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Abstract: We developed a machine-learning system for the selective diagnostics of adenocarcinoma
(AD), squamous cell carcinoma (SQ), and small-cell carcinoma lung (SC) cancers based on their
metabolomic profiles. The system is organized as two-stage binary classifiers. The best accuracy
for classification is 92%. We used the biomarkers sets that contain mostly metabolites related to
cancer development. Compared to traditional methods, which exclude hierarchical classification, our
method splits a challenging multiclass task into smaller tasks. This allows a two-stage classifier, which
is more accurate in the scenario of lung cancer classification. Compared to traditional methods, such
a “divide and conquer strategy” gives much more accurate and explainable results. Such methods,
including our algorithm, allow for the systematic tracking of each computational step.

Keywords: lung cancer; machine learning; metabolites

1. Introduction

The field of machine learning (ML) and deep learning is growing in many disciplines.
ML is widely applied to medicine and pharmacology. In this study, we implemented ML in
the early diagnosis of lung cancer by identifying distinctions in the metabolic profiles of
each type of lung cancer.

Lung cancer is the leading cause of cancer deaths in the U.S. with an estimated
127,070 deaths in 2023. One in sixteen people will be diagnosed with lung cancer in their
lifetime. In fact, the prognosis of lung cancer is poor, with a five-year survival rate after
the diagnosis (2012–2018) of only 22.9% [1]. Such poor prognosis is correlated with the fact
that there is a lack of early detection methods and the difficulty of treating metastatic lung
cancer.

The taxonomy of lung cancer by histopathologic subtype is shown in Figure 1 [2].
There are two major categories: non-small-cell lung cancer (NS) and small-cell lung cancer
(SC) [2,3]. Within the umbrella of NS, there are three subtypes: adenocarcinoma (AD),
squamous cell carcinoma (SQ), and large-cell lung cancer (LC) [2,3]. Anatomically, AD
usually begins to occur on the outer part of the lungs and is the most common form of
NS [3]. AD is histopathologically subdivided into several different subtypes, which we
omitted from our analysis due to the lack of data. SQ usually occurs near the chest in the
bronchi [3]. Finally, LC is the least common type of lung cancer and is the cancer with the
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highest chance of becoming malignant [3]. The other major category of lung cancer, SC, is
very aggressive, and the cancer grows rapidly, unlike in the other subtypes [4].
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Since lung cancer can come in so many types, it makes it hard for doctors and radiol-
ogists to effectively diagnose it at early stages and beyond. For example, it is crucial for
medical staff to be able to differentiate between AD and SQ because the chemotherapy
regimens for each cancer are different [5]. Thus, being able to identify the type of lung
cancer at an early stage could aid in the early planning of treatments specific to the type of
lung cancer.

Traditional methods of screening and detecting lung cancer are chest X-rays and
CT-scans. However, both methods heavily depend on the radiologist’s opinion, which
could foster observer s [6,7]. Metabolites, on the other hand, can act as biomarkers and
can provide safe and noninvasive method. Using ML, the metabolic profiles could act as
datasets to help in the early recognition of lung cancer to distinguish different types of
vs control group. For example, Mazzone and colleagues have shown differences in the
metabolite profile between patients of NS and healthy individuals [8]. The study concluded
effective results displaying C statistics between 0.75 and 0.85 [8], however, authors did not
run an independent test set. In other attempts by Kouznetsova and colleagues, the studies
utilized ML models with metabolite profiles to classify the stages of bladder cancer with
82.54% accuracy [9] and deep learning to distinguish oral cancer from periodontal diseases
with accuracy 79.57% [10]. Wu and colleagues developed a ML model using metabolite
biomarkers for diagnostics of lung cancer [11]. In the study, they could differentiate the
lung cancer patients from healthy individuals or even patients with tuberculosis, which
has similar symptoms, at an accuracy of 95.7%. Fahrmann and colleagues, in their study,
correlated eight specific metabolite biomarkers as candidates for diagnosing AD versus a
control [12]. After creating a machine-learning model on the eight metabolites, the study
ran an independent test set which resulted in a 77.3% accuracy. In our project we developed
a strategy to distinguish four types of lung cancer.

2. Methods

We used metabolites from the four types of lung cancer (SQ, NS, SC, and AD) and
created a classification algorithm to distinguish between the four types of lung cancer. The
algorithms were designed based upon the current lung cancer taxonomy (Figure 1) [2].
Figure 2 illustrates the flowchart of the algorithm’s steps. Because AD and SQ are subtypes
of NS, first, we used a neural network to distinguish between the NS and SC cancer. If the
metabolite fits the NS cancer profile, then we used another neural network to distinguish
between AD and SQ.
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Figure 2. Overview of the methods. The PCA and t-SNE were applied to categorize NS and SC. The
experiments show that t-SNE has a better result with 92.0% overall accuracy. The t-SNE gives more
accurate results to distinguish NS/SC (96.1% vs. 92.3%) and AD/SQ (91.1% vs. 84.6%) compared to
the PCA Model. More explanations can be found in the Section 3.

The general flowchart of methods is shown in Figure 2, and it also displays a classifi-
cation algorithm. To select the best dimensionality reduction method, we tested PCA and
t-SNA methods and found that t-SNA gave better accuracy in some tasks. So, we used
these methos correspondingly where they have better results (see Section 3). In short, our
model first applies t-SNE dimensionality reduction, then creates two classification tasks,
namely NS/SC and AD/SQ, each of which is performed by a DNN network. Combining
two tasks will result in the final cancer type. The model was implemented using Python.

The model converted SMILE structures for each metabolite to molecular descriptors.
Then, the important descriptors were selected by InfoGainAttributeEval (InfoGain). For
training purposes, the training datasets were used for each lung cancer type. For testing
the created classification system, we used the completely independent set of metabolites
related to the studied cancers. After running 5-fold cross-validation several times, we
found that accuracy drops to about 40% for selecting metabolites with an FC of less than 1
or above 1.5. We eventually chose 1.2 as the threshold for the fold change (FC) for all types
of lung cancers including NS, SC, AD, and SQ. All the datasets were filtered by p ≤ 0.05
and FC ≥ 1.2.

To make sure that the selected metabolites are not random but are the biomarkers of
the specific cancer’s development, we conducted the elucidation of the metabolic pathways
with the pathway enrichment analysis module of MetaboAnalyst software [13].

2.1. Datasets for Cancer Classifications

All data were retrieved from public sources and filtered by p values lower than 0.05
and a fold change (FC) greater than 1.2 (p < 0.05, FC > 1.2).

The non-small-cell lung cancer (NS) training data were obtained from Mazzone and
colleagues’ non-small-cell lung cancer set collected from the sera of cancer patients [8].
After filtering the dataset, 38 total distinct metabolites were left. The independent test set
for NS was retrieved from the serum metabolites set collected by Chen and colleagues [14].

The small-cell lung cancer (SC) data were retrieved using Wedge and colleagues’
dataset of metabolites from cancer patients’ sera [15]. After filtering the dataset, 35 total
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distinct metabolites were left. The independent test set for SC was collected from Li Yu and
colleagues [16].

The adenocarcinoma (AD) data were extracted from Mazzone and colleagues’ dataset
of metabolites from the sera of cancer patients [8]. After filtering the dataset, 44 total distinct
metabolites were left. The independent test set for AD was obtained from the publication
of Fahrmann and colleagues [12].

The squamous cell carcinoma (SQ) data were acquired from Mazzone and colleagues’
dataset of metabolites from the sera of cancer patients [8]. After filtering the dataset, 46 total
distinct metabolites were left. The independent test set for SQ was collected from Liu and
colleagues’ metabolite set from the sera of cancer patients [17]. The metabolites used in the
training are presented in Table S1.

2.2. MetaboAnalyst

MetaboAnalyst is an online software for metabolomics data analysis. With Metabo-
Analyst, a user can complete statistical analysis, functional analysis, meta-analysis as well
as integrative analysis with other omics data [13]. It has modules for different statistical
analyses, biomarker analyses, enrichment and pathway analyses, and joint gene–metabolite
pathway analysis. Pathway enrichment analysis allows the identification of metabolites
with similar functions and the interpretation of their patterns in light of metabolomic
pathways. We elucidated the metabolic pathways that produce the metabolites used in
our calculation. Our analysis demonstrated that these metabolites are not random but are
related to cancer development.

2.3. Raw Data and Physiochemical Descriptors

The general flowchart of our study is presented in Figure 2. The data were collected
from the aforementioned public sources and were filtered by p values and fold change.
Then, SMILES nominations of compounds were elucidated and used to assign them to
PaDEL descriptors [18]. After the PaDEL descriptors were calculated, the data subtypes
were split into two different classifications. The first classification was between NS and
SC (classification 1). The second classification was between AD and SQ (classification 2).
A sufficient dataset for rare LC was not found, so it was not included in the classification
system. All PaDEL descriptors for each classification were then normalized in the range
between 0 and 1, using the formula below [19] (Equation (1)):

x =
x−min(x)

max(x)−min(x)
, (1)

where x = numerical value of the descriptor.

2.4. Discretization and InfoGain

After data normalization, we ran InfoGain, a WEKA filter, to see which features
contain the most information [20]. In information gain, the first step is to discretize the
data into different bins. Each bin represents one ordinal category in InfoGain. Then, we
calculate the information gain for each pair of features “a” and category “I”. Then, we sum
up all the ordinal categories via the second equation below [21]:

IG(T, a) = H(T)− H(T|a), (2)

where
H(T) = ∑n

i=0−Plog(Pi), (3)

where IG(T, a) is the information gain by choosing attribute a; H(T) is the cross-entropy
of the label without choosing feature a; and H(T|a) is the cross-entropy of the label after
choosing the features. Before information gain, there were 1083 PaDEL features for each
metabolite. But, after InfoGain filtration, only 170 features were selected for each metabolite,
which lowered the noise in the data.
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2.5. Dimensionality Reduction

To transform the data from a high-dimensional space into a low-dimensional space—
dimensionality reduction—two algorithms were used: (1) principal component analysis
(PCA) [22] and (2) t-distributed stochastic neighbor embedding (t-SNE) [23,24]. PCA is
one of the most common linear methods to reduce data dimensionality. To perform PCA,
a co-variance matrix (Cov(X–E(X))) should first be calculated for m-dimensional data X
(where E(X) is the average expectation of data X), defined as [22,23]:

Cov(X) = (X− E(X))(X− E(X))T . (4)

After computing the co-variance matrix, m dimensional data could be reduced to n,
n ≤ m, by selecting the first n eigenvectors of Cov(X) as output. All steps used in PCA are
linear transformations, and therefore, PCA works best with linear input data. In contrast,
t-SNE is a stochastic method used for nonlinear data, reducing the high-dimensional set
X to a two- or three-dimensional set Y of vectors yi, using conditional probabilities as
similarities [23,24]. Let us have a set of N high-dimensional data x1, x2, x3, . . . xN; xi ∈ Rk

that have to be transformed into a set of low-dimensional data y1, y2, y3, . . . yN; yi ∈ Rd,
where dimension d = 2 or 3. With t-SNE, a Gaussian distribution of similarity probabilities
is first computed. The similarity probability Pr between two objects, namely xi and xj
(I 6= j), is defined as [23]:

Pr(i|j|, i 6= j) =
exp

(
−||xi−xj||2

2σ2
i

)
∑k 6=i exp

(
− ||xi−xk ||2

2σ2
i

) (5)

where σi is the variance of the Gaussian centered around xi

Pr(i | i) = 0 (6)

and ∑j Pr(i | j) = 1, ∀i . (7)

Note that Pr(x|y) might not be equal to Pr(y|x). Therefore, t-SNE defines a mutual
similarity score Sij such that sij = sji:

sij =
Pr(i|j ) + Pr( j|i)

2N
. (8)

In other words, sij can be considered an average of both Pr(j|i). and Pr(i|j) normalized
by 1/N.

To reduce the dimension, Student’s t-distribution is used, which allows us to fit the
information of high-dimensional data in the low-dimensional embedding space (usually
2 or 3). t-SNE tries to learn a lower d dimensional distribution y, y ∈ Rd that preserves
similarity scores sij as much as possible. A similarity score for y might be defined as Q,
qi = qji: [23]

Qij =

(
1 +

∥∥yi − yj
∥∥2

)−1

∑k ∑l 6=k

(
1 + ‖yl − yk‖2

)−1 . (9)

t-SNE uses the metric of the Kullback–Leibler divergence (KL-divergence) to compare two
distributions. In a short sentence, one finds the d-dimensional distribution Q minimizing
the KL-divergence between itself and the original k-dimensional distribution S [25]:

argminQKL(S||Q) = argminQ∑i!=j sijlog (
sij

Qij
). (10)
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2.6. Dimensionality Reduction for NS/SC

Because, in this project, we split the classification into two subsets, we applied two
different dimensionality reduction methods to them. After visualizing the t-SNE and PCA
dimensionality reduction method, the results of which are shown in graphs, we observed
that data for NS/SC are much more nonlinear than AD/SQ (see the Results section). Thus,
for NS/SC classification, we applied the t-SNE dimensionality reduction method. Results
are presented below in the Results section. t-SNE will first compute a probability matrix
pij for the original data and then another probability matrix qij in the lower dimension,
minimizing the KL divergence between two distributions. In contrast to the linear PCA
method, t-SNE calculates a nonlinear lower dimensionality representation of the original
high-dimensional space. Therefore, we ran an t-SNE dimensionality reduction method for
NS/SC classification.

2.7. Dimensionality Reduction for AD/SQ

After visualizing the t-SNE and PCA dimensionality reduction method results on
the graphs shown in the Results section, we observed that both NS/SL and AD/SQ were
nonlinear, so we applied t-distributed stochastic neighbor embedding (t-SNE). Compared
to the PCA method, t-SNE subjects the data to nonlinear transformation and selects features
from eigenvectors of the linear co-variance matrix. In effect, for AD/SQ, we used the t-SNE
reduction method.

2.8. Design for the Neural Networks

In the second step, for each classification (NS/SC and AD/SQ), we applied a three-
layer deep neural network (DNN) classifier shown in Figure 3, and each layer has 300,
400, and 300 neurons, respectively. The numbers of neurons are optimized using the grid
search technique. Grid searches explore all possible combinations of numbers of neurons
in each layer and return the combination with best accuracy performance. The neural
net was connected in the simple feedforward fashion and there are no backward edges
unlike long short-term memory (LSTM) networks (Figure 3). We used Adam optimizer to
train our neural networks for faster convergence instead of the stochastic gradient descent
method [26].
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2.9. Hyperparameters

In this project, we performed a grid search to select the best hyperparameters. The
following table gives the selected hyperparameters. We included a 0.5 dropout rate to
overcome overfitting. A dropout of 0.5 means that each neuron and its connections will
have a 50% rate to be randomly excluded in the calculation. As a result, the overall
neuron network will be a statistical average of a set of sampled nets. Instead of the
stochastic gradient descent (SGD) approach, herein, we used the Adam optimizer, the
extended version of SGD [26]. Adam computes the bias-corrected two-moment estimates
and accordingly updates the parameters of the neural network. Compared to the SGD
method, Adam gives a much faster convergence. We used a relatively medium learning
rate (0.01) and let it exponentially decay. After each step s, the learning rate will multiply
by the decay rate 0.96 before it reaches a maximum of decay steps of 10,000. The formula
for the learning rate lr is

lr =
{

0.01× 0.96s 0 ≤ s ≤ 10000
0.01× 0.9610000 s ≥ 10000

(11)

Exponential decay allows our neural network to converge faster because initially
a relatively large learning rate is desired to accelerate the training and, in the end, a
smaller learning rate is desired; so that a stable result will be obtained|. The rest of our
hyperparameters are listed in Table 1.

Table 1. Hyperparameters for neural network.

Hyperparameter Value

Number of neurons NS/SC [300, 400, 300]
Number of neurons AD/SQ [300, 400, 300]
Dropout rate 0.5
Optimizer Adam
Decay Exponential decay
Decay rate and decay steps 0.999, 10,000
Learning rate 0.01
Epochs 500

3. Results

Using MetaboAnalyst, we found the most significant pathways for each type of lung
cancer, which are illustrated in plots of Figure 4.

3.1. Important Pathways for Lung Cancers
3.1.1. Important Pathways for Non-Small-Cell Lung Cancers

The synthesis and degradation of the ketone bodies pathway provides an energy
source for the cell [27] (Figure 4A). When fatty acids are broken down, these produce a
water-soluble byproduct called ketone bodies. Tumor cell proliferation and immune system
response require massive energy, and therefore, a ketone body will be generated from the
β oxidation of fatty acids to provide energy for cancer cells. Recent positron emission
tomography research shows that an anticancer immune response from macrophage cells
will consume more glucose and trigger beta-oxidation when glucose is insufficient [28].
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3.1.2. Important Pathways for Adenocarcinoma Lung Cancers

The glycerophospholipid metabolism pathway (Figure 4B) helps create the cellular
membranes, which hold the organelles of the cell [29]. The glycerophospholipids are
valuable in creating the lipid bilayer in all cells. This pathway is vital as cancer cells need
to increase the synthesis of glycerophospholipids to meet the standards for membrane
production [30].

Glutathione (GSH) is the most abundant antioxidant used to detoxify the cells of
carcinogens and radicals [31]. Excessive GSH promotes tumor progression and metastasis
because GSH will protect tumor cells from oxidation in rapid tumor cell proliferation [32].

3.1.3. Important Pathways for Squamous Cell Lung Cancers

The pantothenate and CoA biosynthesis pathway (Figure 4C) is valuable for a variety
of reasons in the cell. Pantothenate, or vitamin B, is the precursor for the synthesis of
CoA [33]. CoA itself is valuable for cell growth as it is involved in many metabolic pathways
like the synthesis of phospholipids and the synthesis/degradation of fatty acids [33]. Since
this pathway deals with the synthesis/degradation of fatty acids, the pantothenate and
CoA biosynthesis pathway could be vital for cancer cells to generate the necessary energy
to survive.

The methionine and cysteine pathway (Figure 4C) comprises sulfur-containing amino
acids that are critical to the production of significant protein structures and metabolism
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in the cell [34]. Cancer cell proliferation requires proteins containing disulfide bonds and
methionine is an essential precursor for disulfide bonds.

Alanine, aspartate, and glutamate metabolism (Figure 4C) constitute an important
pathway producing the three amino acids. Alanine is an important precursor for the
breakdown of tryptophan and vitamin B6. Alanine is also broken down for energy in
muscle and in the central nervous system. Glutamate is a neurotransmitter that helps send
signals from one nerve cell to the next nerve cell. Aspartate is a valuable metabolite for
preserving the membrane potential in the mitochondria needed to produce energy for the
cell [35]. All three metabolisms are required by cancer cells to provide enough energy for
tumor cell growth.

3.1.4. Small-Cell Carcinoma Pathways

Aminoacyl-tRNA biosynthesis (Figure 4D) is an important pathway that creates
aminoacyl-tRNA, which helps convert the genetic code of mRNA into an amino-acid
chain for the production of protein [36]. The aminoacyl-tRNA biosynthesis pathway helps
cancer cells create proteins necessary for the survival of that cell [36].

3.2. Dimensionality Reduction

In this section, we visualize the results obtained with both t-SNE and PCA dimension-
ality reduction methods (Figures 5 and 6). Our analysis showed that the NS/SC dataset
is much harder to classify than the AD/SQ dataset. In other words, the NS/SC data are
more nonlinear than those in the AD/SQ dataset, and therefore, we applied the linear
transformation method, PCA, on the AD/SQ dataset for dimensionality reduction, and the
nonlinear method, t-SNE, on NS/SC for dimensionality reduction.

3.3. Metrics

In the Methods section, we included two validation methods: 5-fold cross-validation
and independent dataset validation. A 5-fold cross-validation divides the whole dataset
randomly into five folds. It uses four of them (80%) for training and one of them (20%) for
testing. In contrast, an independent dataset validation method uses all the original data for
training and an independent dataset, which comes from different papers, for testing.

In Tables 2 and 3, we included test accuracy for the first-step NS/SC classification,
the second-step AD/SQ classification, and the overall accuracy. The overall accuracy is
calculated using the following formula:

Overallacc = SC%× NSSCacc + NS%× NSSCacc × ADSQacc, (12)

where Overallacc is the overall accuracy; NS% and SC% are the percentage ratios of the
numbers of non-small- and small-cell carcinoma cases to the total number of in our data
NSSC%, respectively.

Table 2. Cross-validation results for t-SNE and PCA dimensionality reduction methods.

Dimensionality
Reduction Algorithm

First Step: NS/SC
Classification Accuracy

Second Step: AD/SQ
Classification Accuracy Overall Accuracy Naïve Multiclass

Classifier

t-SNE 0.962 ± 0.04 0.911 ± 0.04 0.920 ± 0.096 0.76
PCA 0.923 ± 0.01 0.846 ± 0.09 0.852 ± 0.063 0.76

Table 3. Independent data test results for t-SNE and PCA dimensionality reduction methods.

Dimensionality
Reduction Algorithm

First Step: NS/SC
Classification Accuracy

Second Step: AD/SQ
Classification Accuracy Overall Accuracy Naïve Multiclass

Classifier

t-SNE 0.952 ± 0.03 0.895 ± 0.03 0.902 ± 0.071 NA
PCA 0.882 ± 0.03 0.842 ± 0.02 0.812 ± 0.061 NA
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Figure 5. Three-dimensional visualization of the PCA and t-SNE components after dimensionality
reduction (A): 3-component PCA method for NS/SC classification; (B): 3-component PCA method
for AD/SQ classification; (C): 3-component t-SNE method for NS/SC classification; and (D): 3-
component t-SNE method for AD/SQ classification.

Our overall accuracy comprises two parts: the NS/SC part and AD/SQ part. Because
of the tree structure shown in Figure 2, the AD/SQ classification is a child of NS/SC
classification, and therefore, their accuracy will be a product of NSSCacc × ADSQacc.

The percentages of NS and SC are used to obtain the weighted overall accuracy. In our
dataset, 48.7% of NS and 51.3% are SC. ADSQacc is the accuracy for AD/SQ classification
and ∑ NSSCacc is the accuracy for NS/SC classification.

The last column showed the accuracy of using a naïve multiclass classifier, which
directly classifies all four categories: SC, AD, SQ, and SC.

In Table 2, it is demonstrated that both t-SNE and PCA dimensionality reduction meth-
ods give a higher accuracy than the multiclass classifier (0.920 ± 0.096 and 0.852 ± 0.063
compared with 0.76) and t-SNE gives the highest overall accuracy. In Table 3, we decided to
add a different dataset, which includes fatty acid metabolites along with our original data
from Table 2, to see whether our model could be generalized to other types of metabolites.

In addition to the cross-validation results shown in Table 2, Table 3 represents further
results after running independent test sets on our model. This was performed to test the
generalizability of our model. In Table 3, one can observe that accuracy does not drop
significantly after including a dataset with fatty acid metabolites. This shows that our
model is independent of the metabolite polarity. The overall accuracy only drops from
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0.920 ± 0.096 to 0.902 ± 0.071 using the t-SNE dimensionality reduction and drops from
0.852 ± 0.063 to 0.812 ± 0.061 for PCA dimensionality reduction. Table 3 also concludes
that t-SNE is a better dimensionality reduction method for metabolite-based lung cancer
classification.

Metabolites 2023, 13, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 6. Two-dimensional visualization of PCA and t-SNE components after dimensionality re-

duction (A): 2-component PCA method for NS/SC classification; (B): 2-component PCA method for 

AD/SQ classification; (C): 2-component t-SNE method for NS/SC classification; and (D): 2-compo-

nent t-SNE method for AD/SQ classification. 

3.3. Metrics 

In the Methods section, we included two validation methods: 5-fold cross-validation 

and independent dataset validation. A 5-fold cross-validation divides the whole dataset 

randomly into five folds. It uses four of them (80%) for training and one of them (20%) for 

testing. In contrast, an independent dataset validation method uses all the original data 

for training and an independent dataset, which comes from different papers, for testing. 

In Tables 2 and 3, we included test accuracy for the first-step NS/SC classification, the 

second-step AD/SQ classification, and the overall accuracy. The overall accuracy is calcu-

lated using the following formula: 

���������� = ��% × ������� + ��% × ������� × �������  , (12)

where ����������  is the overall accuracy; ��% and ��% are the percentage ratios of the 

numbers of non-small- and small-cell carcinoma cases to the total number of in our data 

NSSC%, respectively.  

Figure 6. Two-dimensional visualization of PCA and t-SNE components after dimensionality re-
duction (A): 2-component PCA method for NS/SC classification; (B): 2-component PCA method
for AD/SQ classification; (C): 2-component t-SNE method for NS/SC classification; and (D): 2-
component t-SNE method for AD/SQ classification.

4. Discussion

Compared with the naïve multiclass classifier (the test accuracy was below 70%), our
method achieves significant improvement. By dividing them into several binary classifiers,
each classifier achieves more than 90% accuracy and gives 92% overall accuracy. This
significantly outperforms multiclass classifiers.

An observation in the Section 3 shows that the accuracy does not drop significantly
after including additional fatty acids’ metabolites. This shows that our model can be
further explored by datasets formed by various metabolites. Due to the limitations of our
experiments, we could not test all metabolites related to lung cancers, but we believe that
such a comparison between Tables 2 and 3 is a good start. We will try to explore more
metabolites in the future to see whether there are any possible improvements or constraints
of our model. In the original dataset, metabolites focused on amino-acid biomarkers such
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as tryptophan, methionine, and proline, while other independent test sets included more
fatty acid-derived molecules.

We hypothesize that the difference in molecular weight and density generated molec-
ular descriptors with different values that were not representative of our training data.
Although there is such a huge difference in molecular descriptors, our model performs
reasonably well on both. It will be interesting to observe how this model behaves on other
metabolites such as nucleic acids.

Why Is a Tree Structure Needed?

In this study, we proposed a novel architecture for the classification of lung cancer
types combining the idea of hierarchical classification with that of a neural network. Neural
networks and hierarchical classification have been widely used in cancer classification. We
were inspired by Cerri’s and colleagues’ study of local hierarchical multiclass classification
(HMC) and used this idea in cancer classification [37]. According to our knowledge, this is
the first attempt to apply hierarchal multiclass classification on cancer metabolomics data.
Since this was our first attempt, we chose a relatively simple two-stage task classifying
adenocarcinoma (AD), squamous cell carcinoma (SQ), and small-cell carcinoma lung (SC)
cancers. The first stage classifies cancers as either NS or SC and the second stage further
classifies the NS class into the AD and SQ subclasses (Table 4).

Table 4. Single multiclass classifier vs. two-stage classifiers.

Single Multiclass Classifier Two-Stage Classifiers

Best Overall Accuracy 0.760 0.920

Advantage
k Less computation
k Easy to implement

k More accurate
k Sensitive to local properties

Disadvantage
k Less accurate (in cases of

lung cancer dataset)

k More accurate (in cases of
lung cancer dataset)

k Computationally expensive
k Error propagation

Compared to traditional methods, which exclude hierarchical classification, our
method splits a challenging multiclass task into smaller tasks and gives several advantages.
First, the two-stage classifier is more accurate in the scenario of lung cancer classification.
This benefit comes from the fact that lung cancers are not disjoint categories but biologically
correlated with each other. Such a “divide and conquer” strategy allows our method to
give much more accurate classification compared to traditional single multiclass classifier
shown in Table 4.

The second advantage for two-stage classifiers is that they are “sensitive to local
properties”. In other words, it is much easier to interpret which features are more important.
A single multiclass classifier usually generates a complex matrix or tensor of weights that
make it easy for human beings to understand the significance of each feature. In the case of
a two-stage classifier, because each task is a very simple binary classifier, it is much easier
to know which descriptors contribute the most. This advantage can help us relate to the
machine-learning black box with biological metabolisms.

However, the main disadvantage of a two-stage classifier is that it is more computa-
tionally expensive than a single multiclass classifier. We have to train and test a cascade of
neuron networks rather than a single neural network. Another main disadvantage is called
error propagation, which means that errors made in the parent classifier will also contribute
to its children. In our case, if we make a mistake in NS/SC classification, this will also affect
our AD/SQ classification. However, in terms of overall accuracy, our two-stage classifier
still has a much higher value than a single multiclass classifier. This means that the tradeoff
is worthwhile in the case of lung cancer classification.
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5. Future Work

In the cancer classification problem, we divided the whole task into several homoge-
neous classification subtasks and proposed a tree structure of neural networks to solve
this problem. Such a strategy can be used to solve more complex data that may include
multiple stages. We are also interested in other cancer classification problems without prior
histopathology.

6. Conclusions

In this paper, we can diagnose the lung cancer type based upon patients’ metabolite
profile. In our pipeline, we characterized metabolites by their molecular descriptors and
then performed feature extraction and dimensionality reduction. We divided multiclass
lung cancers into several binary classifiers, where each classifier is a small neural network.
Our model achieves an overall test accuracy of 92.0%. Each classifier has more than 90%
accuracy. Our two-stage classifier significantly outperforms the traditional naïve multiclass
classifier by more than 14%.
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