 0.3 4.9 ± 0.3 0.942 0.006 <0.001

Triglycerides,
mmol/L 0.9 ± 0.4 0.9 ± 0.4 a,c 0.8 ± 0.3 0.8 ± 0.3 a,b 0.8 ± 0.2 0.6 ± 0.1 b,$ 0.049 0.023 0.028

Cholesterol,
mmol/L 4.4 ± 0.9 4.6 ± 0.9 4.5 ± 0.7 4.5 ± 0.7 4.3 ± 0.8 4.5 ± 0.9 0.400 0.809 0.108

EPA,
ng FA/mg Hb 27.6 ± 9.4 30.6 ± 11.3 c 27.9 ± 10.7 225.5± 60.2 a,$ 25.9 ± 10.0 68.6 ± 25.2 b,$ <0.001 <0.001 <0.001

DHA,
ng FA/mg Hb 176.4 ± 40.8 172.8 ± 40.6 b 161.4 ± 39.6 148.5 ± 43.6 b 150.4 ± 32.7 401.8 ± 76.3 a,$ <0.001 <0.001 <0.001

EPA,
relative % 0.5 ± 0.2 0.5 ± 0.2 c 0.5 ± 0.2 3.9 ± 1.1 a,$ 0.5 ± 0.2 1.2 ± 0.4 b,$ <0.001 <0.001 <0.001

DHA,
relative % 3.2 ± 0.7 3.0 ± 0.5 b 3.0 ± 0.6 2.5 ± 0.5 b 2.9 ± 0.5 7.1 ± 1.0 a,$ <0.001 <0.001 <0.001

O3I 3.7 ± 0.8 3.5 ± 0.6 c 3.5 ± 0.7 6.5 ± 1.2 b$ 3.4 ± 0.6 8.3 ± 1.2 a$ <0.001 <0.001 <0.001

1 Values expressed as mean ± SD. Blood and FA variables were analyzed using 2-way repeated measures ANOVA
to examine the main effects of supplement group and time (Ptreatment and Ptime) as well as the interaction effects
(Pint = Treatment × Time). Post hoc pairwise comparison results for variable measurements that are significantly
different are reported with different superscript letters (across time) and with $ (within supplement group).
OO = olive oil, EPA = eicosapentaenoic acid, DHA = docosahexaenoic acid, O3I = Omega-3 Index.

As previously reported [50], fasted serum triglycerides were significantly reduced in
the DHA supplement group. Interactions were observed for erythrocyte EPA and DHA
levels, as well as the O3I, in the EPA and DHA supplementation groups. Specifically, indi-
viduals in the EPA group showed significant (p < 0.001) increases in %EPA (+3.4% ± 1.1)
and the O3I (+3.0% ± 1.4), but non-significant decreases in %DHA (−0.5% ± 1.0). Indi-
viduals in the DHA group showed significant (p < 0.001) increases in %EPA (+0.7% ± 0.8),
%DHA (+4.2% ± 1.2), and the O3I (+4.9% ± 1.3), which was similarly reflected in the
quantitative FA data. As expected, no differences for erythrocyte EPA, DHA, or the O3I
were observed in the OO control group.

3.4. Identification of Urinary Metabolites Associated with EPA and/or DHA Supplementation

To avoid spurious results, we applied multiple statistical methods to identify urinary
metabolites associated with the O3I. These urinary metabolites comprised 17 (out of 125)
annotated unknown ions via high-resolution MS tentatively identified using collision-
induced dissociation MS/MS (Table S1). First, we used supervised and unsupervised
clustering methods to obtain a general overview of the urine metabolome data variance
that distinguishes the supplement groups from one another. Second, we used pairwise
analyses to examine changes in creatinine-normalized metabolite responses in relation to
supplementation and time. Finally, we investigated those urinary metabolites that directly
contributed to predicting variability in the O3I. Collectively, these complimentary statistical
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approaches were used to select and identify urinary metabolites that were consistently and
temporally associated with n3-LCPUFA status as compared to the OO control.

3.4.1. Distinguishing Supplementation Groups with Unsupervised and Supervised
Clustering Approaches

First, we performed a global analysis to examine if urinary metabolite profiles could
distinguish between the three supplement groups from baseline. Overall, the technical
variance for repeated analysis of 125 metabolites (including creatinine) in a pooled urine
sample was acceptable with a median CV = 13.4% for QCs (n = 33) as compared to their
greater between-subject biological variance with a median CV = 60.5% (n = 178). Two
dimensional PCA plots of 124 creatinine-normalized urinary metabolites at both baseline
(Figure S1a) and 12 weeks (Figure S1b) were unable to distinguish the three supplement
groups from one another. Furthermore, a PCA plot corresponding to the delta response
values (i.e., RPA after supplementation–RPA at baseline) for urinary metabolites was also
unable to distinguish the three supplement groups (Figure S1c), with the first two compo-
nents (PC1 and PC2) only explaining 20.4% of the total variance in the dataset. Similarly,
the three supplement groups were not well distinguished by relative %FA (Figure S1d) or
by quantitative FA data (Figure S1e). In all instances, participants from all groups were
clustered around the centre of each plot with no clear distinction observed between groups.

We next performed supervised PLS-DA and sparse PLS-DA (sPLS-DA) to better
distinguish the three supplementation groups in this study (Figure 2). While less total
variation was explained by the first two principal components (i.e., PC1 + PC2 = 14% and
9% for Figure 2a,b, respectively) than in the PCA model, the visual separation between
groups was slightly improved. Since we hypothesized that only a small subset of urinary
metabolites would relate to changes in EPA and/or DHA erythrocyte content, we next
performed a sPLS-DA for urinary metabolite biomarker selection.
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Figure 2. Participant plots of relative peak area (RPA) delta values for (a) 124 creatinine-normalized
metabolite responses in PLS-DA and (b) 15 selected urinary metabolites for each principal component
in sPLS-DA, coloured by group (OO = orange, EPA = green, DHA = blue).

Variable selection via sPLS-DA identified the top-ranked 15 urinary metabolites as-
sociated with OO, EPA, and DHA supplementation for both PC1 and PC2 (Figure S2).
The metabolites selected in PC1 were related to DHA supplementation (blue), whereas
those selected in PC2 largely corresponded to metabolites related to EPA supplementation
(green). The top-ranked urinary metabolites having the largest weighting on PC1 were an
unknown divalent anion (221.075:0.927:n), as well as an unknown cation (164.074:0.614:p)
that was tentatively identified as S-carboxypropylcysteamine (CPCA) based on annota-
tion of its MS/MS spectrum at an optimal collisional energy under positive ion mode
(Figure 3) together with its co-migration after spiking a standard of CPCA in pooled urine
(Figure S3). Other isobaric candidate ions having the same molecular formula (e.g., ethione,
N-methylmethionine, S-methylmethioine, etc.) were excluded as likely candidates based
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on their slower positive mobility (at pH 1.8) due to a more acidic alpha-carboxylic acid
moiety, resulting in their longer apparent migration times (e.g., S-propylcysteine). Overall,
urinary CPCA was measured consistently with acceptable technical precision (CV = 9.8%,
n = 33) throughout the study. The third and fourth most significant urinary metabolites clas-
sified via sPLS-DA along PC1 were tetrahydroaldosterone glucuronide and an unknown
anion isomer (241.120:0.653:n), which was tentatively identified as a dipeptide when us-
ing MS/MS in negative ion mode, namely pyroglutamylisoleucine (pGlu-Ile) (Figure S4).
As there were two partially resolved isobars in the extracted ion electropherogram with
analogous MS/MS spectra, isobars were distinguished by their apparent migration times,
with the slower migrating isomer likely being pyroglutamylleucine (pGlu-Leu). Overall,
the urinary metabolites contributing the most loading weight for PC1 (Figure S2a) were
an unknown dianion (221.075:0.927:n), CPCA (164.074:0.613:p), tetrahydroaldosterone glu-
curonide, and pGlu-Ile. Top loading weights for PC2 (Figure S2b) corresponded to choline,
glucuronic acid, an unknown dianion (88.004:1.622:n), and quinic acid. Structural elucida-
tion of the unknown dianion (221.075:0.927:n) was not feasible due to its low abundance in
urine that prevented the acquisition of a MS/MS spectra (Figure S5).
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Figure 3. Structural elucidation of S-carboxypropylcysteamine (CPCA). (a) Representative extracted
ion electropherogram when using MSI-CE-MS under positive ion mode for CPCA, highlighting
a serial injection of 12 urine samples and a blank in a single run. (b) A control chart for urinary
CPCA based on the repeated analysis of pooled urine as quality control (QC) samples demonstrating
acceptable technical precision (CV = 9.8%, n = 33). (c) Annotated MS/MS spectrum under an
optimal collisional energy depicting the formation of four characteristic fragment ions and their
putative structures.

3.4.2. Individual Urinary Metabolite Changes in Response to Supplementation over Time

We next examined changes in individual urinary metabolites in response to supple-
mentation and time. Most (88 out of 124) urinary metabolites were normally distributed
after log10 transformation, while 36 were non-normally distributed. For normally dis-
tributed metabolites, significant interactions (Pint < 0.05) were observed for nine urinary
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metabolites, of which four remained significant after applying a Bonferroni adjustment:
CPCA (p < 0.001), tiglylglycine (p < 0.001), an unknown cation (300.215:0.841:p, p = 0.004),
and glucuronic acid (p = 0.014). Post hoc analyses found no differences in CPCA at baseline
between the three groups; however, the excretion of creatinine-normalized CPCA increased
significantly following EPA and DHA supplementation compared to OO (EPA vs. OO,
p < 0.001; DHA vs. OO, p < 0.001) (Figure 4a). Additionally, DHA supplementation signifi-
cantly increased the amount of CPCA excreted in urine (baseline vs. 12 weeks, p < 0.001).
Post hoc analysis also revealed significant differences between groups for tiglylglycine at
baseline (OO vs. EPA, p = 0.004; EPA vs. DHA, p = 0.016) and after supplementation (OO
vs. DHA, p = 0.012), where there was a significant decrease with DHA supplementation
(p < 0.001). No group differences were found for the other two urinary metabolites.
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Figure 4. Creatinine-normalized urinary metabolite responses after log10 transformation for (a) S-
carboxypropylcysteamine (CPCA, 164.074:0.613:p), (b) an unknown dianion (221.075:0.927:n), and
(c,d) a dipeptide tentatively identified as pGlu-Ile and pGlu-Leu, respectively, at baseline and final
(12 weeks) for olive oil (OO, yellow), EPA (green), and DHA (blue). Mean group differences were
analyzed with 2-factor repeated measures ANOVA for CPCA and Kruskal–Wallis test for the oth-
ers. Post hoc Bonferroni-adjusted results between each supplement group are reported, (*) p < 0.05,
(**) p < 0.001 and (***) p < 0.0001. OO = olive oil, EPA = eicosapentaenoic acid, DHA = docosahex-
aenoic acid, pGlu-Ile = pyroglutamylisoleucine, pGlu-Leu = pyroglutamylleucine.

For non-normally distributed metabolites, we also identified significant group differ-
ences at 12 weeks for an unknown dianion (221.075:0.927:n) (p < 0.001), pGlu-Ile (p < 0.001),
and pGlu-Leu (p = 0.002). Post hoc analyses found significant group differences at 12 weeks
for the unknown dianion (221.075:0.927:n) (OO vs. DHA, p < 0.001; EPA vs. DHA, p < 0.001)
with a significant increase after DHA supplementation (p < 0.001) (Figure 4b). Both pGlu-Ile
and pGlu-Leu have significant differences at 12 weeks between OO and EPA (p = 0.046 and
p = 0.015, respectively) and OO vs. DHA (p < 0.001 and p = 0.002, respectively) (Figure 4c,d).
Another urinary metabolite, an unknown cation (201.160:0.644:p), was identified as having
group differences at baseline, and post hoc analyses revealed a significant difference be-
tween OO and EPA (p = 0.002). No significant group differences were found for any other
non-normally distributed urinary metabolite.
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3.4.3. Urinary Metabolites Associated with the O3I

Next, we examined if any urinary metabolites were highly associated with the O3I. Be-
cause we hypothesized that only a small subset of urinary metabolites would be associated
with changes in the O3I, we performed LASSO regression to identify those metabolites
that were highly linked to changes in the O3I. The results of selecting a subset of urinary
metabolites associated with the O3I response are reported in Table S2. In total, four uri-
nary metabolites remained in the final fitted model. All four urinary metabolites were
identified in a complementary analysis performed on an integrated dataset using summed
EPA + DHA (ng/mg Hb) as the response variable, which also identified an additional three
urinary metabolites (Table S2). The estimated effects of the seven selected urinary metabo-
lites on the O3I and/or EPA + DHA (ng/mg Hb) are depicted in Figure S6. Of the selected
urinary metabolites in both datasets, the unknown dianion (221.075:0.927:n), CPCA, and
tetrahydroaldosterone glucuronide had positive estimated effects, i.e., higher concentra-
tions in urine were associated with increases in the erythrocyte O3I and/or EPA + DHA
(ng/mg Hb). In contrast, an unknown cation (188.175:0.259:p; first migrating isobar), tenta-
tively identified as N1-acetylspermidine (N1-AcSpm; Figure S7), had a negative estimate
effect in both datasets, i.e., a reduction in its concentration was associated with an increase
in the O3I and/or EPA + DHA (ng/mg Hb).

Collectively, these three statistical approaches identified 17 urinary metabolites signifi-
cantly associated with n3-LCPUFA or the O3I (Table 3).

3.5. Urinary Metabolites Predict Supplement Groups and the O3I

The 17 urinary metabolites identified across these three analyses were then examined
for their ability to act as a classifier for EPA and/or DHA supplementation, as well as a
classifier for low (<4%) and high (>8%) O3I, using ROC curves.

As a supplement group classifier between OO and EPA, or OO and DHA, at 12 weeks,
urinary CPCA consistently outperformed the other top 16 metabolites in both EPA and DHA
supplement groups with an AUC of 82.0% (sensitivity = 89.6%, specificity = 72.4%) and
82.6% (sensitivity = 83.3%, specificity = 72.4%), respectively (Figure 5a,b). The unknown
dianion (221.075:0.927:n) outperformed all other metabolites for the OO versus DHA
comparison only (AUC = 93.6%, sensitivity = 86.7%, specificity = 100.0%), but had a poor
overall performance for differentiating EPA and OO supplementation (AUC = 66.7%)
(Figure 5c,d). Apart from urinary isobars pGlu-Ile and pGlu-Leu that had AUCs of 67.3%
and 70.9% for OO versus EPA and 81.0% and 75.9% for OO versus DHA, respectively, the
other positively correlated metabolites to the O3I generated lower AUCs ranging from
54.7% to 68.1% (Figure 5e,f and Table 3). The combined performance of CPCA and the
unknown dianion (221.075:0.927:n) showed a slight improvement over CPCA alone in
distinguishing EPA supplementation from OO (AUC = 83.0%) but resulted in a substantial
improvement in differentiating DHA from OO (AUC = 92.4%).

For urinary metabolites inversely correlated with the O3I, tiglylglycine had an AUC
of 69.4% and 71.3% for OO versus EPA or DHA supplementation, respectively, while AUC
values for N1-AcSpm and carboxybutylhomocysteine were ~50–60% except for OO versus
EPA for the N1-AcSpm (AUC = 70.5%). For urinary metabolites that were identified in
at least one of the three statistical analyses, but showed no significant association with
n3-LCPUFA supplementation or the O3I, AUC values were all less than 70%.

Ratiometric combinations showed the highest AUC in EPA versus OO (AUC = 86.1%)
to be a ratio of CPCA and N1-AcSpm and the highest AUC in DHA versus OO (AUC = 95.6%)
to be a ratio of an unknown dianion (221.075:0.927:n) and tiglylglycine. Importantly,
supplement group distinguishment for the unknown dianion (221.075:0.927:n), CPCA,
pGlu-Ile, and pGlu-Leu remained similar when not normalizing metabolite responses
to creatinine, suggesting a robustness in predictor ability even without correction for
hydration status in this cohort of young Canadian adults.
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Table 3. Significant urinary metabolites associated with n3-LCPUFA supplementation or O3I status identified using three statistical tests.

Test sPLS-DA ANOVA LASSO ROC Curves
Group at 12 Weeks

ROC
Curves
Low vs.

High O3I 2

Outcome Supplement
Group (∆)

Supplement
Group ×

Time

Pairwise
(vs. OO) at
12 Weeks

Pairwise
(Change vs.
Baseline)

O3I EPA +
DHA

AUC
(%)

AUC
(%)

AUC
(%)

Metabolite 1 m/z:RMT:mode Pint
OO vs.

EPA
OO vs.
DHA

<4% vs.
>8%
O3I

Unknown dianion
[M − 2H]2− 221.075:0.927:n DHA <0.001 * ↑DHA ↑DHA ↑ ↑ 66.7 93.6 89.4

S-Carboxypropylcysteamine
(CPCA) 164.074:0.613:p DHA <0.001 ↑EPA/

↑DHA ↑DHA ↑ ↑ 82.0 82.6 73.1

Tetrahydroaldosterone
glucuronide 539.249:0.472:n DHA 0.019 ↑ ↑ 59.1 68.0 65.4

Pyroglutamylisoleucine
(pGlu-Ile) 241.120:0.653:n DHA <0.001 * ↑EPA/

↑DHA 67.3 81.0 64.7

Choline 104.108:0.333:p EPA 55.9 53.6 57.4
Glucuronic acid 193.035:0.772:n EPA 0.014 62.7 60.8 62.3

Unknown dianion
[M − 2H]2− 88.004:1.622:n EPA 49.3 47.6 51.5

Quinic acid 191.056:0.798:n EPA 0.035 55.1 59.5 62.6
Tiglylglycine 156.066:0.843:n EPA <0.001 ↓DHA ↓DHA 69.4 71.3 60.6

Unknown cation 300.215:0.841:p EPA <0.004 52.3 68.2 66.3
O-Butyrylcarnitine 232.155:0.718:p 0.039 64.1 64.8 51.1

N1-Accetylspermidine
(N1-AcSpm) 188.176:0.259:p 0.040 ↓ ↓ 70.5 55.3 50.7

Unknown cation isobar#2 258.110:0.788:p EPA 0.049 49.6 59.0 57.2
Pyroglutamylleucine

(pGlu-Leu) 241.120:0.662:n 0.002 * ↑EPA/
↑DHA 70.9 75.9 65.4

Symmetric dimethylarginine 203.151:0.478:p ↑ 57.6 56.0 44.8
Tryptophan 205.098:0.899:p ↑ 68.1 54.7 63.5

Carboxybutylhomocysteine 222.080:0.762:p ↓ 57.4 51.6 48.4
1 Putative urinary metabolite as annotated by its accurate mass, relative migration time, and ionization mode (m/z:RMT:mode). 2 Used O3I values from all participants at both timepoints
that were either <4% or >8% (n = 113 from a possible 176). Individuals with an O3I value between these cut-offs were not considered in this analysis. (↑) indicates an increase in urinary
metabolite by supplement group (ANOVA) or a positive association with the O3I (LASSO); (↓) indicates a decrease in urinary metabolite by supplement group (ANOVA) or an inverse
relationship with the O3I (LASSO). (*) indicates p value for Kruskal–Wallis test or significant (p < 0.05) Dunn’s pairwise test at 12 weeks. Significant Pint values after Bonferroni control
for multiple testing for 2-way repeated measures ANOVA are indicated in bold font.
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Figure 5. ROC curves of the sensitivity and specificity of creatinine-normalized urinary metabo-
lites to classify OO vs. EPA (confidence interval in green) and OO vs. DHA (confidence in-
terval in blue) at 12 weeks; (a) CPCA AUC = 82.0% and (b) 82.6%; (c) an unknown dianion
(221.075:0.927:n) AUC = 66.7% and (d) 93.6%; and (e) pGlu-Ile AUC = 67.3% and (f) 81.0%, re-
spectively. CPCA = S-carboxypropylcysteamine, pGlu-Ile = pyroglutamylisoleucine.

When classifying O3I status, both urinary CPCA and the unknown dianion (221.075:0.927:n)
outperformed all other metabolites when distinguishing between an O3I of <4% and >8%
(Table 3). In this case, the top performing classifier was the unknown dianion (221.075:0.927:n)
with an AUC of 89.4% (sensitivity = 83.3%, specificity = 94.4%), while CPCA was the second
best classifier with an AUC of 73.1% (sensitivity = 83.3%, specificity = 57.3%).

3.6. Increases in Urinary CPCA Are Associated with n3-LCPUFA Erythrocyte Content

Finally, we performed additional analyses on the two lead urinary biomarkers of the
O3I (CPCA and the unknown dianion 221.075:0.927:n) that were systematically identified
in all three statistical approaches (Table 3). Specifically, we examined whether the changes
observed in these urinary metabolites were specific to changes in the O3I through measuring
Pearson correlation coefficients (r) with all other measured erythrocyte fatty acids (Figure 6).
Urinary CPCA was positively correlated with the O3I (r = 0.30, p < 0.001) but also showed
correlations with both EPA (r = 0.19, p = 0.012) and DHA (r = 0.21, p = 0.004) individually.
CPCA was also inversely correlated with AA (r = −0.30, p < 0.001) and myristic acid
(r = −0.26, p < 0.001). However, CPCA was not correlated with any other measured fatty
acid. The unknown dianion (221.075:0.927:n) was more strongly correlated with the O3I
(r = 0.47, p < 0.001) and with DHA (r = 0.53, p < 0.001) but was not correlated with EPA.
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Also, this acidic urinary metabolite was negatively correlated with di-homo-γ-linolenic
acid (DGLA) (r = −0.30, p < 0.001) and arachidonic acid (AA) (r = −0.33, p < 0.001).
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Figure 6. Correlation plot of relative % fatty acids in erythrocytes and top 17 selected metabo-
lites, where significant (p < 0.05 below diagonal, Padj < 0.05 above diagonal) correlations are in-
dicated by sphere size (strength) and colour (blue = positive, red = negative). Nonsignificant
correlations are depicted by blank cells. Urinary metabolites with significant un-adjusted correla-
tions to erythrocyte fatty acids are depicted in the bottom left quadrant (yellow); urinary metabo-
lites with significant adjusted correlations to erythrocyte fatty acids are depicted in the top right
quadrant (green). ALA = α-linolenic acid, DGLA = di-homo-γ-linolenic acid, EPA = eicosapen-
taenoic acid, DHA = docosahexaenoic acid, CPCA = S-carboxypropylcysteamine, pGlu-Ile = pyrog-
lutamylisoleucine, pGlu-Leu = pyroglutamylleucine, N1-AcSpm = N1-Acetylspermidine.

These associations between CPCA and the unknown dianion (221.075:0.927:n) with
relative % erythrocyte fatty acids were further confirmed when measuring correlations with
quantitative erythrocyte fatty acid data as reported as their absolute amounts normalized
to total hemoglobin (ng FA/mg Hb). However, only two associations remained significant
after adjustment for multiple testing for the unknown dianion (221.075:0.927:n) (DHA,
r = 0.50, Padj < 0.001 and sum of EPA + DHA, r = 0.42, Padj < 0.001), yet none were significant
after adjustment in the case for CPCA. Correlation plots between the unknown dianion
(221.075:0.927:n) and CPCA and the O3I and sum of EPA + DHA (ng FA/mg Hb) are shown
in Figure S8.

Since both CPCA and the unknown dianion (221.075:0.927:n) were found to be corre-
lated with the O3I (positively) and AA (inversely), and that the O3I and AA were them-
selves strongly and inversely correlated with one another (r = −0.69), we also examined
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whether an O3I/AA ratio would result in improved correlation coefficients with these two
urinary metabolites than O3I alone. We found positive correlations between the unknown
dianion (221.075:0.927:n) and CPCA with the O3I/AA ratio (r = 0.47, p < 0.001; r = 0.32,
p < 0.001, respectively), which are similar to the correlations between these respective
urinary metabolites and the O3I alone.

Urinary peptide isomers, pGlu-Ile and pGlu-Leu were also found to be positively
correlated with the O3I (r = 0.22 and r = 0.19, respectively) with a corresponding negative
association with AA (r = −0.26 and r = −0.23, respectively). We also found urinary
tiglylglycine to be positively correlated with behenic acid (r = 0.16, p = 0.028) and AA
(r = 0.22, p = 0.003), and inversely correlated with nervonic acid (r = −0.22, p = 0.003) and
the O3I (r = −0.19, p = 0.019). However, none of these associations remained significant
after adjusting for multiple testing. N1-AcSpm was positively correlated with linoleic acid
and lignoceric acid and negatively correlated with EPA and palmitic acid, where only the
latter remained significant after adjustment for multiple testing (r = −0.33, Padj = 0.004).

4. Discussion

To the best of our knowledge, this study is the first to investigate urinary metabolites
as putative non-invasive biomarkers of the O3I using a non-targeted metabolomics ap-
proach. Our results identified urinary CPCA and an unknown dianion (221.075:0.927:n) as
novel candidate urinary biomarkers for O3I status in healthy, young individuals. While
the unknown dianion (221.075:0.927:n) was also identified as an indicator of DHA sup-
plementation specifically, CPCA was found to be associated with both EPA and DHA
supplementation as compared to OO. More specifically, both candidate urinary metabo-
lites were positively associated with the O3I, and when compared to all 15 measured
erythrocyte membrane-derived phospholipid fatty acids, creatinine-normalized urinary
CPCA levels showed specificity in their association with the O3I, whereas the unknown
dianion (221.075:0.927:n) showed a greater association with DHA. As a supplement group
classifier between EPA or DHA relative to OO, urinary CPCA consistently outperformed
other selected urinary metabolites when using ROC curves (AUC > 80%), whereas the
unknown dianion showed the highest performance specifically for DHA (AUC > 90%) with
poor sensitivity for EPA. Similarly, both CPCA (AUC = 73%) and the unknown dianion
(AUC = 89%) outperformed other urinary metabolites when classifying a low (<4%) versus
high (>8%) O3I. Taken together, our robust analyses have positioned urinary CPCA and
the unknown dianion (221.075:0.927:n) as novel surrogates for the O3I. Collectively, this
work lays the foundation for developing a convenient and non-invasive approach to assess
an individual’s n3-LCPUFA status.

Urinary biomarkers represent an attractive option for nutrient monitoring. Traditional
dietary assessments estimate nutrient status, but are limited in their ability to accurately
capture variation in food quality, intake, absorption, and metabolism [51]. Therefore,
biomarkers have the advantage of more accurately indicating the amount of a nutrient
available to tissues and organs. Current validated nutrient biomarkers of n3-LCPUFA
status such as the O3I [52] require a small blood sample. Recently, Ly et al. [53] reported
two phosphatidylcholine species can serve as circulating surrogate biomarkers of the O3I
directly in serum or plasma rather than hydrolyzed EPA and DHA measured from the
phospholipid fraction of erythrocyte membranes. Yet, access to blood specimens may still
represent a barrier to their use at both the individual and population levels. In contrast,
the use of urinary metabolites as a proxy for the O3I could improve ease of monitoring
while capturing physiologically relevant information. Although numerous reports in
the literature have identified potential candidate biomarkers of n3-LCPUFA status, very
few have been validated and are therefore currently of limited use. While a validation
pipeline for biomarkers of food intake and/or nutrient status has been proposed [54],
meeting all criteria for establishing the biological validity and analytical performance of a
biomarker remains a challenge. Nevertheless, the power of a validated urinary biomarker
for nutrient status has wide-scale implications for use in personalized health, nutrition
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and epidemiological research, and clinical risk assessment for cardiovascular events and
hypertriglyceridemia, amongst others.

Through our analyses, we found that urinary CPCA was significantly correlated
with changes in the O3I and AA satisfying both a dose and temporal response as criteria.
Moreover, urinary CPCA was reliably measured with acceptable technical precision (mean
CV < 10%) with no missing values using a validated multiplexed separation platform
and data workflow for metabolomics based on MSI-CE-MS [29]. Also, urinary CPCA
increased consistently following both EPA and DHA supplementation in our cohort of
young Canadian adults having a low average O3I status at baseline. Overall, no other
putative urinary biomarker associated with the O3I identified in our study had higher
sensitivity (89.6% and 83.3%) and specificity (72.4% and 72.4%) for both EPA and DHA
supplementation, respectively. We hypothesized that the inverse relationship between
CPCA and AA stems primarily from the known reduction in AA membrane content
observed with increased n3-LCPUFA intake [1]. Indeed, we found that when the relative
levels of erythrocyte EPA and DHA increased, there were proportional reductions in AA.
In a dose–response randomized controlled trial examining EPA + DHA supplementation in
healthy male and female participants, Flock et al. [52] reported that erythrocyte EPA and
DHA content increased concomitant with comparable reductions in AA content. Similarly,
Vidgren et al. [55] showed significant reductions in erythrocyte AA content in individuals
consuming a fish oil supplement or eating a fish diet. Our findings align with these previous
studies. Due to the close relationship between n3-LCPUFA and AA erythrocyte membrane
content, the specificity of CPCA related to the O3I may falsely implicate the latter. Indeed,
there was an equivalent strength of association of urinary CPCA inversely with AA and
positively with the O3I (r = 0.30) as compared to EPA or DHA alone. Nevertheless, increases
in the O3I concomitant with decreases in AA are generally indicative of good health [56].

Urinary metabolites related to fish intake have been proposed as potential urinary
biomarkers in previous studies. In a cross-sectional analysis of the INTERMAP study,
Gibson et al. [23] found TMAO and taurine were capable of distinguishing between low
and high fish intake in a Japanese subpopulation. Our study identified and quantified
urinary TMAO, but we did not find that this metabolite was capable of distinguishing
between low and high O3I levels. Taken together, this suggests that TMAO may be a urinary
biomarker related to marine meat protein intake rather than n3-LCPUFA. A randomized
controlled trial in individuals with type-2 diabetes supplemented with fish oil, flaxseed oil,
or corn oil showed significant increases in urinary CMPF in the fish oil group, which was
also highly correlated to serum CMPF [24]. The association of urinary CMPF could not be
evaluated in our study as it was not detected via MSI-CE-MS. Therefore, both TMAO and
CMPF require further evaluation to clarify their use as biomarkers of fish/fish oil intake
versus n3-LCPUFA status.

To the best of our knowledge, only two previous studies have explored associations
between the O3I and urinary metabolites. Bigornia et al. [22] reported an inverse rela-
tionship between the O3I and depressive symptoms in older adults with obesity having
high urinary 8-OHdG, i.e., a biomarker of oxidative stress. However, no association was
found between the O3I and urinary 8-OHdG at baseline and it was not evaluated at the
2 y follow-up, which suggest that this relationship between depressive symptoms and the
O3I may be indirectly related to oxidative stress. In a separate cross-sectional study in
young and healthy adults, Filipovic et al. [21] reported an inverse relationship between the
O3I and the albumin-to-creatine (ACR) ratio after adjusting for various covariates, such
as age, sex, BMI, and smoking status. Neither 8-OHdG nor albumin were detected in our
urinary metabolomic analysis when using MSI-CE-MS, which prevents our independent
verification of the relationship between these metabolites and the O3I in our study.

Currently, there are nine isobaric candidate metabolites in the HMDB that match the
most likely molecular formula for the urinary metabolite we have tentatively identified
as CPCA (164.074:0.613:p-C6H13NO2S). While the unambiguous identification of CPCA is
ongoing, we have ruled out four isobaric ions based on migration behaviour and structural
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properties that impact their ionization state (i.e., pKa) and corresponding migration times.
Of the remaining isobaric ion candidates reported in the HMDB, the structural properties of
CPCA’s functional groups best reflect the migration time and characterization shown in the
extracted ion electropherogram (Figure 3). Furthermore, additional studies are necessary
to clarify the underlying biochemical link(s) between n3-LCPUFA and CPCA as well as
establish reference intervals for urinary CPCA in larger populations to define optimal
cut-off concentrations associated with the O3I.

Additionally, while demonstrating a strong association to the O3I, an unknown dianion
(221.075:0.927:n) showed specificity in its relationship to DHA supplementation with
seemingly little-to-no association with EPA supplementation. In the absence of a confirmed
identification for this urinary metabolite, it is challenging to speculate on the biochemical
significance of this finding and its link with DHA; however, this currently unidentified
metabolite may prove to be a specific marker of DHA in the body and thus warrants
continued investigation. Improved concentration sensitivity is needed to measure this
lower abundance hydrophilic urinary metabolite, which is also needed when acquiring
better quality MS/MS spectra.

Our study has several strengths. First, the participant samples used were collected
during a randomized placebo-controlled trial that included matching baseline and 12-week
fasted blood and first-void urine samples. Second, erythrocyte fatty acid measurements
were examined using both relative % and quantitative (ng FA/mg Hb) values, thus al-
lowing for the robust verification of the relationship between erythrocyte EPA and DHA
with CPCA. All three statistical methods performed on all 124 creatinine-normalized
urinary metabolites confirmed similar results, where CPCA and an unknown dianion
(221.075:0.927:n) were consistently identified using several different approaches. Addi-
tionally, we conducted an initial proof-of-principle study 2 years prior to the present full
study that first identified a relationship between CPCA and high-dose DHA intake relative
to OO with good mutual agreement and reproducibility, thus demonstrating the stability
of CPCA in frozen urine samples following repeat analysis after thawing and long-term
storage. Finally, to rule out potential metabolite contamination, we analyzed both lipid
and aqueous extracts of the OO, EPA, and DHA capsules and did not detect CPCA, the
unknown dianion (221.075:0.927:n), and other polar/hydrophilic biomarker candidates
reported in this work, reinforcing that the changes in concentration of these endogenous
urinary metabolites reflect biochemical changes in study participants following high-dose
EPA and/or DHA intake.

There are also several limitations to our study. First, we acknowledge the small and
relatively homogenous sample size of the current study. Indeed, participants were all
young (18–30 y) and healthy individuals that do not necessarily reflect variation seen in
free-living populations. Thus, the generalizability of urinary CPCA and the unknown
dianion (221.075:0.927:n) as non-invasive biomarkers for the O3I needs to be confirmed
in populations that vary in age, ethnicity, genetics, and health status. Additionally, other
lifestyle factors were not accounted for during the clinical trial, such as physical activity,
alcohol consumption, and dietary patterns. Future studies will need to measure macro- and
micronutrient intakes to ensure that changes in urinary metabolites are specific to changes
in n3-LCPUFA intake. Furthermore, first-void urine samples used in our metabolomics
analyses are more susceptible to acute or diurnal changes in urine composition, which
may diminish the accuracy of associations drawn between urine metabolites and long-term
changes in erythrocyte fatty acid composition. As such, 24 h urine samples and/or several
repeat spot urine samples collected over time from the same individual could provide a
more reliable metabolite assessment of O3I status and improve the strength of associations
between urinary metabolites and erythrocyte fatty acid composition. Future work needs
to explore the stability of these metabolites in urine through comparing fasting first-void
urine samples with 24 h samples, as well as day-to-day variability. Moreover, urine samples
were analyzed on a single metabolomic platform (MSI-CE-MS), which is well suited for
identifying polar or ionic compounds since they are predominantly excreted in human
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urine [57]. However, due to the selectivity and sensitivity of liquid chromatography, gas
chromatography, and CE-MS techniques to capture different types of compounds, the use
of complementary instrumental platforms may uncover additional urinary biomarkers
of the O3I [58,59]. Ultimately, this could lead to the identification of a larger panel of
urinary metabolites that may reflect changes in the O3I compared to CPCA and/or the
unknown dianion (221.075:0.927:n) alone while also independently validating biomarker
outcomes across platforms [60]. Furthermore, it is unclear what minimum dosage of n3-
LCPUFA is needed to elicit a significant increase in these candidate urinary biomarkers
above endogenous background levels in human urine. Since participants in the present
trial received moderately high doses of EPA or DHA (~3 g per day), future studies should
consider different doses and formulations of n3-LCPUFA supplementation. Finally, the
underlying biochemical connection between these candidate urinary biomarkers and n3-
LCPUFA remains to be elucidated.

5. Conclusions

We report the identification of a novel panel of urinary metabolites as robust, non-
invasive biomarkers of n3-LCPUFA status. Specifically, our findings reveal that urinary
CPCA and an unknown dianion (221.075:0.927:n) may serve as promising biomarkers for
the O3I, and thereby lay the groundwork for establishing an objective and non-invasive
test for the personalized assessment of n3-LCPUFA status. We anticipate that an eventual
non-invasive test could be used for early screening of health risks and self-monitoring of
the O3I following personalized dietary changes. However, additional studies confirming
the sensitivity and specificity of these urinary metabolites as biomarkers of the O3I require
further validation prior to considering their clinical utility.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo13101071/s1, Table S1: Full annotation of the 17 urinary
metabolites significantly associated with n3-LCPUFA supplementation or the O3I reported in Table 3;
Table S2: glmmLasso selected urinary metabolites on the Omega-3 Index (O3I) and EPA + DHA
(ng/mg Hb) integrated datasets; Figure S1: PCA plots of urinary metabolites and erythrocyte
fatty acids; Figure S2: sPLS-DA loading weights of top 15 urinary metabolites for component
1 and 2; Figure S3: Tentative identification of CPCA based on spiking into pooled urine when
using MSI-CE-MS; Figure S4: Annotation and tentative identification of unknown anion isomers
pyroglutamylisoleucine (pGlu-Ile) and pyroglutamylleucine (pGlu-Leu); Figure S5: Annotation and
tentative identification of an unknown dianion (221.075:0.927:n; [M − 2H]2−); Figure S6: Estimate
values for glmmLasso selected urinary metabolites with the O3I and EPA + DHA ng/mg Hb as
outcome variables; Figure S7: Annotation and tentative identification of an unknown cationic urinary
metabolite N1-acetylspermidine (N1-AcSpm); Figure S8: Correlation plots between the top two
urinary metabolites and the O3I and EPA + DHA ng/mg Hb.
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