
Citation: Ding, Y.; Fan, S.; Tang, Y.;

He, M.; Ren, M.; Shi, Y.; Tao, X.; Lu,

W. The Association between Blood

Lipids and Systemic Lupus

Erythematosus: A Two-Sample

Mendelian Randomization Research.

Metabolites 2023, 13, 27. https://

doi.org/10.3390/metabo13010027

Academic Editor: Giuseppe Paglia

Received: 21 October 2022

Revised: 13 December 2022

Accepted: 21 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

The Association between Blood Lipids and Systemic Lupus
Erythematosus: A Two-Sample Mendelian
Randomization Research
Yang Ding 1 , Shasha Fan 1, Yi Tang 1, Mengjiao He 2, Mingyang Ren 1,3, Yunjuan Shi 3, Xiaohua Tao 1,*
and Wei Lu 1,*

1 Health Management Center, Department of Dermatology, Zhejiang Provincial People’s Hospital,
Affiliated People’s Hospital of Hangzhou Medical College, No. 158, Shangtang Road,
Hangzhou 310014, China

2 Departments of Environmental Health, School of Public Health, Hangzhou Normal University,
Hangzhou 310009, China

3 Graduate School of Bengbu Medical College, Bengbu 233030, China
* Correspondence: taoxiongji41297932@163.com (X.T.); miniluwei@163.com (W.L.)

Abstract: We evaluated the causal effects of blood lipid levels on systemic lupus erythematosus with
a two-sample Mendelian randomization analysis. Independent single-nucleotide polymorphisms
related to blood lipids levels (p < 5 × 10−8) were selected as instrumental variables (IVs) from
a published genome-wide association study (GWAS). SLE GWAS analysis that included 4036 cases
and 6959 controls of European ancestry provided the related roles between instrumental variables
and result (SLE). The causal effects were evaluated with two-sample Mendelian randomization (MR)
analyses. According to the inverse-variance weighted approaches, genes predictive of increased LDL
cholesterol (OR: 1.131; 95% CI: 0.838, 1.528; p = 0.420), HDL cholesterol (OR: 1.093; 95% CI: 0.884, 1.352;
p = 0.412), triglycerides (OR: 0.903; 95% CI: 0.716, 1.137; p = 0.384), Apolipoprotein A-I (OR: 0.854;
95% CI: 0.680, 1.074; p = 0.177), and Apolipoprotein B (OR: 0.933; 95% CI: 0.719, 1.211; p = 0.605)
were not causally related to the risk of SLE, consistent with multivariate Mendelian randomization
analysis. The reverse-MR analyses showed no massive causal roles between SLE and LDL cholesterol
(OR: 0.998; 95% CI: 0.994, 1.001; p = 0.166) as well as Apolipoprotein B (OR: 0.998; 95% CI: 0.994, 1.001;
p = 0.229). Nevertheless, a causal role of SLE in decreasing HDL cholesterol (OR: 0.993; 95% CI: 0.988,
0.997; p = 0.002), triglycerides (OR: 0.996; 95% CI: 0.993, 0.999; p = 0.010), and Apolipoprotein A-I
(OR: 0.995; 95% CI: 0.990, 0.999; p = 0.026) was validated to some extent. Our study found no
causal association between abnormal blood lipids and SLE nor a causal effect between SLE and
LDL cholesterol as well as Apolipoprotein B. Nevertheless, some evidence showed that SLE exerted
a causal effect on lowering HDL cholesterol, Apolipoprotein A-I, and triglyceride levels.

Keywords: blood lipids; systemic lupus erythematosus; Mendelian randomization

1. Introduction

As a prototypical autoimmune disease, systemic lupus erythematosus (SLE) has
characteristics such as chronic inflammation and immune complex deposition in affected
organs [1,2]. It has been estimated that the prevalence of SLE is 30 to 50 patients per 100,000,
equating to about 500,000 patients in Europe, and 90% of SLE patients are women of child-
bearing age [3]. Emerging evidence suggests that the effects of genetic factors, local environ-
ments, and sex hormone metabolism contribute to SLE’s pathogenesis and progression [3,4].

The “lupus pattern” of lipoproteins in SLE has characteristics such as improved
triglyceride and very-low-density lipoprotein concentrations combined with declined
high-density lipoprotein (HDL) cholesterol levels, usually happening in the active stages
of the disease [5]. According to a remarkable outcome, these changes are aggravated
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by disease activity. Growing TG levels and declining HDL cholesterol levels have been
shown to be directly related to SLE disease activity index (SLEDAI) marks, indicating
a lipid profile abnormality in SLE patients [6]. And the potential mechanism of SLE on
HDL and Apolipoprotein A-I could be that responses such as oxidative stress and chronic
inflammation among SLE patients cause changes in HDL particle size, proteomics, and
lipidomics, reducing the effects mentioned above. Although blood lipids exert a great effect
on SLE, the causal association between blood lipid levels and the risk of SLE is still elusive.

As a new approach for instrumental variable (IV) analysis, Mendelian randomization
(MR) identifies the causative relationship between exposure and disease [7] with genetic
variants including single nucleotide polymorphisms (SNPs). Since genetic variation is not
affected by result or confounding status, MR methods can settle the hidden confound-
ing effects and reverse the causality of exposure and result [8]. Furthermore, there is
minimal risk of reverse causality because the disease does not influence the individual’s
genotype [9]. The two-sample MR research design uses genetic data on exposure and result
from large sample sizes of different populations, which improves the test’s effectiveness
and provides a powerful method for estimating the hidden causal effect of the exposure on
the result [10,11].

To this date, no study has attempted to elucidate whether there is a causal relationship
between blood lipids and SLE risk using MR methods. Therefore, the causal relationship
behind this association remains largely unclear. To that end, the published data from a lot
of genetic research studies are collected to explore if blood lipids had a causal correlation
with the risk for SLE with the two-sample methods for MR analysis.

2. Methods
2.1. Data Resources and Study Design

In the present study, summary statistics for low-density lipoprotein (LDL) choles-
terol, triglycerides, HDL cholesterol, and Apolipoprotein A-I and Apolipoprotein B were
acquired from a genome-wide association study (GWAS) from the UK Biobank (UKB) in
393,193 UKB participants of European ancestry [12]. UKB is a very large, population-based
prospective cohort recruiting above 500,000 men and women between 40 and 96 years
old between 2006 and 2010, and their different health-related outcomes have been fol-
lowed long-term [13]. Data for SLE was obtained from a previous meta-analysis of GWAS
with over 10,000 subjects of European ancestry, such as 4036 SLE cases and 6959 controls
(1260 controls of mainly southern European ancestry and 5699 from the University of
Michigan Health and Retirement Study), covering 644,674 markers in total [14]. All cases
satisfied the standard American College of Rheumatology (ACR) classification for SLE
diagnosis. Collectively, this study identified 43 susceptibility loci associated with SLE [14].

Three core assumptions for MR analysis are shown below:

(a) The genetic variant must be strongly related to the exposure [15]. Our analysis
evaluated the strength of the instrument–exposure association (e.g., F statistic > 10 for
the instrument–exposure association) with F statistic [16].

(b) The selected genetic variant should be related to the outcome risk only through
exposure, not via confounders. Herein, the horizontal pleiotropy pathway between
the genetic variant and outcome was identified with MR-Egger regression [17].

(c) The genetic variant should be independent of confounders.

2.2. Selection of Instrumental Genetic Variables

Our major exposure was genetically decided plasma lipids as an instrumental vari-
able based on genetic variation related to the extents of HDL cholesterol, LDL cholesterol,
triglycerides, and Apolipoprotein A-I and Apolipoprotein B at genome-wide significance
levels (p < 5 × 10−8). For no bias of powerful linkage disequilibrium (LD), the SNPs re-
lated to blood lipids had to satisfy r2 < 0.001 thresholds and be located 10, 000 kb apart
from each other [18]. For evaluating whether the SNPs were related to confounding
or risk elements, potentially related traits at genome-wide significance threshold were
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searched for with the PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk/,
accessed on 8 September 2021) [19]. Finally, we selected 112 SNPs as instrument variables
for LDL cholesterol, 262 SNPs for HDL cholesterol, 213 SNPs for triglycerides, 198 SNPs
for Apolipoprotein A-I, 133 SNPs for Apolipoprotein B, and 45 SNPs for SLE.

2.3. Statistical Analysis

The potential causal associations between blood lipids and SLE in two populations,
respectively (Figure 1), were evaluated with two-sample MR analysis. The correlation be-
tween blood lipids and the risk of SLE was evaluated by making the primary analyses with
the inverse-variance weighted (IVW) approach. IVW approach was adopted as the primary
MR analysis, requiring all selected SNPs to be effective IVs [20]. Complementary analyses,
including the weighted median method [21], maximum likelihood [22], robust adjusted
profile score (RAPS) [22], and MR-Egger method [21], were performed to complement IVW.
In consideration of the genetic and phenotypic correlation of lipid attributes, as previously
disclosed, the roles of various lipid traits in SLE were assessed with multivariable IVW
and a linear regression method. Heterogeneity among the estimates from each SNP was
assessed with Cochran’s Q test. A fixed-effects model was adopted when there was no sta-
tistically significant heterogeneity; otherwise, more conservative estimates were provided
with the random-effects model [23].
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We first assessed potential pleiotropic effects with MR-Egger regression in the sensitiv-
ity analysis. The MR-Egger regression dealt with regression dilution bias, and the mean
level pleiotropic role of all genetic variants could be explained by the intercept term [17].
Moreover, we identified outlier variants for removal to rectify hidden directional horizontal
pleiotropy and solve detected heterogeneity with the MR pleiotropy residual sum and
outlier (MR-PRESSO) global test [24]. A leave-one-out sensitivity analysis was also made
to further assess the independent validity of each IV.

Statistical significance was set as a two-tailed p-value < 0.05 unless otherwise noted.
Furthermore, the package “Two-Sample-MR” (version 0.5.6) Auckland, New Zealand and
“MR-PRESSO” (version 1.0) in R (version 4.0.5) (Auckland, New Zealand)were adopted to
make all analyses.

http://www.phenoscanner.medschl.cam.ac.uk/
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3. Results
3.1. Genetic Instrumental Variants Selection

Using the above methods, the potential SNPs were screened for this study. Due to the
confounding factors, 29 SNPs as instrument variables for LDL cholesterol, 30 SNPs for HDL
cholesterol, 33 SNPs for triglycerides, 24 SNPs for Apolipoprotein A-I, and 26 SNPs for
Apolipoprotein B were removed from the present study. Finally, 112, 262, 213, 198, and 133
SNPs were identified as IVs to analyze the causal effect of LDL cholesterol, triglycerides,
HDL cholesterol, Apolipoprotein A-I, and Apolipoprotein B on SLE, respectively. The
detailed information on the IVs, including effect allele, effect allele frequency, role sizes in
blood lipids, and SLE, are displayed in Supplementary Tables S1–S5.

3.2. Two-Sample and Multivariable Mendelian Randomization of Blood Lipids and the Risk of SLE

IVW estimates uncovered that genetically forecasted LDL cholesterol (Odds ratio OR:
1.131; 95% confidence interval CI: 0.838, 1.528; p = 0.420), HDL cholesterol (OR: 1.093;
95% CI: 0.884, 1.352; p = 0.412), triglycerides (OR: 0.903; 95% CI: 0.716, 1.137; p = 0.384),
Apolipoprotein A-I (OR: 0.854; 95% CI: 0.680, 1.074; p = 0.177), and Apolipoprotein B
(OR: 0.933; 95% CI: 0.719, 1.211; p = 0.605) were not causally related to risk of SLE (Table 1),
consistent with the results of complementary analyses (Table 1). The outcomes of MR-
PRESSO are presented in Supplementary Table S11.

In the multivariable Mendelian randomization with mutual adjustment of blood lipid
values, blood lipid expression was not correlated with SLE risk. The outcome conformed to
complementary analyses with a linear regression-based method (Supplementary Table S13).

Table 1. Two-sample Mendelian randomization of blood lipids levels and the risk of SLE.

Exposures
and Methods SNPs Beta OR (95%CI) p Value

for Association
p Value for

Cochran Q Test
p Value for

MR-Egger Intercept

LDL cholesterol
IVW(re) 100 0.124 1.131 (0.838, 1.528) 0.420 <0.05
IVW(fe) 100 0.124 1.131 (0.906, 1.414) 0.277

MR-Egger 100 0.326 1.385 (0.870, 2.204) 0.172 0.266
Weighted median 100 0.281 1.325 (0.933, 1.882) 0.116

Maximum likelihood 100 0.125 1.133 (0.906, 1.418) 0.273
MR.RAPS 100 0.027 1.027 (0.809, 1.305) 0.825

HDL cholesterol
IVW(re) 233 0.089 1.093 (0.884, 1.352) 0.412 <0.05
IVW(fe) 233 0.089 1.093 (0.931, 1.284) 0.277

MR-Egger 233 0.175 1.191 (0.860, 1.650) 0.294 0.497
Weighted median 233 0.094 1.099 (0.820, 1.471) 0.528

Maximum likelihood 233 0.090 1.095 (0.931, 1.287) 0.274
MR.RAPS 233 0.084 1.088 (0.889, 1.331) 0.412

Triglycerides
IVW(re) 188 −0.103 0.903 (0.716, 1.137) 0.384 <0.05
IVW(fe) 188 −0.269 0.764 (0.634, 0.920) 0.562

MR-Egger 188 −0.006 0.994 (0.682, 1.448) 0.974 0.525
Weighted median 188 −0.263 0.769 (0.547, 1.082) 0.131

Maximum likelihood 188 0.269 0.764 (0.633, 0.923) 0.424
MR.RAPS 188 −0.098 0.907 (0.724, 1.136) 0.394

Apolipoprotein A-I
IVW(re) 172 −0.157 0.854 (0.680, 1.074) 0.177 <0.05
IVW(fe) 172 −0.157 0.854 (0.709, 1.030) 0.099

MR-Egger 172 0.036 1.036 (0.714, 1.505) 0.851 0.202
Weighted median 172 0.001 1.001 (0.737, 1.359) 0.997

Maximum likelihood 172 −0.159 0.853 (0.707, 1.030) 0.099
MR.RAPS 172 −0.089 0.915 (0.737, 1.135) 0.419
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Table 1. Cont.

Exposures
and Methods SNPs Beta OR (95%CI) p Value

for Association
p Value for

Cochran Q Test
p Value for

MR-Egger Intercept

Apolipoprotein B
IVW(re) 117 −0.069 0.933 (0.719, 1.211) 0.605 <0.05
IVW(fe) 117 −0.069 0.933 (0.778, 1.120) 0.460

MR-Egger 117 0.064 1.066 (0.746, 1.522) 0.727 0.288
Weighted median 117 −0.025 0.975 (0.715, 1.329) 0.872

Maximum likelihood 117 −0.684 0.934(0.777, 1.122) 0.465
MR.RAPS 117 −0.101 0.904 (0.750, 1.089) 0.290

IVW(re), random-effects inverse-variance weighted method; IVW(fe), fixed-effects inverse-variance weighted
method; RAPS, robust adjusted profile score.

3.3. Two-Sample Mendelian Randomization of SLE and the Risk of Blood Lipids

For examining the causal correlation between SLE and blood lipids, an MR analysis
was made with SLE as the exposure and blood lipids as the outcome. There were 45 obvious
SNPs (p < 5 × 10−8) related to the risk of SLE derived from the GWAS research on Bentham
et al. [14]. Due to the confounding factors, four SNPs (rs6679677, rs389884, rs2736332, and
rs597808) were eliminated from the current research. Thus, 41 SNPs were included in the
MR analysis finally. The IVW estimate revealed no obviously causal correlation between the
risk of SLE and LDL cholesterol (OR: 0.998; 95% CI: 0.994, 1.001; p = 0.166) and Apolipopro-
tein B (OR: 0.998; 95% CI: 0.994, 1.001; p = 0.229). However, there was a weak causal
correlation between the risk of SLE and HDL cholesterol (OR: 0.993; 95% CI: 0.988, 0.997;
p = 0.002), triglycerides (OR: 0.996; 95% CI: 0.993, 0.999; p = 0.010), and Apolipoprotein A-I
(OR: 0.995; 95% CI: 0.990, 0.999; p = 0.026) (Table 2). Consistent results were also obtained
in complementary analyses (Table 2). The results of MR-PRESSO are presented in Supple-
mentary Table S12. The details of the analyses are shown in Supplementary Tables S6–S10.

Table 2. Two-sample Mendelian randomization of SLE and the risk of blood lipid levels.

Outcomes
and Methods SNPs Beta OR (95%CI) p Value

for Association
p Value for

Cochran Q Test
p Value for

MR-Egger Intercept

LDL cholesterol
IVW(re) 33 −0.002 0.998 (0.994, 1.001) 0.166 <0.05
IVW(fe) 33 −0.002 0.998 (0.995, 1.000) 0.953

MR-Egger 33 0.002 1.002 (0.995, 1.010) 0.526 0.164
Weighted median 33 −0.001 0.999 (0.995, 1.003) 0.634

Maximum likelihood 33 −0.002 0.998 (0.994, 1.001) 0.974
MR.RAPS 33 −0.003 0.997 (0.993, 1.001) 0.077

HDL cholesterol
IVW(re) 29 −0.007 0.993 (0.988, 0.997) 0.002 <0.05
IVW(fe) 29 −0.007 0.993 (0.990, 0.996) 0.001

MR-Egger 29 −0.004 0.996 (0.986, 1.006) 0.471 0.466
Weighted median 29 −0.004 0.996 (0.991, 1.000) 0.060

Maximum likelihood 29 −0.007 0.993 (0.990, 0.996) 0.001
MR.RAPS 29 −0.006 0.994 (0.988, 1.000) 0.054

Triglycerides
IVW(re) 31 −0.004 0.996 (0.993, 0.999) 0.010 0.122
IVW(fe) 31 −0.004 0.996 (0.993, 0.999) 0.003

MR-Egger 31 −0.003 0.997 (0.991, 1.004) 0.472 0.658
Weighted median 31 −0.002 0.998 (0.994, 1.002) 0.285

Maximum likelihood 31 −0.004 0.996 (0.993, 0.999) 0.003
MR.RAPS 31 −0.004 0.996 (0.902, 0.909) 0.010
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Table 2. Cont.

Outcomes
and Methods SNPs Beta OR (95%CI) p Value

for Association
p Value for

Cochran Q Test
p Value for

MR-Egger Intercept

Apolipoprotein A-I
IVW(re) 25 −0.005 0.995 (0.990, 0.999) 0.026 <0.05
IVW(fe) 25 −0.005 0.995 (0.992, 0.998) 0.001

MR-Egger 25 −0.005 0.995 (0.983, 1.006) 0.373 0.988
Weighted median 25 −0.005 0.995 (0.990, 1.000) 0.075

Maximum likelihood 25 −0.005 0.995 (0.991, 0.998) 0.001
MR.RAPS 25 −0.005 0.995 (0.989, 1.000) 0.082

Apolipoprotein B
IVW(re) 33 −0.002 0.998 (0.994, 1.001) 0.229 <0.05
IVW(fe) 33 −0.002 0.998 (0.995, 1.001) 0.111

MR-Egger 33 0.004 1.004 (0.996, 1.012) 0.341 0.098
Weighted median 33 −0.003 0.997 (0.993, 1.002) 0.265

Maximum likelihood 33 −0.002 0.998 (0.995, 1.001) 0.115
MR.RAPS 33 −0.003 0.997 (0.993, 1.001) 0.050

IVW(re), random-effects inverse-variance weighted method; IVW(fe), fixed-effects inverse-variance weighted
method; RAPS, robust adjusted profile score.

4. Discussion

The present research found no evidence of a link between genetically forecasted blood
lipid levels and the risk of SLE. Moreover, our reverse-MR analyses revealed that SLE
had no significant causal effects on LDL cholesterol or Apolipoprotein B. Nevertheless,
some evidence proved that SLE exerted a causal effect on lowering HDL cholesterol,
Apolipoprotein A-I, and triglycerides.

Evidence supporting weak causal roles between blood lipid levels and SLE was
obtained. A recent study found that HDL cholesterol levels were lower in aging gld
mice, which was associated with the development of SLE [25]. In addition, treating
these mice with lipid-free Apolipoprotein A-I reversed the autoimmune phenotype and
reduced the quantity of lymphatic nodules. Therapeutic strategies using Apolipoprotein
A-I and Apolipoprotein A-I-mimetic peptides have also been initiated in animal models
of SLE [26,27]. Furthermore, the high potential of the ubiquitin–proteasome system in
regulating many human diseases is beginning to receive broad recognition. Proteins of
the ubiquitin–proteasome system and E3 ubiquitin ligases are emerging as promising
molecular targets for drug discovery in various diseases [28]. In humans, decreased LDL
cholesterol, Apolipoprotein A-I, Apolipoprotein B, and elevated triglycerides are often
found in SLE patients, while HDL cholesterol levels are comparable to those in healthy
individuals [29]. Furthermore, another study found that, in patients with SLE, HDL
cholesterol and Apolipoprotein A-I levels were significantly lower, triglyceride levels were
significantly higher, while increases in LDL cholesterol and Apolipoprotein B levels were
not statistically significant [30]. However, inconsistent with these observational studies,
no massive evidence of a causal role between blood lipid levels and increased SLE risk
was observed. These conflicting outcomes could be possibly boosted by reverse causation,
confounding, or selection biases inborn in conventional observational research studies.
Collectively, the findings of this study indicate a complicated causal effect on blood lipids
in SLE requiring further examination.

Our reverse-MR analyses showed no massive causal roles of SLE in LDL cholesterol
and Apolipoprotein B. Nevertheless, several evidences provided a causal effect of SLE
susceptibility on decreasing HDL cholesterol levels and Apolipoprotein A-I. In line with
observational studies, massive evidence of a causal role of higher risk of SLE in individuals
with lower HDL cholesterol and Apolipoprotein A-I levels was observed. The mechanism
could be that responses such as oxidative stress and chronic inflammation among SLE
patients cause changes in HDL particle size, proteomics, and lipidomics, reducing the
effects mentioned above. In inflammatory conditions, the antioxidant effect of HDL may
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be altered by changed gene expression of HDL-related proteins, including amyloid A,
or by changed HDL function and composition, leading to decreased Apolipoprotein A-I
levels [31,32]. Furthermore, because of integrated inflammation in lupus, the decreased
antioxidant capacity of HDL may decrease its anti-atherogenic role [31]. Furthermore, we
found causal effect of SLE susceptibility on decreasing triglycerides levels. However, the
underlying mechanism has not been reported. The effect of the SLE on triglycerides levels
needs more studies to examine.

Our MR approach has several advantages. To begin, its design minimized the potential
for confounding or reverse causality in observational studies. Furthermore, we tested the
effect of lipids in a large cohort of SLE patients using a two-sample MR approach (4036 SLE
cases and 6959 controls).

Nevertheless, the present study has several limitations. First, there was heterogeneity
in our results. It was impossible to investigate any potential non-linear relationship or
stratification effect that varies with age, gender, or health status, which could be a source of
heterogeneity based on the GWAS data. Second, due to the weakness of the MR analysis,
the second and third assumptions could not be assessed accurately, potentially leading to
bias. Third, the included study subjects were of European ancestry, limiting the applicability
of the findings to other study populations of different ethnicities [33]. Furthermore, we did
not investigate the correlation between blood lipids and different types of SLE.

5. Conclusions

It is concluded that the current research did not support the causal association between
blood lipid levels and SLE risk, nor did it support the correlation between SLE risk and LDL
cholesterol and Apolipoprotein B levels. Nevertheless, several evidences proved a causal
effect of SLE on decreasing HDL cholesterol levels, Apolipoprotein A-I, and triglycerides.
As a result, more research with updated data from huge genetic research studies is needed
to confirm the findings of our MR research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13010027/s1, Table S1. Effect estimates of genetic in-
strumental variables of LDL-cholesterol for SLE. Table S2. Effect estimates of genetic instrumental
variables of HDL-cholesterol for SLE. Table S3. Effect estimates of genetic instrumental variables of
triglycerides for SLE. Tabke S4. Effect estimates of genetic instrumental variables of Apolipoprotein
A-I for SLE. Table S5. Effect estimates of genetic instrumental variables of Apolipoprotein B for SLE.
Table S6. Effect estimates of genetic instrumental variables of SLE for LDL-cholesterol. Table S7.
Effect estimates of genetic instrumental variables of SLE for HDL-cholesterol. Table S8. Effect es-
timates of genetic instrumental variables of SLE for triglycerides. Table S9. Effect estimates of
genetic instrumental variables of SLE for Apolipoprotein A-I. Table S10. Effect estimates of genetic
instrumental variables of SLE for Apolipoprotein B. Table S11. MR-PRESSO for causal effect be-
tween blood lipids and SLE. Table S12. MR-PRESSO for causal effect between SLE and blood lipids.
Table S13. Multivariable MR for causal effect between blood lipids and SLE.

Author Contributions: Methodology, Y.D., M.R. and Y.S.; Formal analysis, Y.D.; Investigation, Y.D.,
S.F., Y.T. and M.H.; Data curation, S.F.; Project administration, X.T. and W.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Young Talents Project of Zhejiang Medicine and Health
Science and Technology Project (Grant numbers 2019323407 and 2022518280).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that there are no conflict of interest.

https://www.mdpi.com/article/10.3390/metabo13010027/s1
https://www.mdpi.com/article/10.3390/metabo13010027/s1


Metabolites 2023, 13, 27 8 of 9

References
1. Fava, A.; Petri, M. Systemic lupus erythematosus: Diagnosis and clinical management. J. Autoimmun. 2019, 96, 1–13.

[CrossRef] [PubMed]
2. Pons-Estel, G.J.; Alarcón, G.S.; Scofield, L.; Reinlib, L.; Cooper, G.S. Understanding the Epidemiology and Progression of Systemic

Lupus Erythematosus. Semin. Arthritis Rheum. 2010, 39, 257–268. [CrossRef]
3. Dörner, T.; Furie, R. Novel paradigms in systemic lupus erythematosus. Lancet 2019, 393, 2344–2358. [CrossRef]
4. Kiriakidou, M.; Ching, C. Systemic Lupus Erythematosus. Ann. Intern. Med. 2020, 172, ITC81–ITC96. [CrossRef] [PubMed]
5. Borba, E.F.; Carvalho, J.F.; Bonfá, E. Mechanisms of dyslipoproteinemias in systemic lupus erythematosus. Clin. Dev. Immunol.

2006, 13, 203–208. [CrossRef] [PubMed]
6. de Carvalho, J.F.; Bonfá, E.; Borba, E.F. Systemic lupus erythematosus and “lupus dyslipoproteinemia”. Autoimmun. Rev. 2008, 7,

246–250. [CrossRef]
7. Burgess, S.; Small, D.; Thompson, S. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods

Med. Res. 2017, 26, 2333–2355. [CrossRef]
8. Davies, N.; Holmes, M.; Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians.

BMJ 2018, 362, k601. [CrossRef]
9. Sheehan, A.N.; Didelez, V.; Burton, P.R.; Tobin, M.D. Mendelian Randomisation and Causal Inference in Observational Epidemi-

ology. PLoS Med. 2008, 5, e177. [CrossRef]
10. Lawlor, D. Commentary: Two-sample Mendelian randomization: Opportunities and challenges. Int. J. Epidemiol. 2016, 45,

908–915. [CrossRef]
11. Pierce, B.; Burgess, S. Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable

estimators. Am. J. Epidemiol. 2013, 178, 1177–1184. [CrossRef] [PubMed]
12. Richardson, T.G.; Sanderson, E.; Palmer, T.M.; Ala-Korpela, M.; Ference, B.A.; Smith, G.D.; Holmes, M.V. Evaluating the

relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable
Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003062. [CrossRef] [PubMed]

13. Collins, R. What makes UK Biobank special? Lancet 2012, 379, 1173–1174. [CrossRef] [PubMed]
14. Bentham, J.; Morris, D.; Graham, D.S.C.; Pinder, C.; Tombleson, P.; Behrens, T.W.; Martin, J.; Fairfax, B.P.; Knight, J.; Chen, L.; et al.

Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic
lupus erythematosus. Nat. Genet. 2015, 47, 1457–1464. [CrossRef] [PubMed]

15. Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.C.; Timpson, N.; Smith, G.D. Mendelian randomization: Using genes as instruments for
making causal inferences in epidemiology. Stat. Med. 2008, 27, 1133–1163. [CrossRef] [PubMed]

16. Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al.
The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7, e34408. [CrossRef] [PubMed]

17. Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection
through Egger regression. Int J. Epidemiol. 2015, 44, 512–525. [CrossRef]

18. Park, S.; Lee, S.; Kim, Y.; Lee, Y.; Kang, M.W.; Kim, K.; Kim, Y.C.; Han, S.S.; Lee, H.; Lee, J.P.; et al. Atrial fibrillation and kidney
function: A bidirectional Mendelian randomization study. Eur. Heart J. 2021, 42, 2816–2823. [CrossRef]

19. Staley, J.R.; Blackshaw, J.; Kamat, M.A.; Ellis, S.; Surendran, P.; Sun, B.B.; Paul, D.S.; Freitag, D.; Burgess, S.; Danesh, J.; et al.
PhenoScanner: A database of human genotype-phenotype associations. Bioinformatics 2016, 32, 3207–3209. [CrossRef]

20. Burgess, S.; Butterworth, A.; Thompson, S. Mendelian randomization analysis with multiple genetic variants using summarized
data. Genet. Epidemiol. 2013, 37, 658–665. [CrossRef]

21. Bowden, J.; Smith, G.D.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid
Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [CrossRef] [PubMed]

22. Hartwig, F.P.; Davey Smith, G.; Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal
pleiotropy assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [CrossRef] [PubMed]

23. Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.; Thompson, J. A framework for the investigation of
pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 2017, 36, 1783–1802. [CrossRef] [PubMed]

24. Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Publisher Correction: Detection of widespread horizontal pleiotropy in causal
relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 1196.
[CrossRef] [PubMed]

25. Srivastava, R.; Yu, S.; Parks, B.W.; Black, L.L.; Kabarowski, J.H. Autoimmune-mediated reduction of high-density lipoprotein-
cholesterol and paraoxonase 1 activity in systemic lupus erythematosus-prone gld mice. Arthritis Care Res. 2010, 63,
201–211. [CrossRef]

26. Zabalawi, M.; Bhat, S.; Loughlin, T.; Thomas, M.J.; Alexander, E.; Cline, M.; Bullock, B.; Willingham, M.; Sorci-Thomas, M.G.
Induction of fatal inflammation in LDL receptor and ApoA-I double-knockout mice fed dietary fat and cholesterol. Am. J. Pathol.
2003, 163, 1201–1213. [CrossRef]

27. Wilhelm, A.J.; Zabalawi, M.; Grayson, J.M.; Weant, A.E.; Major, A.S.; Owen, J.; Bharadwaj, M.; Walzem, R.; Chan, L.; Oka, K.; et al.
Apolipoprotein A-I and Its Role in Lymphocyte Cholesterol Homeostasis and Autoimmunity. Arter. Thromb. Vasc. Biol. 2009, 29,
843–849. [CrossRef]

http://doi.org/10.1016/j.jaut.2018.11.001
http://www.ncbi.nlm.nih.gov/pubmed/30448290
http://doi.org/10.1016/j.semarthrit.2008.10.007
http://doi.org/10.1016/S0140-6736(19)30546-X
http://doi.org/10.7326/AITC202006020
http://www.ncbi.nlm.nih.gov/pubmed/32479157
http://doi.org/10.1080/17402520600876945
http://www.ncbi.nlm.nih.gov/pubmed/17162363
http://doi.org/10.1016/j.autrev.2007.11.016
http://doi.org/10.1177/0962280215597579
http://doi.org/10.1136/bmj.k601
http://doi.org/10.1371/journal.pmed.0050177
http://doi.org/10.1093/ije/dyw127
http://doi.org/10.1093/aje/kwt084
http://www.ncbi.nlm.nih.gov/pubmed/23863760
http://doi.org/10.1371/journal.pmed.1003062
http://www.ncbi.nlm.nih.gov/pubmed/32203549
http://doi.org/10.1016/S0140-6736(12)60404-8
http://www.ncbi.nlm.nih.gov/pubmed/22463865
http://doi.org/10.1038/ng.3434
http://www.ncbi.nlm.nih.gov/pubmed/26502338
http://doi.org/10.1002/sim.3034
http://www.ncbi.nlm.nih.gov/pubmed/17886233
http://doi.org/10.7554/eLife.34408
http://www.ncbi.nlm.nih.gov/pubmed/29846171
http://doi.org/10.1093/ije/dyv080
http://doi.org/10.1093/eurheartj/ehab291
http://doi.org/10.1093/bioinformatics/btw373
http://doi.org/10.1002/gepi.21758
http://doi.org/10.1002/gepi.21965
http://www.ncbi.nlm.nih.gov/pubmed/27061298
http://doi.org/10.1093/ije/dyx102
http://www.ncbi.nlm.nih.gov/pubmed/29040600
http://doi.org/10.1002/sim.7221
http://www.ncbi.nlm.nih.gov/pubmed/28114746
http://doi.org/10.1038/s41588-018-0164-2
http://www.ncbi.nlm.nih.gov/pubmed/29967445
http://doi.org/10.1002/art.27764
http://doi.org/10.1016/S0002-9440(10)63480-3
http://doi.org/10.1161/ATVBAHA.108.183442


Metabolites 2023, 13, 27 9 of 9

28. Bulatov, E.; Khaiboullina, S.; dos Reis, H.J.; Palotás, A.; Venkataraman, K.; Vijayalakshmi, M.; Rizvanov, A. Ubiquitin-Proteasome
System: Promising Therapeutic Targets in Autoimmune and Neurodegenerative Diseases. Bionanoscience 2016, 6, 341–344. [CrossRef]

29. Sánchez-Pérez, H.; Quevedo-Abeledo, J.C.; De Armas-Rillo, L.; Rua-Figueroa, Í.; Tejera-Segura, B.; Armas-González, E.;
Machado, J.D.; García-Dopico, A.J.; Jimenez-Sosa, A.; Rodríguez-Lozano, C.; et al. Impaired HDL cholesterol efflux capacity in sys-
temic lupus erythematosus patients is related to subclinical carotid atherosclerosis. Rheumatology 2020, 59, 2847–2856. [CrossRef]
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