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Abstract: Generalized anxiety disorder (GAD) is a prevalent disorder. The search for biomarkers may
contribute to new knowledge about molecular pathogenesis and treatment. Since oxidative stress
and micronutrient imbalance play a key role in the development of mental disorders, we aimed to
study salivary antioxidant capacity and magnesium in patients with GAD in an anxiety model of
solving problems with increasing complexity. The study subgroup consisted of 15 patients with GAD,
and 17 healthy volunteers of the same age made up the control subgroup. Participants took a test
with six levels of difficulty, which included false feedback. In this test, the participants were asked to
remember the colors of balloons and react when the color changed. The reaction time, the number of
correct answers, as well as biochemical parameters such as the antioxidant capacity of saliva and
salivary magnesium, were assessed. There was no difference in the results of the quest between the
subgroups; however, anxious participants spent more time at the moment of experimental frustration
due to incorrect feedback and additional negative psycho-emotional load. Antioxidant capacity
did not differ between the subgroups both before and after the experimental session. Average
antioxidant capacity also did not change significantly at the endpoint of the experiment. However,
the endpoint antioxidant capacity correlated negatively with the reaction time in anxious patients in
the second block (where the false feedback as a frustrating factor appeared). Magnesium was initially
significantly higher in the group of anxious participants and decreased at the experiment endpoint;
in healthy patients, there were no changes in salivary magnesium at the endpoint. In conclusion, the
compensatory potential of oxidative metabolism and magnesium in patients with GAD was spent
with additional psycho-emotional stress, in contrast to healthy individuals, but it was sufficient to
avoid exhaustion during experimental frustrating exposure.

Keywords: salivary antioxidants; salivary magnesium; generalized anxiety disorder; problem-solving
model of anxiety

1. Introduction

Generalized anxiety disorder (GAD) is a mental disorder that is often poorly diag-
nosed and treated [1]. This illness is especially common among young people and is
associated with other mental and somatic disorders [2]. GAD is diagnosed primarily based
on symptoms and does not have specific laboratory tests because of a lack of knowledge
on biomarkers. There are several studies on the morphology and biochemistry of GAD, but
they are scattered and clearly not sufficient and have not yet been translated into clinical
practice. To date, the main morphological biomarkers are obtained from neuroimaging
studies, including various variants of magnetic resonance imaging (MRI), positron emis-
sion tomography/single-photon emission computed tomography, and proton magnetic
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resonance spectroscopic imaging methods [3–5]. As for the biochemical analysis, plasma is
mostly used as it contains certain brain metabolites that penetrate the blood–brain barrier
and can be quantified for proteomic and metabolomic analyses. There are only a few studies
devoted to the investigation of molecular biomarkers in blood. Among them, measuring
serotonin-related biomarkers have found to be decreased, in contrast to other anxiety
disorders [6]. After a stressful test, there was no serious imbalance in the metabolism of
the hypothalamus–pituitary–adrenal axis in male patients with GAD, and cortisol plasma
levels did not change [7].

Challenge tests to provoke anxiety are another approach to study the biomarkers of
GAD. Almost all works are aimed at studying cortisol and changing it during treatment,
while the results are contradictory and do not allow a clear picture to be formulated.
The administration of 7.5% CO2 did not significantly affect the cortisol in saliva in GAD
patients [8]. As for neurotrophic factors, it seems that they are not significant in GAD, or
information about them is contradictory [9]. Among inflammation biomarkers, several
studies demonstrated an increase in C-reactive protein in GAD [10]. Interleukin 10 and
α-melanocyte-stimulating hormone were increased in patients with GAD [11]. GAD was
associated with an increased inflammatory index [12]. An interesting study was performed
on the characteristics of the microbiome in GAD, which has diagnostic and therapeutic
significance [13]. Overall, more studies on biochemistry are needed to provide a biological
basis of pathogenesis and treatment of GAD.

The metabolism of reactive oxygen species (ROS) is basic for animals and humans.
Low levels of ROS are necessary for physiological functioning, but in many pathologies,
the balance shifts mainly towards an increase in ROS (oxidative stress). Studies of oxida-
tive balance in GAD are extremely scarce. An increased lipid hydroperoxide level and
decreased paraoxonase activity in serum were demonstrated elsewhere [14]. A decreased
serum sulfhydryl level was observed in pure GAD patients, which indicates the redox
disbalance [15]. The total antioxidant status and oxidative stress index in blood were
assessed to prove oxidative stress in GAD pathophysiology [16]. Prolidase activity was
increased in GAD patients [17]. Nitrosative stress and lipid oxidative stress along with
lowered lipid antioxidants were demonstrated along with increased uric acid levels [18,19].
Another study revealed an increased level of malondialdehyde, and immunoglobulins, and
decreased amounts of antioxidant vitamins A, C, and E [20].

Magnesium is an element that affects the functioning of the central nervous system.
Stress depletes magnesium, and low micronutrient levels lead to stress [21]. Graphite
furnace and flame atomic absorption spectroscopy were applied to quantify concentrations
of trace elements (Zn, Cu, Mn, and Fe), Ca, and Mg in serum [22]. Serum Zn was signifi-
cantly decreased while Cu, Mn, and Fe were significantly increased. The differences in the
concentrations of Ca and Mg were not significant. On the other hand, there is evidence of
the efficacy of a dietary supplement with magnesium on adjustment anxiety disorders [23].

Metabolomics studies unique chemical metabolites (metabolite profiles) in biological
samples. Metabolite profiles are a kind of ‘bertillonage’ of physiological or pathological
states that can provide reliable diagnostic information. Among other bioanalytical fluids,
saliva is now recognized as an excellent diagnostic medium as it contains many infor-
mative metabolites [24]. Like blood, saliva contains many components such as proteins,
antibodies, enzymes, mRNAs, DNAs, hormones, microelements, and other metabolites
that are pathogenetically associated with the disease [25]. Since the collection of saliva is
completely painless and non-traumatic, it does not cause stress, which is very important
when studying the metabolism in mental illnesses such as anxiety disorder. As an analytical
object, saliva has the advantage of not coagulating. Recent and potential developments of
saliva in diagnostics in metabolomics are described in numerous reviews [24,26,27]. They
emphasized that the saliva metabolome can be used not only in the diagnosis of diseases
of the oral cavity, but also in systemic diseases. The saliva metabolome gives valuable
information for the diagnosis of periodontal diseases [28], oral cancer [29–31], and cancer
of the gastrointestinal tract [32].
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A specific feature of saliva is the fact that it also reflects the local situation in the oral
cavity. Due to salivary antioxidant substances, saliva plays a certain role in preventing
and/or modulating ROS imbalance and inflammation in the oral cavity as it is, among
others, a first line of defense against oxidative stress [33]. To date, several methods have
been developed for assaying the antioxidant activity of saliva. However, when studying
the antioxidant status of saliva, there are certain influencing factors regarding food intake,
gender, smoking, oral hygiene, and oral pathologies [34]. Unstimulated saliva normalized
by flow rate is preferable to measure the salivary antioxidant status [35]. The total antioxi-
dant capacity is a reliable indicator of the antioxidant salivary potential correlating with
the blood antioxidant potential, which depends primarily on the content of uric acid [36].

State-of-the-art methods for the analysis of salivary magnesium are presented in the
review [37]. Inductively coupled plasma mass spectrometry is the most reported method
for detecting ions in saliva; flame atomization atomic absorption spectroscopy is also
frequently used. The concentrations of magnesium ions obtained in numerous studies
differ quite strongly, in some cases by an order of magnitude. The authors attribute this to
differences in the procedures for the collecting, storing, and sample preparation of saliva
samples in different studies. Data on the concentration of magnesium in saliva in healthy
individuals differ significantly (Table 1).

Table 1. Concentration of salivary magnesium in healthy people.

Reference Method Salivary Mg, mg/L

[38] Inductively coupled plasma mass spectrometry 8.23 ± 3.78
[39] Inductively coupled plasma mass spectrometry 6.31 ± 0.59
[40] Flame atomic absorption spectroscopy 10.24 ± 3.49
[41] Atomic absorption spectroscopy 0.81 ± 0.001
[42] Inductively coupled plasma mass spectrometry 1.46 ± 0.83
[43] Flame atomic absorption spectroscopy 7.3 ± 1.7
[44] Microwave plasma atomic emission spectroscopy 7.6 ± 0.2

This study Electrothermal atomization atomic absorption spectroscopy 7.6 ± 2.1

In sum, the available studies on the study of biomarkers in GAD are fragmentary and
few. Without a doubt, the list of relevant biomarkers can and should be expanded. New
biological insights could help in improving diagnoses and developing new biomarker-
based treatments of GAD. Here, we studied the antioxidant capacity of saliva and salivary
magnesium in patients with GAD in a problem-solving model of anxiety. As far as we
are concerned, to date, no such studies have been conducted. We have selected an anxi-
ety model of problem solving with increasing complexity in GAD patients and healthy
volunteers. Incorrect feedback has been used as a frustrating factor for an additional
psycho-emotional load. Behavioral parameters and changes in the antioxidant potential of
saliva and salivary magnesium were studied in comparison with the healthy control group
(Figure 1).
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2. Materials and Methods
2.1. Participants

In total, 17 healthy right-handed subjects and 15 right-handed patients with generalized
anxiety disorder (GAD—F41.1 by International Statistical Classification of Diseases (ICD-10))
participated in our study (Table 2). The group of patients included only individuals who
achieved remission longer than two months ago and did not apply any medications.

Table 2. Age, gender, and psychometric scores in studied cohorts; the data are mean± standard deviation.

Participants Age Gender TMAS 1 ESS 2

Control group 30.2 ± 10.1 f = 10; m = 7 11.2 ± 5.8 8.7 ± 3.2
Generalized

anxiety disorder
28.1 ± 9.3
p = 0.69 f = 9; m = 6 33.7 ± 7.4

p < 0.0001
8.2 ± 4.2
p = 0.78

1 Taylor’s Manifest Anxiety Scale—50 item version. 2 The Epworth Sleepiness Scale.

Exclusion criteria were as follows: aged younger than 20 and older than 50, menstrual
cycle phase, oral contraceptive administration, previous neurological or other psychiatric
history (other than F40–41), pregnancy, and treatment with antidepressants and anxiolytics
on the moment of the study. No epileptic activity was registered in the electroencephalo-
grams during the study. All participants had signed the informed consent for research
document indicating their willingness to participate in the study. The study took place in
the years of 2021–2022.

2.2. Questionnaires

After signing the informed consent form, study participants completed the Epworth
Sleepiness Scale (ESS) [45] to exclude people with excessive daytime sleepiness (higher
than 13 points). Taylor’s Manifest Anxiety Scale (TMAS, 50 item version) [46] was used
to measure the level of personal anxiety in both groups. The ‘Wellbeing. Activity. Mood’
Questionnaire (WAM) [47] is a Russian-developed questionnaire to assess the current state
of a person. Before recording the main experimental series, the task was explained to the
participants. Next, a practice training was held as many times as needed for the participant.
Only when the task was understood completely, and all tests were performed correctly,
did the main experimental session start. After the experimental session, the participants
completed the WAM Questionnaire once more (Figure 2).
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Figure 2. The schematic presentation of experimental steps; EES is the Epworth Sleepiness Scale;
TMAS is Taylor’s Manifest Anxiety Scale; WAM is the ‘Wellbeing. Activity. Mood’ Questionnaire.
The reward at the final stage of the test depended on the number of correct answers.

2.3. Stimuli and Protocol

The stimuli have previously been tested elsewhere [48–50].
The task had six levels of difficulty. Each participant was presented with pictures

of balloons of assorted colors. Green and blue colors were the background ones. All
other colors (pink, yellow, red, brown, orange, purple, and grey) were part of the task.
The participants were to remember the colors of the balloons. If the color changed in the
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presentation of the next stimulus, they should press the ‘2’ button. If the color remained
the same, the participants should press the ‘1’ button.

The difficulty level was determined by the number of balloons that changed color. At
the first level of difficulty, only one balloon could change color. Thus, the participant had to
memorize only one color. At the sixth level of difficulty, six colors had to be remembered.

The instruction for the participants was as follows: “Pictures with balloons of different
colors will appear in front of you. You will need to compare the picture with the previous
one and answer if the colors match. All colors are part of the game except blue and green.
If you see all blue or all green balloons, you do not need to answer. Pictures will appear
for a brief time. Try to answer as accurately and quickly as possible. If the colors match,
press key ‘1’; if they differ, press key ‘2’. Balloons of the same colors are a signal that the
level is over, and you will be asked to evaluate how well you coped with the task. In this
game, the position of the balloons is not important, only the colors matter. If you answer
correctly, a happy emoticon appears, if incorrectly or if you did not have time to answer
within three seconds, a sad emoticon appears. At the end of the game, you will receive
250 rubles regardless. The more correct answers, the higher the winnings. The maximum
additional win is 750 rubles”.

The main experimental series consisted of three blocks (first, second, and third block).
Each block consisted of six difficulty levels. Each level consisted of 17 trials. In total, there
were 102 trials in the first and the second blocks: 6 trials, in which the first balloon picture in
each level had to be memorized but not reacted to; 49 trials in which the balloon picture did
not match the previous one, requiring key ‘2’ to be pressed; 41 trials in which the balloon
picture matched the previous one, requiring key ‘1’ to be pressed; and 6 trials in which a
picture with either blue or green balloons at the end of each level signaled completion of
the level, and no response was required. The second block differed from the first and the
third blocks. The architecture was the same, but starting from the third level, participants
were given the wrong feedback (a sad emoticon as if they made a mistake even though
they were correct). In total, there were 20 trials with the wrong feedback. The duration of
presentation of the feedback emoticon (size 20.3◦ × 13.6◦) was 1 s. Each block was followed
by a 30 s rest, during which the subject could remove his head from the chin rest and move.
The block scheme of the experimental study is presented in Figure 3.
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the ‘Same’ point is when colors did not differ; ‘s’ means seconds. In Blocks 1 and 3, the participants
were given correct feedback. In Block 2, the participants were given wrong feedback at the 3rd level
in some trials.
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2.4. Behavioral Data

The times taken to complete each trial (the time from the appearance of the balloon
picture to pressing a key to answer), each block, and each level were analyzed separately.
The data were obtained using EyeLink Experiment Builder 2.3.1 (Mississauga, ON, Canada:
SR Research Ltd., 2020). The reaction time (RT) and the numbers of correct and incorrect
answers were counted after the completion of the experimental session, and the corre-
sponding reward was given to the volunteer at the end of the experiment. The amount of
winnings was calculated by the number of correct answers and was considered as one of
the indicators of the success of solving problems.

2.5. Saliva Sampling

We analyzed non-stimulated saliva collected by spitting for 15 min before and after the
experimental session. All tests and samplings were performed on an empty stomach from
10.00 a.m. to 13.00 a.m. The participants did not drink alcohol or caffeine-containing drinks
from 20.00 p.m. on the day before the experiments. Two hours before the experiment, the
participants brushed their teeth and did not drink any more after that. Before spitting, the
participants pre-rinsed their mouths with cool still water. The volume of saliva collected
was at least 1.5 mL. After centrifugation for 15 min at 2000× g, the samples were divided
into two parts. A part of 600 µL was used for the assessment of antioxidant capacity during
a day. The rest of the sample was frozen at −20 ◦C and used for magnesium quantitation
within 1 month.

2.6. Assessment of Salivary Antioxidant Capacity

A 12-channel Lum-1200 chemiluminometer with PowerGraph 3.3 Professional soft-
ware (DISoft, Moscow, Russia) was used for the experiments. The salivary antioxidant
capacity was assessed using a chemiluminescence protocol [51]. The chemiluminescent
system consisted of 2,2′-azobis (2-amidinopropane) dihydrochloride (ABAP, Sigma-Aldrich,
St. Louis, MO, USA) as a source of ROS and luminol (Sigma-Aldrich, St. Louis, MO, USA).
The chemiluminescence reagent contained luminol (1 mmol/L) and ABAP (50 mmol/L) in
a phosphate buffer solution (100 mM KH2PO4, pH 7.4, Sigma-Aldrich, St. Louis, MO, USA).
After a cuvette with the chemiluminescence reagent was heated to 37 ◦C, the initial chemilu-
minescence was recorded and an aliquot of saliva (200 µL) was added. Chemiluminescence
was recorded until the new stationary signal was achieved (Figure 4). The antioxidant
potential was calculated as a latency time (tlat), which is the time from the addition of saliva
to the intercept on the x-axis tangent to the area of maximum rise (Figure 4). Mean values
of the antioxidant capacity (tlat) were calculated from triplicate data.

2.7. Quantitation of Magnesium

A magnesium standard solution with a concentration of 50 µg/L was prepared by
diluting the standard with 1000 µg/mL (Inorganic Ventures, Christiansburg, VA, USA),
0.2% nitric acid obtained by diluting concentrated nitric acid, and 0.1% Triton X-100 (Merck,
Darmstadt, Germany). Milli-Q deionized water was used to prepare the solutions (Millipore
Corp., Darmstadt, Germany).

Immediately before the analysis, the samples were kept at room temperature (20–22 ◦C)
until a temperature equilibrium was reached. Each sample was homogenized using a V-3
Vortex shaker (ELMI, Riga, Latvia) for 3 min at 3000 rpm. A 20.0 µL portion of saliva was
taken into a microtube with a dispenser (Eppendorf, Hamburg, Germany), 20.0 µL of con-
centrated nitric acid was added, and the sample was centrifuged for 10 min at 15,000 rpm
using a SM-50 centrifuge (ELMI, Riga, Latvia). Then, the contents of the microtube were
transferred into a 10 mL test tube, and 0.2 wt.% nitric acid and 0.1 wt.% Triton X-100 were
added to obtain a solution volume of 10.0 mL using a dispenser.

An Agilent 240 FS atomic absorption spectrometer (Agilent, Mulgrave, Australia) was
used for determination. Analysis conditions: wavelength, 202.6 nm; sample volume, 10 µL;
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number of replicate measurements, 3; measurement mode, PROMT Height (5.0%). The
temperature program is shown in Table 3.
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Table 3. Temperature program (temperature and duration in seconds of the stage) for atomic
absorption analysis including drying, charring, atomization, and cleaning.

Drying (◦C)/(s) Charring (◦C)/(s) Atomization (◦C) Cleaning (◦C)

95/40 900/8 2200 2200

A calibration function was established with various concentrations of magnesium
(0, 10, 25, and 50 µg/L) obtained by automatic dilution from a stock solution (50 µg/L). The
prepared samples were randomly divided into 5 series (Table 4). The calibration functions
were built after every 12 samples during a daily analysis. Graphite cuvettes have been
used for approximately 300 firings without a loss of sensitivity (decrease in absorbance of
standard solutions) or degradation of the cuvette material.

Table 4. The metrological parameters of magnesium quantitation in the experimental sets.

Experimental Set Limit of Quantitation, µg/L Linear Regression R2 Reproducibility, % Recovery, %

Set #1 2.05 y = 0.0049x + 0.0266 0.9971 5.0 103.16
Set #2 2.05 y = 0.0049x + 0.0275 0.9955 4.5 103.16
Set #3 2.05 y = 0.0049x + 0.0261 0.9975 4.9 103.16
Set #4 2.34 y = 0.0043x + 0.0212 0.9997 3.7 101.48
Set #5 2.34 y = 0.0043x + 0.0235 0.9971 4.2 101.48

The statistical parameters of the analytical method were determined by analyzing the
blank and test solutions. Following the recommendations of the International Union of
Pure and Applied Chemistry, the parameters involved the limit of quantification (LOQ),
linear range, and precision (reproducibility). The LOQ was calculated as 10 s/m, where s is
the standard deviation of 10 consecutive blank results and m is the slope of the calibration
curve. The control sample was a 0.2 wt.% solution of HNO3. The linear range was assessed
by calculating the linear regression coefficient R2. The linearity was considered acceptable
at R2 > 0.995. For all linear functions, the linearity range was limited from above by a
magnesium concentration of 50 µg/L.

Reproducibility was calculated using the relative standard deviation for 10 consecutive
determinations of the selected samples from each series. Recovery (%) was calculated using
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the addition method: 100 c/cad, where c is the found concentration of the element; the
range of values from 90 to 110% was considered acceptable.

2.8. Statistical Analysis

STATISTICA 10 software (StatSoft, Tulsa, OK, USA) was used for the data analysis.
The Shapiro–Wilk test was used to check the normality of a distribution (p ≤ 0.05).

One-way and repeated-measures ANOVAs with Bonferroni correction were used to
determine the level and block the effects of behavioral results with the following post hoc
analysis with Bonferroni correction.

The Mann–Whitney U test was used to calculate group differences of the behavioral
and saliva results. The Wilcoxon matched pair test was used to compare dependent
variables (Table 5). A correlation analysis between behavioral and saliva results was
computed with the Spearman correlation across all subjects and separately for each group
of subjects. The correlations were considered significant if p < 0.05.

Table 5. Statistical analysis methods used for the data analyses.

Method One Independent
Variable Levels Peculiarities of

Samples p-Value Advantages Disadvantages

One-way and
repeated-measures

ANOVA with
Bonferroni test

Yes Two levels
and more Independent Yes

Results are free from
errors of scaling and

constant bias

Not applied for
intercorrelations

Mann–Whitney U test Yes Two levels Independent Yes A simple
non-parametric test

Requires a
number of critical

samplings

Wilcoxon matched
pair test Yes Two levels Dependent Yes

Applies to limited
sample size,

otherwise z-score can
be used

No intrinsic
clarity for the

spread of
shift values

The Spearman’s rank
correlation test Yes Two levels Dependent Yes

The assumption of
normal distribution is

not required

Possibility of
misinterpretation

3. Results
3.1. Behavioral Results

The reaction time increased from the 1st to 6th level both for GAD patients and healthy
volunteers (F(5, 130) = 60,016, p < 0.001). However, the differences between blocks were
significant only in the GAD group (Figure 4). In particular, the reaction time during the 1st
level decreased significantly in patients from the first to third block (p < 0.05, probabilities
for post hoc tests, Bonferroni test), and was significantly lower compared to the control
group (Mann–Whitney U test: z = −2.3, p = 0.03). During the 3rd level of the second
block, when the participants received an incorrect negative response (unhappy emoticon),
the reaction time significantly increased compared to the other blocks only in anxious
patients (p < 0.05, probabilities for post hoc tests, Bonferroni test; Figure 5). This section
may be divided by subheadings. It should provide a concise and precise description of the
experimental results, their interpretation, as well as the experimental conclusions that can
be drawn.

The number of correct answers did not differ between the groups of subjects, both on
average and separately by levels and blocks. The amount of winnings also did not differ
significantly between the groups.
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Figure 5. Average indicators of problem-solving time in anxious patients and the control group
depending on the level and block; “*” denotes significant differences between the blocks of the same
level in the GAD patients; RT is the reaction time.

3.2. Total Antioxidant Capacity

Since the distribution of the antioxidant capacity values was not normal, the data are
presented as median and quartiles Me(Q1; Q3) (Table 6).

Table 6. Salivary antioxidant capacity in the cohorts.

Cohorts Timing Me(Q1; Q3), Min p-Values for GAD vs. Control p-Values for after vs. before

Control group Before the experimental session 44.3 (35.9; 47.0)
GAD patients 37.6 (32.2; 38.2) 0.38

Control group After the experimental session 34.8 (33.1; 35.8) 0.54
GAD patients 37.6 (35.4; 38.6) 0.75 0.86

No significant differences were obtained at the start point between the groups of
controls and GAD patients (the Mann–Whitney test, p = 0.235), although the median in the
GAD patients was slightly lower. At the endpoint, there were also no significant differences
between the groups (the Mann–Whitney test, p = 0.463). When comparing data at the
beginning and end of the experiment, there were no significant differences for the control
group (the Wilcoxon matched pair test, p = 0.248), although there was a trend towards a
decrease in antioxidant capacity. No significant differences were obtained for the GAD
group (the Wilcoxon matched pair test, p = 0.465). Thus, we did not obtain significant
differences between the groups and time points, which may be due to the small number
of subjects in the group. Nevertheless, the high stability of the antioxidant capacity in the
GAD during the experiment draws attention.

3.3. Magnesium Quantitaion

For all samples analyzed, the relative standard deviation (%) was always below 5%.
Since the distribution of magnesium concentrations was not normal, the data are presented
as median and quartiles Me(Q1; Q3) (Table 7).
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Table 7. Concentration of salivary magnesium in the cohorts.

Cohorts Timing Me(Q1; Q3), mg/L p-Values for GAD vs. Control p-Values for after vs. before

Control group Before the experimental session 7.4 (5.3; 7.9)
GAD patients 13.5 (11.2; 14.7) 0.04

Control group After the experimental session 7.4 (5.5; 9.4) 0.88
GAD patients 7.6 (7.4; 8.8) 0.69 0.04

No significant gender differences were found.
Significant differences were obtained at the start point between the groups of controls

and GAD patients (the Mann–Whitney test, p = 0.033). At the endpoint, there were no
significant differences between the groups (the Mann–Whitney test, p = 0.272). When
comparing data at the beginning and end of the experiment, there were no significant
differences for the control group (the Wilcoxon matched pair test, p = 0.888). Significant
differences were obtained for the GAD group (the Wilcoxon matched pair test, p = 0.042).
Thus, the level of magnesium in the saliva of anxious patients was initially higher but
decreased as a result of problem solving. The magnesium level in the control group was
stable during the experiment.

No correlations were found between magnesium and antioxidant capacity.

3.4. Correlation Analysis between Saliva and Behavioral Results

A correlation between changes in the antioxidant capacity of saliva and indicators of
the success of problem solving was found only in patients with anxiety disorder. In healthy
volunteers, no significant correlations were found even at the trend level (p > 0.4). There
was also no correlation between behavioral results and magnesium content.

The decrease in antioxidant capacity significantly correlated with the time to solve
tasks in the second block (levels 3 and 4) in patients with anxiety disorder, when the subjects
began to be given incorrect feedback (r = 0.84, p < 0.001; r = 0.86, p < 0.001). A similar
correlation was observed at the very beginning of problem solving at the first level of the
first block. Only anxious subjects showed a significant correlation between the level of
oxidative stress and time to solve problems (r = 0.74, p < 0.001). Moreover, an increase in
oxidative stress (a decrease in antioxidant capacity) also correlated with the number of
correct answers (r = 0.89, p < 0.001) and the total gain (r = 0.87, p < 0.001) only in patients
with anxiety disorder.

Thus, even though the performance indicators for solving problems did not differ
across the groups (except for the time for solving problems of the first level of the third
block), significant efforts to complete the tasks in a group of patients were accompanied by
oxidative stress.

4. Discussion

Here, we used an anxiety model of problem solving with increasing complexity in
GAD patients and healthy volunteers. Incorrect feedback was used as a frustrating factor for
an additional psycho-emotional load. Behavioral parameters and changes in the antioxidant
potential of saliva and salivary magnesium were studied in comparison with the healthy
control group. The main results can be formulated as follows.

1. There was no difference in the results of the quest (the number of correct answers and
the total reward); however, anxious participants spent more time (the reaction time)
at the moment of experimental frustration due to incorrect feedback and additional
negative psycho-emotional load.

2. There were no significant differences in antioxidant capacity in the groups both before
and after the experimental session. Average antioxidant capacity also did not change
significantly at the endpoint of the experiment. However, the endpoint antioxidant
capacity correlated negatively with the reaction time in anxious patients in the second
block (where the frustrating factor appeared).
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3. Magnesium in saliva was initially significantly higher in the group of anxious partici-
pants and decreased at the experiment endpoint; in healthy patients, there were no
changes in salivary magnesium at the endpoint.

GAD is associated with autonomic nervous system abnormalities. Hormonally,
stress and anxiety have been associated with an increased output of hormones of the
hypothalamic–pituitary–adrenal (HPA) axis. However, the vulnerability of these systems
in GAD is different. Under psychological stress (public speaking), salivary cortisol did
not change, but salivary alpha-amylase (a marker of activation of the autonomic nervous
system) sharply increased [52]. During psychological stress tasks, patients with generalized
anxiety disorder showed a narrower range in heart rate than controls, which suggested
sympathetic inhibition [53]. The possible suppression of adrenergic sympathetic stress
responses in GAD is demonstrated elsewhere [54]. GAD patients displayed enhanced
autonomic-nervous system (but not the HPA axis) activity vs. healthy controls [55]. As
for GAD children, the authors demonstrated a blunted HPA and sympathetic response to
acute stress [56]. Thus, the autonomic nervous system is significantly more vulnerable than
HPA in generalized anxiety disorder.

The antioxidant capacity of saliva is determined mainly by uric acid, as shown by
our studies and other works [36]. The stability of the antioxidant potential of saliva
in the anxiety model and the absence of a difference between the groups indicate the
stability of this part of the antioxidant network, which confirms the previous studies [17].
The authors noted that in patients with GAD, elevated levels of uric acid may serve as
protection against protein oxidation and the formation of aldehydes [18]. HPA stability
also helps maintain a stable oxidative state. However, when an additional frustrating
factor was added (the incorrect feedback), the reaction time increased and the antioxidant
capacity proportionally decreased, which may indicate the consumption of uric acid and
the development of oxidative stress. Indeed, psycho-emotional stress is associated with
oxidative disbalance [57]. Here, we can conclude that the compensatory possibilities of
the metabolism in GAD patients begin to be used up with additional psycho-emotional
stress, in contrast to healthy individuals. Thus, patients with GAD in the normal state are
compensated in terms of non-lipid oxidative stress but are more vulnerable to additional
psycho-emotional stress.

Data on the concentration of magnesium in saliva in healthy individuals differ signifi-
cantly (see Table 1). Our results are consistent with most published data.

Magnesium is a difficult laboratory marker to interpret. This is due to the fact that
ionized serum magnesium makes up a small part of total magnesium, and magnesium,
for example, constantly fluctuates inside red blood cells [58]. That is why there are not
many studies on magnesium homeostasis, but there are significantly more articles on
the effectiveness of nutritional supplements containing magnesium. As an example, a
systematic review examines the available evidence for the efficacy of Mg supplementation
in the alleviation of subjective measures of anxiety and stress [59].

We found no gender-related differences, which is in line with the literature [60].
Magnesium in saliva is a rather stable analyte [61]. For the laboratory determination of
magnesium, saliva is a promising biological sample [62]. Perhaps salivary magnesium
will provide new biological information about its homeostasis, while we rely on the data
obtained from the analysis of magnesium in the blood and urine. Magnesium is primarily
an intracellular cation, and only 2% of magnesium is found in the blood plasma, half
of which is free (ionized magnesium), and the remaining half is associated with anions
and proteins [63]. Much less similar research has been conducted on saliva, but it can be
assumed that magnesium is also present as free and bound species. We centrifuged saliva
samples and analyzed only the liquid part that did not contain cells, determining their total
magnesium (total Mg). Previous studies suggest that magnesium in saliva and plasma
correlate with each other [64]. Thus, by analyzing saliva we can obtain information on
systemic homeostasis. This is important in situations where it is necessary to completely
eliminate the psycho-emotional stress caused by the sampling of biomaterial.
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Magnesium plays an important role in the normal and injured nervous system [21].
The role of magnesium in the biophysics and biochemistry of the nerve impulse is complex
and includes both direct and indirect effects [65]. It is known that hyperexcitability of the
nervous system is associated with magnesium deficiency [65]. On the other hand, increased
activity of the sympathetic nervous system in a stressful situation leads to a decrease
in intracellular magnesium caused by noradrenaline [66]. As discussed above, anxiety
is associated with autonomic nervous system abnormalities, and therefore magnesium
plays a key role. There is a relationship between the disbalance in Mg2+ homeostasis and
pathological anxiety [67]. However, information on serum magnesium in anxiety disorders
is controversial. It has previously been shown that there was no difference in serum
magnesium and calcium concentrations in patients with generalized anxiety depression
and the healthy controls [22]. However, in anxiety, the partial magnesium reduction took
place, associated with a urinary magnesium excretion increase [68]. Magnesium deficiency
enhanced anxiety in mice [69].

In sum, magnesium may be redistributed between the intracellular and extracellular
pools in chronic anxiety. In patients with GAD, as a hypothesis, under the influence of
norepinephrine, magnesium passes from the intracellular to the extracellular space; thus,
intracellular hypomagnesemia is possible in these patients. Similar effects were described
in patients with chronic heart failure [70]. On the other hand, the high level of magnesium
in GAD may be a compensatory mechanism to cope with a decrease in magnesium during
anxiety attacks. In acute psycho-emotional stress, healthy individuals possess the balanced
stress response system, and changes in magnesium homeostasis are not significant. With
acute stress in patients with GAD, the magnesium content decreases, possibly due to
increased urinary excretion [68]. This may be due to vasopressin, which is involved in the
regulation of anxiety reactions [71–73]. Patients with anxiety disorders initially have no
abnormalities in the vasopressin concentration [74]. It is possible that under acute stress
these patients may experience a decrease in vasopressin as an adaptation of HPA to repeti-
tive stress [75,76]. Decreased vasopressin may be associated with increased magnesium
excretion [77]. However, the compensatory capacity of magnesium metabolism in our
patients with GAD was sufficient to avoid depletion under the experimental frustrating
situation. This mechanism needs to be studied further.

In anxious patients, malondialdehyde had a positive correlation between the parame-
ters of oxidative stress with ionized Mg [78]. In a recent study, the authors studied a lipid
oxidative stress marker (malonic dialdehyde) and showed an increase in oxidative stress
and magnesium in patients with anxiety. Thus, ionized Mg and indices of oxidative stress
could be potential biomarkers in anxious and depressive patients. This is consistent with
our findings that GAD patients had elevated magnesium levels. Interestingly, magnesium
levels were reduced in the anxiety model, which is also consistent with evidence that
magnesium deficiency accompanies anxiety. We did not study lipid oxidative stress, but
only the water-soluble part, which is significantly more stable to oxidative load. However,
even the urate part began to be depleted in a high psycho-emotional load.

Overall, magnesium metabolism appears to play a key role in the biochemical mecha-
nisms of GAD, and it has a relationship with the oxidative metabolism. Salivary magnesium
and antioxidant parameters could give useful information in studying the pathogenesis of
GAD and assessing the patients’ condition.

5. Conclusions

We used an anxiety model of problem solving with increasing complexity and in-
correct feedback as a frustrating factor to assess salivary magnesium and urate antioxidant
capacity in GAD patients and healthy volunteers. Compared with the control group,
patients with GAD spent more time to solve the task and were more vulnerable to the
frustrating factor. The concentration of magnesium in saliva in patients with GAD was
higher than in the control group, which can be explained by the influence of hyperactivity
of the sympathetic nervous system and the norepinephrine mediator, which contributes to
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the redistribution of magnesium from cells to the extracellular pool. With psycho-emotional
stress, the magnesium content decreased to the level of values in the control group. Thus,
the compensatory potential in GAD patients was sufficient to avoid exhaustion during
experimental frustrating exposure. The urate antioxidant capacity in patients with GAD
without emotional or physical tension was a stable indicator; however, it decreased with
additional stress caused by the frustrating factor, which indicates a greater vulnerability
of this metabolic part in GAD. We believe that the assessment of salivary magnesium
and antioxidant metabolism has great prospects in studying anxiety disorders. The set of
determined metabolites should be expanded towards other microelements and other parts
of oxidative balance. We also plan to study a new group of patients with GAD in another
model of psycho-emotional stress.

6. Limitations

There are some limitations of the study. The number of participants was small
(17 healthy participants and 15 patients). To avoid the sample size limitation, we attempted
to equalize the target and control groups by their age and gender. Moreover, in our study,
we recruited only right-handed participants. We also carefully balanced the group of pa-
tients. Despite the fact that we recruited only 15 participants, all of them achieved remission
(2–6 months ago) and did not take any medication at the time of the study. In this study,
we collected saliva only two times (before and after the experimental session). Maybe if
we had been collecting saliva after each block, one could see more peculiar changes in the
functioning of the hypothalamic–pituitary–adrenal axis and autonomic nervous system.
Finally, we assessed only a fraction of the water-soluble antioxidant capacity, but the total
antioxidant set includes lipid antioxidants and antioxidant enzymes as well. In future
studies, we plan to add these indicators.
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