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Abstract: Hepatocellular carcinoma (HCC) is the main liver malignancy and has a high mortality rate.
The discovery of novel biomarkers for early diagnosis, prognosis, and stratification purposes has the
potential to alleviate its disease burden. Mass spectrometry (MS) is one of the principal technologies
used in metabolomics, with different experimental methods and machine types for different phases
of the biomarker discovery process. Here, we review why MS applications are useful for liver cancer,
explain the MS technique, and briefly summarise recent findings from metabolomic MS studies on
HCC. We also discuss the current challenges and the direction for future research.
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1. Introduction

Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are
the two principal methods used in metabolomics to measure small molecules in biological
samples. MS has been widely applied to discover biomarkers for diagnostic, prognostic,
and stratification purposes or to better understand the underlying pathological processes
of different diseases. Among these, liver cancer, one of the major malignancies with high
mortality, has been extensively studied using mass spectrometry of tissue or biofluid
samples during the past decade. Here, we review why MS applications are useful for
studying liver cancer, provide an overview of the technique, and summarise the MS
findings published to date.

2. Hepatocellular Carcinoma and the Metabolomic Approach
2.1. Epidemiology of HCC

Liver cancer is the sixth most frequently diagnosed malignancy and the third leading
cause of cancer-related mortality worldwide. In 2020, liver cancer was responsible for
905,700 new cases and 830,200 cancer deaths globally. The incidence rates of liver cancer
are highest in Eastern Asia, South-Eastern Asia, and Northern and Western Africa [1].
Moreover, new cases of liver cancer are expected to increase by 55% in the next 20 years [2].

Hepatocellular carcinoma (HCC) accounts for 85–95% of primary liver cancers [3].
Various risk factors contribute to the development of HCC, including chronic infection
with either hepatitis B virus (HBV) or hepatitis C virus (HCV), alcohol consumption, and
metabolic disorders, such as obesity and type 2 diabetes. These risk factors, however, show
geographical variations. For instance, in regions of high incidence, such as China and
Western Africa, chronic HBV infection and aflatoxin are the prevailing risk factors, whereas
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HCV infection predominates in Japan and Egypt [4]. In contrast, in most developed nations,
the leading risk factors for HCC are associated with alcohol consumption, metabolic syn-
drome, type 2 diabetes, obesity, and metabolic-associated fatty liver disease (MAFLD) [5].
Notably, MAFLD-related HCC constitutes 10–20% of the cases in the USA and Europe [6,7].

2.2. Metabolic Reprogramming in HCC

Metabolic reprogramming, proposed as an emerging hallmark of cancer in 2011, has
garnered significant attention and interest within the scientific community [8]. This concept
is pivotal to the evolving understanding of HCC. As the predominant primary hepatic
malignancy, HCC is intricately associated with diverse metabolic alterations. The liver, an
essential organ responsible for maintaining physiological homeostasis within the human
body, carries out a wide range of functions. Among these are the regulation of blood glucose
levels, lipid metabolic pathways, and the enzymatic detoxification of various substances.
HCC introduces significant disruptions in these carefully regulated metabolic networks,
leading to a range of metabolic changes reflective of the underlying pathophysiology of
the malignancy. In the following subsections, specific alterations in glucose and lipid
metabolism associated with HCC will be reviewed.

2.2.1. Glucose Metabolism in HCC

In the 1920s, Otto Warburg observed that in certain cancer cells, even when sufficient
oxygen was present, there was increased uptake of glucose and the production of lactate [9].
This phenomenon, known as “aerobic glycolysis” or the “Warburg effect,” was initially
thought to be a consequence of impaired mitochondrial respiration [10]. However, this
altered glucose utilisation in cancer cells was subsequently recognised as part of a rigorously
regulated metabolic reprogramming implemented to support tumour growth [11,12].

In HCC, upregulated aerobic glycolysis [13,14] and changes in related enzymes in
the Krebs cycle have been reported [15]. The Krebs cycle plays a pivotal role not only
in energy generation but also in synthesising various cellular building blocks essential
for proliferation. In HCC, citrate synthase, the rate-limiting enzyme that catalyses the
formation of citrate from acetyl-CoA and oxaloacetate (OAA), has been found to be upreg-
ulated [16,17]. In addition, an elevation in serum citrate levels has been reported in HCC
patients compared with healthy individuals [18]. Three oncometabolite-related enzymes,
namely succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate dehydro-
genase 1/2 (IDH1/2), have been identified as dysregulated. Studies have demonstrated
the downregulation of three subunits (SDHA/B/C) of the SDH complex in HCC, along
with an increase in succinate levels in both HCC cell lines and tumour tissues. Moreover,
the subunits SDHB and SDHC are linked with a subset of tumours correlated with poor
prognostic outcomes [15,19,20].

The downregulation of FH expression has been observed in a particularly aggressive
subset of HCC patients with portal vein thrombosis (PVT) compared to those without
PVT [21]. This may suggest that the dysregulation of FH plays a role in facilitating vascular
invasion within HCC. Further analysis by The Cancer Genome Atlas (TCGA) group has
identified an HCC subclass characterised by a higher prevalence of IDH1/2 mutations
and an associated decline in survival [22]. Moreover, mitochondrial malate dehydroge-
nase (MDH2), the enzyme responsible for converting malate back into OAA, has been
found to be upregulated in HCC tissue, according to the Oncomine datasets [11]. In brief,
while the alterations of the Krebs cycle enzymes among various aggressive subclasses of
HCCs are not yet fully understood, these changes are tightly connected to glycolysis and
tumour prognosis.

2.2.2. Lipid Metabolism in HCC

Lipids, constituting a diverse group of metabolites that are insoluble in water, serve
crucial functions in energy storage, the composition of membranes, and signal transduction.
The role of lipid metabolism in cancer, particularly in HCC, has become an area of interest.
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Risk factors for HCC, namely obesity and metabolic-associated steatohepatitis (MASH),
have been demonstrated to contribute to hepatocarcinogenesis through mechanisms in-
volving either the gut microbiome or endoplasmic reticulum (ER) stress [23,24]. These
risk factors further correlate with insulin resistance and alterations in the metabolism of
lipids and fatty acids [25,26]. Within a cohort of HCC predominantly characterised by viral
hepatitis, research has also unveiled a connection between enhanced lipogenesis and the
development of HCC mediated through the AKT-mTORC1-RPS6 signalling pathway [27].

Fatty acids are central players in lipid metabolism. After entering the cytoplasm, fatty
acids undergo activation to form acyl-coenzyme A (CoA), which can then be utilised in
the synthesis of phospholipids and triglycerides or regenerated by lipid catabolism [28]. In
addition to the uptake of exogenous fatty acids, de novo fatty acid synthesis empowers
cancer cells, including those in HCC, to manufacture a diverse spectrum of fatty acids,
thereby augmenting their adaptive capacity [29]. Moreover, fatty acid oxidation (FAO)
serves as the predominant energy-producing pathway in non-glycolytic tumours. It has
been found to be enhanced in cancer cells with high lipogenic activity [30]. It is crucial
to recognise that shifts in the metabolic reprogramming of fatty acids are not uniform,
varying depending on factors such as the cancer type, specific carcinogenic pathway,
and microenvironment.

Additionally, bile acids, essential derivatives of cholesterol synthesis within the liver,
play a significant role in lipid metabolism and are intrinsically connected with various
signalling receptors and pathways. Among these, the farnesoid X receptor (FXR) is the most
extensively studied and has been correlated with HCC. As a nuclear hormone receptor,
FXR is prominently expressed in the small intestine, particularly in the ileum, as well as
in the liver and kidney [31]. Physiologically, approximately 90 per cent of bile acids are
formed in hepatocytes through the classical bile acid synthesis pathway, with cholesterol
7α-hydroxylase (CYP7A1) as the rate-limiting enzyme. Once synthesised, hepatocytes
can secrete bile acids into bile canaliculi via the bile salt export pump (BSEP) or other
transporters, such as the organic solute transporter (OST) α/β complex, the multidrug
resistance-associated protein (MRP) 3 and MRP4. Intriguingly, these transporters fall under
the regulatory control of hepatic FXR.

In the inflamed hepatitic liver, the transcription of FXR is downregulated by nuclear
factor kappa-B (NF-κB), leading to the downregulation of a small heterodimer partner
(SHP). Since SHP inhibits CYP7A1, this downregulation results in a boost in bile acid syn-
thesis. Meanwhile, this downregulation also lowers the activities of FXR-regulated efflux
transporters, resulting in the accumulation of hepatic bile acids. Notably, the elevation in
specific hydrophobic bile acids such as lithocholic acid (LCA), deoxycholic acid (DCA),
and chenodeoxycholic acid (CDCA) can further contribute to hepatocyte damage [32] and
hence induce the development of HCC [33–35].

2.3. The Role of Metabolomics in HCC Biomarker Discovery

Studies have been conducted to identify potential HCC biomarkers; for example,
Zhou et al. proposed a plasma microRNA panel specifically for the diagnosis of hepatitis B
virus-associated HCC [36]. Additional research has identified proteins such as PIVKA-II
(Protein induced by vitamin K absence or antagonist-II) [37–40], AFP-L3 (lens culinaris
agglutinin-reactive fraction of AFP) [41], and osteopontin [42] as potential diagnostic
biomarkers. While biomarkers should offer potential clinical applications in areas such as
screening, diagnosis, prognosis, patient stratification, and treatment response evaluation,
the application of these novel biomarkers for HCC in routine clinical settings is limited. The
restricted sensitivity and specificity of known markers often preclude their widespread clin-
ical application, except in a limited number of cases. Notably, those proposed biomarkers
are predominantly large molecules—such as RNA sequences and proteins—identified via
genomic and proteomic methodologies, rather than small metabolites that can be robustly
evaluated through metabolomics.
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Metabolomics is an integral component in the study of metabolic reprogramming in
cancer, offering a comprehensive analytical approach for the quantification and evaluation
of metabolites influenced by either intrinsic or extrinsic factors. Unlike genomics, tran-
scriptomics, and proteomics, metabolomics is the “-omics” field most intimately linked to
biological phenotypes [43,44]. Both NMR and MS deliver high-throughput data, encom-
passing a broad spectrum of metabolites, and are valuable in the identification of these
metabolites. The inherent capability of metabolomics to provide a comprehensive analysis
of small molecules makes it a potential field for the discovery of biomarkers for HCC.

3. Understanding Mass Spectrometry and Its Role in Metabolomics
3.1. Principles of Mass Spectrometry

Mass spectrometry (MS) is a principal technique in metabolomics, utilising mass-to-
charge (m/z) ratios to isolate and quantify specific metabolites. This method possesses high
sensitivity and complements nuclear magnetic resonance (NMR) spectroscopy studies. Typ-
ically, MS is integrated with an additional separation modality, such as high-performance
liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC). Gas
chromatography also serves as one of the routine chromatographic interfaces. The chro-
matographic retention time aids in both the identification and separation of metabolites
with identical m/z ratios. Collectively, the integration of HPLC with MS facilitates high-
throughput metabolite analysis and identification.

3.2. Components of Mass Spectrometry

A mass spectrometer is fundamentally composed of three principal elements: an
ionisation source, a mass analyser, and an ion detector. Following chromatographic sep-
aration, an ionisation source is employed to convert metabolites of interest into gaseous
ionised forms. Various ionisation techniques have been established, with electrospray
ionisation (ESI) being among the most widely used. ESI was initially introduced by Dole
and subsequently adapted for mass spectrometry applications by Fenn in the 1980s [45].
The technique has garnered widespread adoption owing to its synergistic compatibility
with high-performance liquid chromatography (HPLC) [46]. The ionised metabolites are
subsequently channelled into the mass analyser via a series of voltage gradients, where they
undergo separation based on their mass-to-charge (m/z) ratios. Frequently employed types
of mass analysers encompass the quadrupole (Q), time-of-flight (TOF), magnetic sector,
and ion trap (IT) configurations. Finally, an ion detector quantifies the relative abundance
of ions that successfully pass through the mass analyser.

The primary role of the mass analyser is to separate incoming ions based on their
mass-to-charge (m/z) ratios. Since each type of mass analyser has its own set of advantages
and disadvantages, it is often the practice to use hybrid mass spectrometers that com-
bine multiple analysers. In a triple-quadrupole mass spectrometer (TQ), three sequential
quadrupole mass analysers are interconnected, providing a platform that is widely utilised
in various analytical applications. Each quadrupole assembly consists of four parallelly
aligned metal cylinders, and both radiofrequency (RF) and direct current are applied to
these. By fine-tuning the RF and current settings, the first and third quadrupoles in a TQ,
often referred to as MS1 and MS2, respectively, can either permit the passage of all charged
ions (when in RF-only or scan mode) or selectively allow ions with a specific m/z range to
pass (in selected ion monitoring, or SIM, mode).

The second quadrupole typically functions as a collision cell, facilitating the fragmen-
tation of parent ions chosen by the first quadrupole into daughter ions. Consequently, a TQ
is also commonly referred to as a QqQ or MS/MS [47,48]. Notably, the capacity for both
MS1 and MS2 to select specific m/z ratios enhances the overall selectivity of the instrument.
The quadrupole time-of-flight (Q-TOF or QqTOF) mass spectrometer is another prevalent
hybrid instrument. It integrates a quadrupole, a collision cell, and a time-of-flight (TOF)
mass analyser. TOF analysers distinguish charged ions based on their transit time, which
is directly proportional to the square root of their m/z ratios, offering the advantages of
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high mass resolution and accuracy [47]. When paired with the quadrupole’s high collision
efficiency, Q-TOFs become particularly effective for untargeted metabolic profiling, a topic
further discussed in the subsequent subsections.

3.3. Mass Spectrometry in Untargeted and Targeted Metabolomics Strategies

Metabolomics studies generally fall into two main categories: untargeted and targeted
approaches (Table 1). Untargeted metabolomics records all metabolites detectable by a
given method and aims to identify new biomarkers without pre-existing assumptions about
their relevance. On the other hand, targeted metabolomics focuses on validating potential
biomarkers, either based on the prior literature or findings from untargeted studies, by
precisely measuring the concentrations of a selected set of metabolites. Some methods,
often described as semi- or pseudo-targeted, incorporate elements from both untargeted
and targeted approaches [49].

Table 1. An overview of the phases of biomarker discovery using mass spectrometry.

Phase 1. Discovery 2. Quantification 3. Validation

Goal
To identify differential

metabolites without prior
assumption

To accurately quantify the
levels of differential

metabolites

To confirm differential
metabolites using

independent cohorts
Method used Untargeted Targeted Targeted

Mass spectrometer of choice Quadruple
time of flight Triple quadruple Triple quadruple

In untargeted metabolomics, quadrupole time-of-flight (QTOF) mass spectrometers
are frequently used for comprehensive metabolic profiling. These instruments inherit the
advantages of TOF analysers, delivering high-resolution and accurate mass measurements
while covering an extensive m/z range in a short period of time. Furthermore, the preceding
quadrupole and collision cell can function in either a broad scan or selective ion filtration
mode and either a general scan or fragmentation mode, respectively. In contrast to QTOF
systems, TQ mass spectrometers possess lower resolution and are restricted in the number
of targets they can concurrently detect. However, they are frequently employed in targeted
metabolomics for the quantification of known metabolites. By utilising Selected Reaction
Monitoring (SRM) modes, in which both the precursor and product ions are selectively
filtered by the first and second quadrupoles (MS1 and MS2), TQ systems achieve a higher
level of selectivity. As a result, TQ instruments attain improved signal-to-noise ratios, a
feature crucial for precise quantification in targeted metabolomics. Generally, a single
injection on a TQ system scans multiple m/z values, thereby facilitating the monitoring of
several ions and corresponding reactions. This mode of operation is referred to as Multiple
Reaction Monitoring (MRM) [47,48,50].

4. The Application of Mass Spectrometry to Discovering Biomarkers for HCC
4.1. The Prevalence of Mass Spectrometry

Numerous studies have identified a range of metabolites as potential biomarkers for
distinguishing HCC from cirrhosis, chronic hepatitis, or healthy individuals. In a review
of the literature previously conducted by our group [51], we analysed a total of 84 studies
focused on metabolomic investigations of diagnostic biomarkers for HCC. Notably, the
majority (66 out of 84 studies) employed MS as their principal analytical technique. This
underscores the pivotal role that mass spectrometry occupies in metabolomic research for
HCC. Additionally, of these 84 studies, 54 utilised blood samples and nine analysed urine
samples, indicating a preference for minimally invasive methods for biomarker sampling.
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4.2. HCC Biomarkers across Blood and Urine Samples

Our previous investigation summarized the crucial importance of analytical robustness
as an evaluation criterion for metabolic biomarkers distinguishing HCC from control popu-
lations [51]. Among blood-derived samples, primary bile acids, namely glycocholic acid,
taurocholic acid, and taurochenodeoxycholic acid, exhibited the highest levels of analytical
robustness as HCC biomarkers [52–56]. However, further studies are warranted to ascertain
whether the levels of these bile acids are indicative of HCC or cirrhosis, as these markers
demonstrate various alterations depending on the group compared. Other metabolites,
including gluconic acid and hypoxanthine, also showed variable alterations depending on
the comparison group. Of particular note, the altered levels of trimethylamine-N-oxide
(TMAO) and 2-hydroxybutyric acid display high consistency in the alteration in blood
samples. TMAO has previously been correlated with microbial dysbiosis [57,58], while
2-hydroxybutyric acid has been linked to both energy metabolism [59] and the gut micro-
biome [60]. Considering that bile acids also interact with the gut microbiota, this illustrates
the potential role of the gut microbiota in the pathophysiology of HCC.

In urine-based biomarker research, a noticeably smaller set of metabolites has been
discovered for HCC diagnosis, likely due to the filtration processes occurring in the kidneys.
Notably, TMAO levels were reduced in HCC patients, consistent with previous blood-based
studies. This consistency across different biological matrices underscores the potential
utility of TMAO as a robust biomarker for HCC.

It is relevant to note that 15 studies employed tissue samples, introducing an alterna-
tive strategy in biomarker discovery. Conventionally, putative biomarkers are identified
through untargeted metabolomics analyses, quantified via targeted LC-MS assays, and sub-
sequently validated in independent external cohorts, as illustrated in Table 1. Nonetheless,
metabolite annotation remains a time-consuming bottleneck in untargeted metabolomics
research. The employment of tissue samples may accelerate this annotation process. This is
potentially due to several factors: enhanced signal intensity of metabolites, an increased
number of identifiable metabolites, especially those implicated in interconnected metabolic
pathways, and the availability of multi-omics information to support metabolic reprogram-
ming. Further details on this topic will be covered in Section 5.2.

The latest findings from illustrative studies published in 2022 and 2023 are summarised
in Table 2. Some of the metabolites selected to be included in predictive models to dis-
criminate HCC from non-HCC control groups in the studies are marked with an asterisk.
These data show a similar trend as that observed in our previous review [51] in terms of
the type of sample used (blood being the most common), the array of techniques employed,
and the diversity of metabolites presented as potential biomarkers. This demonstrates
the increasing applicability of MS studies to HCC biomarker discovery. But at the same
time, the limited overlap of findings between studies and the paucity of studies that were
multi-centred or included a validation cohort (two out of ten) are some of the reasons why
it is not yet possible to extrapolate results between published studies to hone in on a set of
metabolites to be taken forward for further investigations for clinical application. Further
challenges in the field will be discussed in Section 5.1.

Table 2. Summary of illustrative mass spectrometry-based metabolomic findings in hepatocellular
carcinoma from studies published in 2022 or 2023.

Publication n Sample Technique Main MS Findings in HCC

Li et al. [61] HCC: 200
CHB: 200 Plasma LC-MS Phosphatidylcholines significantly

downregulated

Li et al. [62]
HCC: 68
LC: 33
HC: 34

Serum LC-MS

Alterations of the levels of five metabolites:
taurochenodeoxycholic acid,

glycochenodeoxycholate, ouabain,
theophylline, and xanthine
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Table 2. Cont.

Publication n Sample Technique Main MS Findings in HCC

Liu et al. [63]
HCC: 104

LC: 76
HC: 10

Plasma GC-MS

Increased: trans–trans-muconic acid and
oxoglutaric acid *

Decreased: montanic acid, oleamide,
triethylene glycol, 2-picolinic acid,

heptaethylene glycol *, N-formylglycine *,
citrulline *, and

4-(dimethylamino)azobenzene

Fan et al. [64] HCC: 43
HC: 47 Urine APGD-MS

Increased: acetic acid, creatine, propionic
acid, glycolic acid, cyanoacetic acid,

nicotinic acid, heptenoic acid,
L-pyroglutamic acid, L-ornithine, perillic

acid, and N-acetyltaurine

Yue et al. [65]

Discovery: HCC+T2D: 19
T2D: 32

Test:
HCC+T2D: 64

T2D: 96
HC: 94

Serum LC-MS/MS

Increased:
8,15-dihydroxy-5,9,11,13-eicosatetraenoic
acid (8,15-DiHETE), hexadecanedioic acid

(HDA) *,
15-keto-13,14-dihydroprostaglandin A2

(DHK-PGA2) *, and octadecanedioic acid

Morine et al. [66] HCC: 20 Tissue and
serum CE-MS

Tissue: increased leucine, valine,
tryptophan, isoleucine, methionine, lysine,

and phenylalanine
Serum: increased leucine, valine, and

tryptophan

Qu et al. [67] HCC: 57
HC: 76 serum SALDI-MS

A total of 14 lipids containing different lipid
types (TAG, CE, PC) were selected as

potential lipidomic biomarkers

Liu et al. [68]

Discovery:
HCC: 52
HC: 59

Validation:
HCC: 50
HC: 50

Serum (portal
vein and

central), tissue,
and stool

LC-MS

Tissue and portal vein serum: increased
DL-3-phenyllactic acid, L-tryptophan,

glycocholic acid, and 1-methylnicotinamide;
Portal vein and stool: decreased linoleic

acid and phenol

Wu et al. [69] HCC: 93
CHB: 136 Serum LC-MS/MS

Increased: phenylalanine, tyrosine ratio,
and the kynurenine-to-tryptophan ratio

Decreased: leucine, lysine, threonine,
tryptophan, valine, serotonin, taurine, and
tryptophan ratio, BCAA/aromatic amino

acids ratio, BCAAs/tyrosine ratio, Fischer’s
ratio, and serotonin-to-tryptophan ratio

Pan et al. [70]
HCC: 30
LH: 29

CHB: 30
Serum LC-MS

Increased: taurodeoxycholic acid * and
1,2-diacyl-3-β-d-galactosyl-sn-glycerol *

Decreased: 5-hydroxy-6E,8Z,11Z,14Z,17Z-
eicosapentaenoic acid and glycyrrhizic

acid *

* Selected to be included in the statistical model in the study to discriminate HCC from non-HCC. APGD-MS:
Atmospheric pressure glow discharge mass spectrometry; BCAA: branched-chain amino acids; CE: cholesteryl; CE-
MS: capillary electrophoresis–mass spectrometry; CHB: chronic hepatitis B carrier; GC-MS: gas chromatography–
mass spectrometry; HC: healthy control; HCC hepatocellular carcinoma; LC: liver cirrhosis; LC-MS: liquid
chromatography–mass spectrometry; PC: phosphatidylcholine; and TAG: triacylglyceride.

4.3. Pathway Analysis and the Functional Significance of Reported Candidate
Metabolomic Biomarkers

Having identified metabolites that show aberrant levels in HCC, it would be prudent
to elucidate the pathophysiology of their alteration, both to better understand the under-
lying disease process and to evaluate their merit as candidate biomarkers. For example,
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metabolites in the central energy metabolic pathways of glycolysis and Krebs cycle have
been found to be altered, in agreement with the existing understanding of changes in HCC
discussed in Section 2.2.1. Pyruvate and lactate are increased while a number of interme-
diates in the Krebs cycle, such as succinate, fumarate, and malate, are reduced in tumour
tissue compared to adjacent non-cancerous tissue [71]. Thus, targeting the rate-limiting
steps in the glycolytic pathway could be a potential treatment approach [72].

4.4. Integrating Mass Spectrometry Data with Other Omics Approaches

The strategy to survey a wide array of metabolites using untargeted methods followed
by targeted assays to discover and confirm differential metabolites described in Section 4.2
and Table 1 is an empirical way to discover potential biomarkers. Alternatively, a deductive
approach could be implemented by seeking metabolites informed by pathways found to be
altered in other omics. For example, using findings from The Cancer Genome Atlas (TCGA)
project [73], Dumenci et al. [74] focused on Carbamoyl Phosphate Synthetase 1 (CPS1), one of
the genes found to be most frequently mutated in HCC, which has a metabolic role. A gene–
metabolite network was constructed using online databases to inform metabolites that may
be affected due to CPS1 mutation. In reverse, results from metabolomic investigation can be
used to inform investigative research as well. After identifying that linoleic acid and phenol
were depleted in both portal vein and stool samples from patients, Liu et al. [68] showed
that supplementation of these metabolites in HCC cell line suppressed proliferation and
induces apoptosis.

Another more comprehensive investigation could be conducted by applying multiple
different “-omic” platforms on the same cohort. Zhang et al. [75] performed genomic,
transcriptomic, MS-based proteomic, and metabolomic methods, as well as cytometry
and single-cell analysis on tissue samples from eight HCC patients. They found that
there is substantial heterogeneity in tumour tissues. Intriguingly, it was reported that the
metabolome correlated better with the immunome than the transcriptome and proteome.

5. Challenges and Future Directions
5.1. Challenges and Considerations in MS-Based Biomarker Discovery for HCC

Notwithstanding the significant potential of metabolomics in unearthing novel biomark-
ers for hepatocellular carcinoma (HCC), several challenges persist, largely owing to the
lack of a universally adopted consensus on study quality. Firstly, adherence to critical
experimental steps such as sample randomisation and the employment of pooled quality
control samples should be rigorously documented in the untargeted analysis phase. Sec-
ondly, during the quantification phase, where targeted assays are employed, researchers are
responsible for disclosing results from method validation in tandem with quality assurance
and quality control outcomes. Thirdly, during data analysis, clinical characteristics that
could act as confounding variables must be reported and appropriately accounted for. With
respect to metabolite annotation, a minimum confidence level of Category II, confirmed
by matching fragmentation data to MS/MS spectral libraries, is essential [76]. Lastly, after
quantification via targeted assays, external validation is necessary—a step often neglected,
as evidenced by the fact that only a quarter of studies included independent validation
cohorts [51]. This final stage is critical for the successful translation of identified biomarkers
into clinical practice.

5.2. Further Directions—Mass Spectrometry Imaging

Emerging technologies have increasingly been incorporated into MS applications,
among which mass spectrometry imaging (MSI) stands out as particularly noteworthy for
biomarker discovery. Traditional metabolomic methods, which rely on the analysis of bulk
tissue extracts, often sacrifice crucial spatial information about metabolite sub-localisation
during the extraction process. This limitation is further compounded by the potential
for adjacent background tissue to contaminate tumour samples or for small tumours to
contaminate background liver tissue. However, the use of MSI circumvents these issues by
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generating in situ mass spectra pixel by pixel, thus preserving the spatial integrity of the
sample [77].

While tissue-derived biomarkers are often criticised for their invasive collection meth-
ods, their utilisation holds unique advantages. Firstly, given their higher metabolite
concentrations, HCC tumour samples and their paired normal liver tissues can aid in
metabolite annotation. On the other hand, this approach can serve as a confirmatory step
for proposed biofluid-based biomarkers and provide a foundation for future multi-omics
studies concerning the mechanisms of hepatogenesis and their link to biofluid biomarker
variations. Finally, various mass spectrometry imaging ionisation methods are available
for tissue samples, each excelling in ionising specific categories of molecules, which can
facilitate the metabolite annotation process.

A variety of ionisation methods for MSI have been developed, including secondary ion
mass spectrometry (SIMS), desorption electrospray ionisation (DESI), and matrix-assisted
laser desorption ionisation (MALDI). SIMS offers ion images with the highest resolution
compared to other MSI techniques and is capable of exploring metabolites at deeper
tissue layers. However, this “hard” ionisation limits the detection of larger molecular
entities. Conversely, both MALDI and DESI utilise “soft” ionisation. MALDI excels in
detecting metabolites within a higher mass range (>1000–2000 Da) and offers superior
spatial resolution (50–200 µm) compared to DESI (~100 µm) [78,79]. DESI, on the other
hand, is particularly adept at lipid analysis, requires minimal sample preparation, and
operates efficiently at atmospheric pressure [48,79–81].

The existing literature supports the superiority of MSI over conventional tissue extract
methods in the analysis of phospholipid levels in HCC. While studies utilising tissue
extracts have underscored the discriminative capabilities of specific phospholipid species,
namely phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine
(PS) [82], the results have been inconsistent. Some studies reported increased levels of
PC and PE in HCC tumour tissue [14], while others reported reduced levels of PE, PS,
and phosphatidylinositol (PI) in HCC tissues [83]. These inconsistencies may be partly
attributed to patient heterogeneity but also illustrate the inherent limitations of tissue
extracts, particularly the contamination between tumour and adjacent non-tumour tissues.

In contrast, MSI studies have produced more consistent results. One study using
MALDI found elevated levels of non-ether-linked PEs and phosphatidylinositols (PIs) with
specific acyl chains in HCC tumours [84]. Furthermore, a transcriptomic analysis confirmed
the increase in PE, showing elevated expression of PE cytidylyltransferase (PCYT2), the
rate-limiting enzyme in PE biosynthesis, in HCC compared to normal liver tissues [85].

Although the application of MSI to HCC is still relatively new, its utility is clearly
increasing. MALDI-MSI is the most commonly used MSI technique, largely due to its
maturity. While most MALDI studies have focused on proteomics, given MALDI’s ad-
vantage in detecting larger molecules [86,87], several have explored its applicability in
metabolomics. For example, one study revealed increased monounsaturated fatty acid
(MUFA)-phosphatidylcholine (PC) and decreased plasmalogens in HCC compared to
background alcohol- or NASH-related liver [77]. Another study demonstrated increased
metabolic heterogeneity and reprogramming in HCC tumours involving metabolites such
as arginine, PC, and fatty acids [88].

With respect to DESI-MSI studies, one DESI-MSI study proposed that triglyceride (TG)
16:0/18:1(9Z)/20:1(11Z) and TG 16:0/18:1(9Z)/18:2(9Z,12Z) was significantly higher and
lower in HCC tumour regions than non-tumour regions, respectively [89]. Another DESI
variant, Air Flow-Assisted DESI (AFADESI), identified alterations in β-alanine, arginine,
and proline metabolism as well as in fatty acid biosynthetic pathways [90].

Overall, MSI offers several benefits over traditional tissue extract methods, notably the
preservation of spatial integrity, which enables more precise identification and localisation
of tumour-specific phospholipid changes, in addition to minimal sample preparation
requirements. As advancements in MSI technologies continue, they are likely to play an
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increasingly critical role in the discovery and validation of biomarkers for HCC, thereby
enriching the fields of diagnosis, prognosis, and treatment monitoring.

5.3. Conclusions

Mass spectrometry is a promising technology with the potential to discover biomark-
ers for various purposes in the natural history of HCC, including diagnosis, prognosis,
and disease stratification. It has been utilised in numerous studies, and many candidate
biomarkers have been reported, with little consistency to date. Challenges remain to be
overcome: in terms of study design, the sample sizes of many studies are small, with
differing underlying aetiologies, tumour morphologies, and tumour stages; in terms of
methodology, better experimental rigour, metabolite annotation, and the need for external
validation are necessary to harness the power of MS fully. Ideally, multi-centre studies
with larger study numbers should be employed with more uniform tumour categorisation,
sample collection, and scientific protocols in order to provide more definitive answers on
biomarker feasibility in this arena.

Author Contributions: Conceptualisation and writing—original draft preparation, E.Y.-L.S.; writing—
original draft preparation, M.R.A.U.; writing—review and editing, I.J.C. and S.D.T.-R. All authors
have read and agreed to the published version of the manuscript.

Funding: I.J.C. from the Roger Williams Institute of Hepatology is supported by project funding
from the Foundation for Liver Research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global
burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [CrossRef] [PubMed]

3. El–Serag, H.B.; Rudolph, K.L. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. Gastroenterology 2007,
132, 2557–2576. [CrossRef]

4. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [CrossRef]

5. McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl S1), 4–13.
[CrossRef]

6. Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver
disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [CrossRef]

7. Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends,
risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [CrossRef]

8. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [CrossRef]
9. Warburg, O. The Metabolism of Carcinoma Cells. J. Cancer Res. 1925, 9, 148–163. [CrossRef]
10. Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314. [CrossRef]
11. Todisco, S.; Convertini, P.; Iacobazzi, V.; Infantino, V. TCA Cycle Rewiring as Emerging Metabolic Signature of Hepatocellular

Carcinoma. Cancers 2019, 12, 68. [CrossRef] [PubMed]
12. Deberardinis, R.J.; Chandel, N.S. We need to talk about the Warburg effect. Nat. Metab. 2020, 2, 127–129. [CrossRef] [PubMed]
13. Kitamura, K.; Hatano, E.; Higashi, T.; Narita, M.; Seo, S.; Nakamoto, Y.; Yamanaka, K.; Nagata, H.; Taura, K.; Yasuchika, K.; et al.

Proliferative activity in hepatocellular carcinoma is closely correlated with glucose metabolism but not angiogenesis. J. Hepatol.
2011, 55, 846–857. [CrossRef] [PubMed]

14. Huang, Q.; Tan, Y.; Yin, P.; Ye, G.; Gao, P.; Lu, X.; Wang, H.; Xu, G. Metabolic Characterization of Hepatocellular Carcinoma Using
Nontargeted Tissue Metabolomics. Cancer Res. 2013, 73, 4992–5002. [CrossRef]

15. Tseng, P.-L.; Wu, W.-H.; Hu, T.-H.; Chen, C.-W.; Cheng, H.-C.; Li, C.-F.; Tsai, W.-H.; Tsai, H.-J.; Hsieh, M.-C.; Chuang, J.-H.;
et al. Decreased succinate dehydrogenase B in human hepatocellular carcinoma accelerates tumor malignancy by inducing the
Warburg effect. Sci. Rep. 2018, 8, 3081. [CrossRef]

16. El-Ashmawy, N.E.; El-Bahrawy, H.A.; Shamloula, M.M.; El-Feky, O.A. Biochemical/metabolic changes associated with hepatocel-
lular carcinoma development in mice. Tumor Biol. 2014, 35, 5459–5466. [CrossRef]

17. Zhang, J.; Baddoo, M.; Han, C.; Strong, M.J.; Cvitanovic, J.; Moroz, K.; Dash, S.; Flemington, E.K.; Wu, T. Gene network analysis
reveals a novel 22-gene signature of carbon metabolism in hepatocellular carcinoma. Oncotarget 2016, 7, 49232–49245. [CrossRef]

https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.1016/j.jhep.2022.08.021
https://www.ncbi.nlm.nih.gov/pubmed/36208844
https://doi.org/10.1053/j.gastro.2007.04.061
https://doi.org/10.3322/caac.21492
https://doi.org/10.1002/hep.31288
https://doi.org/10.1002/hep.28431
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1158/jcr.1925.148
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.3390/cancers12010068
https://www.ncbi.nlm.nih.gov/pubmed/31881713
https://doi.org/10.1038/s42255-020-0172-2
https://www.ncbi.nlm.nih.gov/pubmed/32694689
https://doi.org/10.1016/j.jhep.2011.01.038
https://www.ncbi.nlm.nih.gov/pubmed/21334407
https://doi.org/10.1158/0008-5472.can-13-0308
https://doi.org/10.1038/s41598-018-21361-6
https://doi.org/10.1007/s13277-014-1714-6
https://doi.org/10.18632/oncotarget.10249


Metabolites 2023, 13, 1059 11 of 13

18. Gao, R.; Cheng, J.; Fan, C.; Shi, X.; Cao, Y.; Sun, B.; Ding, H.; Hu, C.; Dong, F.; Yan, X. Serum Metabolomics to Identify the Liver
Disease-Specific Biomarkers for the Progression of Hepatitis to Hepatocellular Carcinoma. Sci. Rep. 2015, 5, 18175. [CrossRef]

19. Li, J.; Liang, N.; Long, X.; Zhao, J.; Yang, J.; Du, X.; Yang, T.; Yuan, P.; Huang, X.; Zhang, J.; et al. SDHC-related deficiency of
SDH complex activity promotes growth and metastasis of hepatocellular carcinoma via ROS/NFκB signaling. Cancer Lett. 2019,
461, 44–55. [CrossRef]

20. Shimizu, T.; Inoue, K.-I.; Hachiya, H.; Shibuya, N.; Shimoda, M.; Kubota, K. Frequent alteration of the protein synthesis of
enzymes for glucose metabolism in hepatocellular carcinomas. J. Gastroenterol. 2014, 49, 1324–1332. [CrossRef]

21. Lee, W.-C.; Chou, H.-S.; Wu, T.-J.; Lee, C.-F.; Hsu, P.-Y.; Hsu, H.-Y.; Wu, T.-H.; Chan, K.-M. Down-regulation of metabolic proteins
in hepatocellular carcinoma with portal vein thrombosis. Clin. Proteom. 2017, 14, 29. [CrossRef]

22. Zhao, Y.; Zhang, L.; Zhang, Y.; Meng, B.; Ying, W.; Qian, X. Identification of hedgehog signaling as a potential oncogenic
driver in an aggressive subclass of human hepatocellular carcinoma: A reanalysis of the TCGA cohort. Sci. China Life Sci. 2019,
62, 1481–1491. [CrossRef]

23. Nakagawa, H.; Umemura, A.; Taniguchi, K.; Font-Burgada, J.; Dhar, D.; Ogata, H.; Zhong, Z.; Mark; Seki, E.; Hidalgo, J.; et al. ER
Stress Cooperates with Hypernutrition to Trigger TNF-Dependent Spontaneous HCC Development. Cancer Cell 2014, 26, 331–343.
[CrossRef] [PubMed]

24. Yoshimoto, S.; Loo, T.M.; Atarashi, K.; Kanda, H.; Sato, S.; Oyadomari, S.; Iwakura, Y.; Oshima, K.; Morita, H.; Hattori, M.;
et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013, 499, 97–101.
[CrossRef] [PubMed]

25. Verna, E.C.; Berk, P.D. Role of fatty acids in the pathogenesis of obesity and fatty liver: Impact of bariatric surgery. Semin. Liver
Dis. 2008, 28, 407–426. [CrossRef] [PubMed]

26. Auguet, T.; Berlanga, A.; Guiu-Jurado, E.; Martinez, S.; Porras, J.; Aragonès, G.; Sabench, F.; Hernandez, M.; Aguilar, C.; Sirvent,
J.; et al. Altered Fatty Acid Metabolism-Related Gene Expression in Liver from Morbidly Obese Women with Non-Alcoholic Fatty
Liver Disease. Int. J. Mol. Sci. 2014, 15, 22173–22187. [CrossRef] [PubMed]

27. Calvisi, D.F.; Wang, C.; Ho, C.; Ladu, S.; Lee, S.A.; Mattu, S.; Destefanis, G.; Delogu, S.; Zimmermann, A.; Ericsson, J.; et al.
Increased Lipogenesis, Induced by AKT-mTORC1-RPS6 Signaling, Promotes Development of Human Hepatocellular Carcinoma.
Gastroenterology 2011, 140, 1071–1083.e1075. [CrossRef]

28. Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Marin-Garcia, P.; Ping, P.; Stein, L.; D’Eustachio, P.; Hermjakob, H. Reactome diagram
viewer: Data structures and strategies to boost performance. Bioinformatics 2018, 34, 1208–1214. [CrossRef]

29. Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 2020, 122, 4–22. [CrossRef]
30. Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 2016, 5, e189.

[CrossRef]
31. Schaap, F.G.; Trauner, M.; Jansen, P.L.M. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol. 2014,

11, 55–67. [CrossRef] [PubMed]
32. Akare, S.; Martinez, J.D. Bile acid induces hydrophobicity-dependent membrane alterations. Biochim. Biophys. Acta (BBA)-Mol.

Cell Biol. Lipids 2005, 1735, 59–67. [CrossRef]
33. Jia, W.; Xie, G.; Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol.

Hepatol. 2018, 15, 111–128. [CrossRef] [PubMed]
34. Péan, N.; Doignon, I.; Tordjmann, T. Bile acids and liver carcinogenesis: TGR5 as a novel piece in the puzzle? Clin. Res. Hepatol.

Gastroenterol. 2013, 37, 226–229. [CrossRef] [PubMed]
35. Woolbright, B.L. Novel insight into mechanisms of cholestatic liver injury. World J. Gastroenterol. 2012, 18, 4985. [CrossRef]
36. Zhou, J.; Yu, L.; Gao, X.; Hu, J.; Wang, J.; Dai, Z.; Wang, J.-F.; Zhang, Z.; Lu, S.; Huang, X.; et al. Plasma MicroRNA Panel to

Diagnose Hepatitis B Virus–Related Hepatocellular Carcinoma. J. Clin. Oncol. 2011, 29, 4781–4788. [CrossRef]
37. Wallin, R.; Prydz, H. Studies on a subcellular system for vitamin K-dependent carboxylation. Thromb. Haemost. 1979, 41, 529–536.

[CrossRef]
38. Tsai, S.L.; Huang, G.T.; Yang, P.M.; Sheu, J.C.; Sung, J.L.; Chen, D.S. Plasma des-gamma-carboxyprothrombin in the early stage of

hepatocellular carcinoma. Hepatology 1990, 11, 481–488. [CrossRef]
39. Marrero, J.A.; Feng, Z.; Wang, Y.; Nguyen, M.H.; Befeler, A.S.; Roberts, L.R.; Reddy, K.R.; Harnois, D.; Llovet, J.M.; Normolle, D.;

et al. Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma.
Gastroenterology 2009, 137, 110–118. [CrossRef]

40. Liebman, H.A.; Furie, B.C.; Tong, M.J.; Blanchard, R.A.; Lo, K.-J.; Lee, S.-D.; Coleman, M.S.; Furie, B. Des-γ-Carboxy (Abnormal)
Prothrombin as a Serum Marker of Primary Hepatocellular Carcinoma. N. Engl. J. Med. 1984, 310, 1427–1431. [CrossRef]

41. Leerapun, A.; Suravarapu, S.V.; Bida, J.P.; Clark, R.J.; Sanders, E.L.; Mettler, T.A.; Stadheim, L.M.; Aderca, I.; Moser, C.D.;
Nagorney, D.M.; et al. The Utility of Lens Culinaris Agglutinin-Reactive α-Fetoprotein in the Diagnosis of Hepatocellular
Carcinoma: Evaluation in a United States Referral Population. Clin. Gastroenterol. Hepatol. 2007, 5, 394–402. [CrossRef] [PubMed]

42. Shang, S.; Plymoth, A.; Ge, S.; Feng, Z.; Rosen, H.R.; Sangrajrang, S.; Hainaut, P.; Marrero, J.A.; Beretta, L. Identification of
osteopontin as a novel marker for early hepatocellular carcinoma. Hepatology 2012, 55, 483–490. [CrossRef]

43. Holmes, E.; Wijeyesekera, A.; Taylor-Robinson, S.D.; Nicholson, J.K. The promise of metabolic phenotyping in gastroenterology
and hepatology. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 458–471. [CrossRef] [PubMed]

44. Holmes, E.; Wilson, I.D.; Nicholson, J.K. Metabolic Phenotyping in Health and Disease. Cell 2008, 134, 714–717. [CrossRef]

https://doi.org/10.1038/srep18175
https://doi.org/10.1016/j.canlet.2019.07.001
https://doi.org/10.1007/s00535-013-0895-x
https://doi.org/10.1186/s12014-017-9164-y
https://doi.org/10.1007/s11427-019-9560-7
https://doi.org/10.1016/j.ccr.2014.07.001
https://www.ncbi.nlm.nih.gov/pubmed/25132496
https://doi.org/10.1038/nature12347
https://www.ncbi.nlm.nih.gov/pubmed/23803760
https://doi.org/10.1055/s-0028-1091985
https://www.ncbi.nlm.nih.gov/pubmed/18956297
https://doi.org/10.3390/ijms151222173
https://www.ncbi.nlm.nih.gov/pubmed/25474087
https://doi.org/10.1053/j.gastro.2010.12.006
https://doi.org/10.1093/bioinformatics/btx752
https://doi.org/10.1038/s41416-019-0650-z
https://doi.org/10.1038/oncsis.2015.49
https://doi.org/10.1038/nrgastro.2013.151
https://www.ncbi.nlm.nih.gov/pubmed/23982684
https://doi.org/10.1016/j.bbalip.2005.04.006
https://doi.org/10.1038/nrgastro.2017.119
https://www.ncbi.nlm.nih.gov/pubmed/29018272
https://doi.org/10.1016/j.clinre.2012.12.005
https://www.ncbi.nlm.nih.gov/pubmed/23434440
https://doi.org/10.3748/wjg.v18.i36.4985
https://doi.org/10.1200/JCO.2011.38.2697
https://doi.org/10.1055/s-0038-1646805
https://doi.org/10.1002/hep.1840110321
https://doi.org/10.1053/j.gastro.2009.04.005
https://doi.org/10.1056/nejm198405313102204
https://doi.org/10.1016/j.cgh.2006.12.005
https://www.ncbi.nlm.nih.gov/pubmed/17368240
https://doi.org/10.1002/hep.24703
https://doi.org/10.1038/nrgastro.2015.114
https://www.ncbi.nlm.nih.gov/pubmed/26194948
https://doi.org/10.1016/j.cell.2008.08.026


Metabolites 2023, 13, 1059 12 of 13

45. Dole, M.; Mack, L.L.; Hines, R.L.; Mobley, R.C.; Ferguson, L.D.; Alice, M.B. Molecular Beams of Macroions. J. Chem. Phys. 1968,
49, 2240–2249. [CrossRef]

46. Ardrey, R.E. Interface Technology. In Liquid Chromatography–Mass Spectrometry: An Introduction; John Wiley & Sons: Hoboken, NJ,
USA, 2003; pp. 75–127.

47. Smoluch, M.; Grasso, G.; Suder, P.; Silberring, J. Mass spectrometry: An applied approach; Wiley: Hoboken, NJ, USA, 2019.
48. Gross, J.H. Mass Spectrometry: A Textbook; Springer: Berlin/Heidelberg, Germany, 2017.
49. University of Birmingham and Birmingham Metabolomics Training Centre. Untargeted, Semi-Targeted and Targeted Analytical

Approaches. Available online: https://www.futurelearn.com/courses/metabolomics/0/steps/10688 (accessed on 20 May 2020).
50. Hinterwirth, H.; Stegemann, C.; Mayr, M. Lipidomics. Circ. Cardiovasc. Genet. 2014, 7, 941–954. [CrossRef]
51. U, M.R.A.; Shen, E.Y.; Cartlidge, C.; Alkhatib, A.; Thursz, M.R.; Waked, I.; Gomaa, A.I.; Holmes, E.; Sharma, R.; Taylor-Robinson,

S.D. Optimized Systematic Review Tool: Application to Candidate Biomarkers for the Diagnosis of Hepatocellular Carcinoma.
Cancer Epidemiol. Biomark. Prev. 2022, 31, 1261–1274. [CrossRef]

52. Xiao, J.F.; Varghese, R.S.; Zhou, B.; Nezami Ranjbar, M.R.; Zhao, Y.; Tsai, T.-H.; Di Poto, C.; Wang, J.; Goerlitz, D.; Luo, Y.; et al.
LC–MS Based Serum Metabolomics for Identification of Hepatocellular Carcinoma Biomarkers in Egyptian Cohort. J. Proteome
Res. 2012, 11, 5914–5923. [CrossRef]

53. Ressom, H.W.; Xiao, J.F.; Tuli, L.; Varghese, R.S.; Zhou, B.; Tsai, T.-H.; Nezami Ranjbar, M.R.; Zhao, Y.; Wang, J.; Di Poto, C.; et al.
Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal. Chim.
Acta 2012, 743, 90–100. [CrossRef]

54. Wang, B.; Chen, D.; Chen, Y.; Hu, Z.; Cao, M.; Xie, Q.; Chen, Y.; Xu, J.; Zheng, S.; Li, L. Metabonomic Profiles Discriminate
Hepatocellular Carcinoma from Liver Cirrhosis by Ultraperformance Liquid Chromatography–Mass Spectrometry. J. Proteome
Res. 2012, 11, 1217–1227. [CrossRef]

55. Gong, Z.-G.; Zhao, W.; Zhang, J.; Wu, X.; Hu, J.; Yin, G.-C.; Xu, Y.-J. Metabolomics and eicosanoid analysis identified serum
biomarkers for distinguishing hepatocellular carcinoma from hepatitis B virus-related cirrhosis. Oncotarget 2017, 8, 63890.
[CrossRef] [PubMed]

56. Sydor, S.; Best, J.; Messerschmidt, I.; Manka, P.; Vilchez-Vargas, R.; Brodesser, S.; Lucas, C.; Wegehaupt, A.; Wenning, C.; Aßmuth,
S.; et al. Altered Microbiota Diversity and Bile Acid Signaling in Cirrhotic and Noncirrhotic NASH-HCC. Clin. Transl. Gastroenterol.
2020, 11, e00131. [CrossRef] [PubMed]

57. El Hage, R.; Al-Arawe, N.; Hinterseher, I. The Role of the Gut Microbiome and Trimethylamine Oxide in Atherosclerosis and
Age-Related Disease. Int. J. Mol. Sci. 2023, 24, 2399. [CrossRef] [PubMed]

58. Wang, Z.; Tang, W.H.; Buffa, J.A.; Fu, X.; Britt, E.B.; Koeth, R.A.; Levison, B.S.; Fan, Y.; Wu, Y.; Hazen, S.L. Prognostic value
of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 2014, 35,
904–910. [CrossRef]

59. Goodman, R.P.; Markhard, A.L.; Shah, H.; Sharma, R.; Skinner, O.S.; Clish, C.B.; Deik, A.; Patgiri, A.; Hsu, Y.H.; Masia, R.; et al.
Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature 2020, 583, 122–126. [CrossRef]

60. Qin, F.; Li, J.; Mao, T.; Feng, S.; Li, J.; Lai, M. 2 Hydroxybutyric Acid-Producing Bacteria in Gut Microbiome and Fusobacterium
nucleatum Regulates 2 Hydroxybutyric Acid Level In Vivo. Metabolites 2023, 13, 451. [CrossRef]

61. Li, K.; Shi, W.; Song, Y.; Qin, L.; Zang, C.; Mei, T.; Li, A.; Song, Q.; Zhang, Y. Reprogramming of lipid metabolism in hepatocellular
carcinoma resulting in downregulation of phosphatidylcholines used as potential markers for diagnosis and prediction. Expert
Rev. Mol. Diagn. 2023, 1–12. [CrossRef]

62. Li, X.; Yi, Y.; Wu, T.; Chen, N.; Gu, X.; Xiang, L.; Jiang, Z.; Li, J.; Jin, H. Integrated microbiome and metabolome analysis reveals
the interaction between intestinal flora and serum metabolites as potential biomarkers in hepatocellular carcinoma patients. Front.
Cell. Infect. Microbiol. 2023, 13, 1170748. [CrossRef]

63. Liu, Z.; Liu, H.; Chen, Z.; Deng, C.; Zhou, L.; Chen, S.; Kang, J.; Chen, Y.; He, S.; Zhou, Z. Identification of a novel plasma
metabolite panel as diagnostic biomarker for hepatocellular carcinoma. Clin. Chim. Acta 2023, 543, 117302. [CrossRef]

64. Fan, J.; Wang, X.; Yu, Y.; Li, Y.; Nie, Z. Screening of hepatocellular carcinoma via machine learning based on atmospheric pressure
glow discharge mass spectrometry. Analyst 2023, 148, 337–343. [CrossRef]

65. Yue, Z.; Pei, L.; Meng, G.; Zhang, A.; Li, M.; Jia, M.; Wang, H.; Cao, L. Simultaneous Quantification of Serum Lipids and Their
Association with Type 2 Diabetes Mellitus-Positive Hepatocellular Cancer. Metabolites 2023, 13, 90. [CrossRef] [PubMed]

66. Morine, Y.; Utsunomiya, T.; Yamanaka-Okumura, H.; Saito, Y.; Yamada, S.; Ikemoto, T.; Imura, S.; Kinoshita, S.; Hirayama,
A.; Tanaka, Y.; et al. Essential amino acids as diagnostic biomarkers of hepatocellular carcinoma based on metabolic analysis.
Oncotarget 2022, 13, 1286–1298. [CrossRef] [PubMed]

67. Qu, X.; Wang, T.; Liu, X.; Jiang, X.; Liang, X.; Wu, J. Dual-Mechanism-Driven Strategy for High-Coverage Detection of Serum
Lipids on a Novel SALDI-MS Target. Anal. Chem. 2022, 94, 8570–8579. [CrossRef] [PubMed]

68. Liu, J.; Geng, W.; Sun, H.; Liu, C.; Huang, F.; Cao, J.; Xia, L.; Zhao, H.; Zhai, J.; Li, Q.; et al. Integrative metabolomic characterisation
identifies altered portal vein serum metabolome contributing to human hepatocellular carcinoma. Gut 2022, 71, 1203–1213.
[CrossRef] [PubMed]

69. Wu, T.; Zheng, X.; Yang, M.; Zhao, A.; Xiang, H.; Chen, T.; Jia, W.; Ji, G. Serum Amino Acid Profiles Predict the Development of
Hepatocellular Carcinoma in Patients with Chronic HBV Infection. ACS Omega 2022, 7, 15795–15808. [CrossRef] [PubMed]

https://doi.org/10.1063/1.1670391
https://www.futurelearn.com/courses/metabolomics/0/steps/10688
https://doi.org/10.1161/CIRCGENETICS.114.000550
https://doi.org/10.1158/1055-9965.EPI-21-0687
https://doi.org/10.1021/pr300673x
https://doi.org/10.1016/j.aca.2012.07.013
https://doi.org/10.1021/pr2009252
https://doi.org/10.18632/oncotarget.19173
https://www.ncbi.nlm.nih.gov/pubmed/28969038
https://doi.org/10.14309/ctg.0000000000000131
https://www.ncbi.nlm.nih.gov/pubmed/32352707
https://doi.org/10.3390/ijms24032399
https://www.ncbi.nlm.nih.gov/pubmed/36768722
https://doi.org/10.1093/eurheartj/ehu002
https://doi.org/10.1038/s41586-020-2337-2
https://doi.org/10.3390/metabo13030451
https://doi.org/10.1080/14737159.2023.2254884
https://doi.org/10.3389/fcimb.2023.1170748
https://doi.org/10.1016/j.cca.2023.117302
https://doi.org/10.1039/D2AN01756C
https://doi.org/10.3390/metabo13010090
https://www.ncbi.nlm.nih.gov/pubmed/36677015
https://doi.org/10.18632/oncotarget.28306
https://www.ncbi.nlm.nih.gov/pubmed/36441784
https://doi.org/10.1021/acs.analchem.1c04929
https://www.ncbi.nlm.nih.gov/pubmed/35670384
https://doi.org/10.1136/gutjnl-2021-325189
https://www.ncbi.nlm.nih.gov/pubmed/34344785
https://doi.org/10.1021/acsomega.2c00885
https://www.ncbi.nlm.nih.gov/pubmed/35571782


Metabolites 2023, 13, 1059 13 of 13

70. Pan, H.Y.; Wu, Q.Q.; Yin, Q.Q.; Dai, Y.N.; Huang, Y.C.; Zheng, W.; Hui, T.C.; Chen, M.J.; Wang, M.S.; Zhang, J.J.; et al. LC/MS-
Based Global Metabolomic Identification of Serum Biomarkers Differentiating Hepatocellular Carcinoma from Chronic Hepatitis
B and Liver Cirrhosis. ACS Omega 2021, 6, 1160–1170. [CrossRef]

71. Fang, C.; Wang, H.; Lin, Z.; Liu, X.; Dong, L.; Jiang, T.; Tan, Y.; Ning, Z.; Ye, Y.; Tan, G.; et al. Metabolic Reprogramming and Risk
Stratification of Hepatocellular Carcinoma Studied by Using Gas Chromatography-Mass Spectrometry-Based Metabolomics.
Cancers 2022, 14, 231. [CrossRef]

72. Feng, J.; Li, J.; Wu, L.; Yu, Q.; Ji, J.; Wu, J.; Dai, W.; Guo, C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular
carcinoma. J. Exp. Clin. Cancer Res. 2020, 39, 126. [CrossRef]

73. Cancer Genome Atlas Research Network. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma.
Cell 2017, 169, 1327–1341. [CrossRef]

74. Dumenci, O.E.; U, A.M.; Khan, S.A.; Holmes, E.; Taylor-Robinson, S.D. Exploring Metabolic Consequences of CPS1 and CAD
Dysregulation in Hepatocellular Carcinoma by Network Reconstruction. J. Hepatocell. Carcinoma 2020, 7, 1–9. [CrossRef]

75. Zhang, Q.; Lou, Y.; Yang, J.; Wang, J.; Feng, J.; Zhao, Y.; Wang, L.; Huang, X.; Fu, Q.; Ye, M.; et al. Integrated multiomic analysis
reveals comprehensive tumour heterogeneity and novel immunophenotypic classification in hepatocellular carcinomas. Gut 2019,
68, 2019–2031. [CrossRef]

76. Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted Metabolomics Strategies-Challenges and
Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905. [CrossRef] [PubMed]

77. Hall, Z.; Chiarugi, D.; Charidemou, E.; Leslie, J.; Scott, E.; Pelligrinet, L.; Allison, M.; Mocciaro, G.; Anstee, Q.M.; Evan, G.I.; et al.
Lipid remodelling in hepatocyte proliferation and hepatocellular carcinoma. Hepatology 2020, 73, 1028–1044. [CrossRef] [PubMed]

78. Campbell, D.I.; Ferreira, C.R.; Eberlin, L.S.; Cooks, R.G. Improved spatial resolution in the imaging of biological tissue using
desorption electrospray ionization. Anal. Bioanal. Chem. 2012, 404, 389–398. [CrossRef] [PubMed]

79. Bodzon-Kulakowska, A.; Antolak, A. Mass Spectrometry Imaging. In Mass Spectrometry; Wiley: Hoboken, NJ, USA, 2019;
pp. 217–229.

80. Vaysse, P.-M.; Heeren, R.M.A.; Porta, T.; Balluff, B. Mass spectrometry imaging for clinical research–latest developments,
applications, and current limitations. Analyst 2017, 142, 2690–2712. [CrossRef] [PubMed]

81. Griffiths, W.; Wang, Y. Lipidomics: Current and Emerging Techniques; Royal Society of Chemistry: London, UK, 2020.
82. Evangelista, E.B.; Kwee, S.A.; Sato, M.M.; Wang, L.; Rettenmeier, C.; Xie, G.; Jia, W.; Wong, L.L. Phospholipids are A Potentially

Important Source of Tissue Biomarkers for Hepatocellular Carcinoma: Results of a Pilot Study Involving Targeted Metabolomics.
Diagnostics 2019, 9, 167. [CrossRef]

83. Krautbauer, S.; Meier, E.M.; Rein-Fischboeck, L.; Pohl, R.; Weiss, T.S.; Sigruener, A.; Aslanidis, C.; Liebisch, G.; Buechler, C.
Ceramide and polyunsaturated phospholipids are strongly reduced in human hepatocellular carcinoma. Biochim. Biophys. Acta
(BBA)-Mol. Cell Biol. Lipids 2016, 1861, 1767–1774. [CrossRef]

84. Li, Z.; Guan, M.; Lin, Y.; Cui, X.; Zhang, Y.; Zhao, Z.; Zhu, J. Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by
Liver Lipidomics. Int. J. Mol. Sci. 2017, 18, 2550. [CrossRef]

85. Guan, Y.; Chen, X.; Wu, M.; Zhu, W.; Arslan, A.; Takeda, S.; Nguyen, M.H.; Majeti, R.; Thomas, D.; Zheng, M.; et al. The
phosphatidylethanolamine biosynthesis pathway provides a new target for cancer chemotherapy. J. Hepatol. 2020, 72, 746–760.
[CrossRef]

86. Le Faouder, J.; Laouirem, S.; Chapelle, M.; Albuquerque, M.; Belghiti, J.; Degos, F.; Paradis, V.; Camadro, J.-M.; Bedossa, P.
Imaging Mass Spectrometry Provides Fingerprints for Distinguishing Hepatocellular Carcinoma from Cirrhosis. J. Proteome Res.
2011, 10, 3755–3765. [CrossRef]

87. Marquardt, C.; Tolstik, T.; Bielecki, C.; Kaufmann, R.; Crecelius, A.C.; Schubert, U.S.; Settmacher, U.; Stallmach, A.; Dirsch, O.
MALDI imaging-based classification of hepatocellular carcinoma and non-malignant lesions in fibrotic liver tissue. Z. Gastroenterol.
2015, 53, 33–39. [CrossRef] [PubMed]

88. Ma, B.; Zhang, Y.; Ma, J.; Chen, X.; Sun, C.; Qin, C. Spatially resolved visualization of reprogrammed metabolism in hepatocellular
carcinoma by mass spectrometry imaging. Cancer Cell Int. 2023, 23, 177. [CrossRef] [PubMed]

89. Nagai, K.; Uranbileg, B.; Chen, Z.; Fujioka, A.; Yamazaki, T.; Matsumoto, Y.; Tsukamoto, H.; Ikeda, H.; Yatomi, Y.; Chiba, H.; et al.
Identification of novel biomarkers of hepatocellular carcinoma by high-definition mass spectrometry: Ultrahigh-performance
liquid chromatography quadrupole time-of-flight mass spectrometry and desorption electrospray ionization mass spectrometry
imaging. Rapid Commun. Mass Spectrom. 2020, 34, e8551. [CrossRef] [PubMed]

90. He, M.J.; Pu, W.; Wang, X.; Zhong, X.; Zhao, D.; Zeng, Z.; Cai, W.; Liu, J.; Huang, J.; Tang, D.; et al. Spatial metabolomics on liver
cirrhosis to hepatocellular carcinoma progression. Cancer Cell Int. 2022, 22, 366. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/acsomega.0c04259
https://doi.org/10.3390/cancers14010231
https://doi.org/10.1186/s13046-020-01629-4
https://doi.org/10.1016/j.cell.2017.05.046
https://doi.org/10.2147/JHC.S239039
https://doi.org/10.1136/gutjnl-2019-318912
https://doi.org/10.1007/s13361-016-1469-y
https://www.ncbi.nlm.nih.gov/pubmed/27624161
https://doi.org/10.1002/hep.31391
https://www.ncbi.nlm.nih.gov/pubmed/32460431
https://doi.org/10.1007/s00216-012-6173-6
https://www.ncbi.nlm.nih.gov/pubmed/22706326
https://doi.org/10.1039/C7AN00565B
https://www.ncbi.nlm.nih.gov/pubmed/28642940
https://doi.org/10.3390/diagnostics9040167
https://doi.org/10.1016/j.bbalip.2016.08.014
https://doi.org/10.3390/ijms18122550
https://doi.org/10.1016/j.jhep.2019.11.007
https://doi.org/10.1021/pr200372p
https://doi.org/10.1055/s-0034-1385398
https://www.ncbi.nlm.nih.gov/pubmed/25594705
https://doi.org/10.1186/s12935-023-03027-0
https://www.ncbi.nlm.nih.gov/pubmed/37620880
https://doi.org/10.1002/rcm.8551
https://www.ncbi.nlm.nih.gov/pubmed/31412144
https://doi.org/10.1186/s12935-022-02775-9
https://www.ncbi.nlm.nih.gov/pubmed/36419080

	Introduction 
	Hepatocellular Carcinoma and the Metabolomic Approach 
	Epidemiology of HCC 
	Metabolic Reprogramming in HCC 
	Glucose Metabolism in HCC 
	Lipid Metabolism in HCC 

	The Role of Metabolomics in HCC Biomarker Discovery 

	Understanding Mass Spectrometry and Its Role in Metabolomics 
	Principles of Mass Spectrometry 
	Components of Mass Spectrometry 
	Mass Spectrometry in Untargeted and Targeted Metabolomics Strategies 

	The Application of Mass Spectrometry to Discovering Biomarkers for HCC 
	The Prevalence of Mass Spectrometry 
	HCC Biomarkers across Blood and Urine Samples 
	Pathway Analysis and the Functional Significance of Reported Candidate Metabolomic Biomarkers 
	Integrating Mass Spectrometry Data with Other Omics Approaches 

	Challenges and Future Directions 
	Challenges and Considerations in MS-Based Biomarker Discovery for HCC 
	Further Directions—Mass Spectrometry Imaging 
	Conclusions 

	References

