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Abstract: Myopathies have risen strongly in recent years, likely linked to selection for appetite. For
white striping (WS), causes have been identified; but for wooden breast (WB), the cause remains
speculative. We used metabolomics to study the breast muscle of 51 birds that were scored for both
at 35 days of age to better understand potential causes. A partial least square discriminant analysis
revealed that WS and WB had distinct metabolic profiles, implying different etiologies. Arginine
and proline metabolism were affected in both, although differently: WB increased arginine in breast
muscle implying that the birds did not use this pathway to increase tissue blood flow. Antioxidant
defenses were impeded as shown by low anserine and beta-alanine. In contrast, GSH and selenium
concentrations were increased. Serine, linked to anti-inflammatory properties, was increased. Taurine,
which can stabilize the cell’s sarcolemma as well as modulate potassium channels and cellular calcium
homeostasis, was also increased. Mineral data and depressed phosphatidylethanolamine, cAMP,
and creatine-phosphate suggested compromised energy metabolism. WB also had drastically lower
diet-derived lipids, suggesting compromised lipid digestion. In conclusion, WB may be caused by
impaired lipid digestion triggered by a very high appetite: the ensuing deficiencies may well impair
blood flow into muscle resulting in irreparable damage.

Keywords: broiler; metabolomics; myopathy; wooden breast

1. Introduction

Poultry meat is highly regarded as one of the most nutritious protein sources. The
demand for poultry meat has risen in recent decades due to the low cost, good nutritional
profile (high-protein content coupled with a balanced n-6 to n-3 polyunsaturated fatty acids
ratio, low fat, low cholesterol, and presence of some functional components), suitability
for further processing and no cultural or religious restrictions [1–3]. Additionally, together
with milk, poultry products are recognized as one of the most environmentally efficient
livestock products with regard to carbon footprint and resource depletion [4]. As for any
product, the environmental impact is strongly influenced by the total amount and quality
of the finished food product [5]. Thus, the growing demand for chicken meat and the
push for lower production costs has led to the genetic selection of broilers for quantitative
traits. It is worth noting that the selection procedures in favor of fast-growing broiler
chicken strains have led to an extraordinary improvement in animal performance [6]. This
significant increase in growth rate has been achieved by inducing muscle hypertrophy; and,
unintentionally, genetic selection might have also induced meat quality issues such as white
striping (WS) and wooden breast (WB) [7–9]. The alterations in the chemical composition
and technological properties of the meat from birds affected by these myopathies may
prevent the final product from reaching the consumer, and, therefore, increase wastage,
thereby compromising sustainability [10–12]. The incidence of these myopathies has been
estimated to lead to an economic loss of more than USD 200 million/year in the United
States [13]. White striping is recognized by white striations that run parallel to the muscle
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fiber [14]. The underlying etiology of WS has been previously described by our group, and
the proposed mechanism has been echoed by others [9,15,16].

Unfortunately, information around the underlying etiology of WB is less clear in the
literature. WB is an abnormality in which the Pectoralis major muscle in broilers presents
a pale and hardened consistency in cranial and/or caudal areas often accompanied by
petechial hemorrhages and exudate [17,18]. Affected muscle have moderate to severe mul-
tifocal regenerative myodegeneration and necrosis with a variable amount of interstitial
connective tissue accumulation or fibrosis. WB incidence has increased over the last years
and, unfortunately, fillets with this abnormality are rejected from human consumption
completely. The lack of automated systems at the slaughterhouse to detect WB compli-
cates the quantification of this condition. However, a recent study using near infrared
spectroscopy reported a prevalence of 9% among 10,483 fillets from high-yielding strains
targeted to reach body weights of 2.72–4.53 kg [19]. WB fillets also show pathological
changes including a reduction in protein and ash as well as an increase in fat and colla-
gen [20]. It is often assumed that a link exists between the etiology of WS and WB, as
both are frequently present together [13,21]. It is generally accepted that the prevalence
of WB correlates positively with feed intakes and thus growth rates at a given age [22].
Studies have seen incidences in WB at 9 weeks of age of 85%, with more than 42% ranking
severe or very severe; but already at 3 weeks of age, alterations in lipid-related genes are
observed [23]. WB has been linked to rapid muscle growth inducing oxidative stress or
hypoxia due to insufficient vascularization [3]. Since there are still many uncertainties
about the underlying etiology, metabolomics was used to analyze both unaffected as well
as affected breast muscle tissue. The overall objective of this study was to use non-targeted
metabolomics to identify biological pathways that are involved in the underlying etiology
of WB in broiler chickens.

2. Materials and Methods
2.1. Animals and Sample Collection

Sample collection and analysis has already been described earlier [15]. In brief, broilers
used in this study were all ROSS 308 males, raised on a research farm (Poultry Research
Centre; Casarrubios del Monte, Toledo, Spain) to 35 days. Males were chosen as they
typically have a faster growth rate and higher incidence of myopathies. Diets fed were in
line with local commercial practices (Table 1).

On day 35, birds were euthanized in compliance with welfare rules. Time between
euthanization and sample collection was as short as possible to ensure proper sample qual-
ity (on average 2–2.5 min). Muscle samples of the pectoralis major muscle were collected
for 51 birds, which were randomly selected (two birds per pen). These muscle samples
were scored for WS and WB. For WB, filets that were flexible throughout were scored as
“normal” while filets in which hardness was present were scored as “moderate/severe”
based on criteria described in the literature [24]; moderate/severe will be referred to as
severe below. The samples were frozen using liquid nitrogen and stored at −80 ◦C until
further processing.

An additional 47 birds were collected from a trial using diets with a similar nutrient
composition. Those birds (mixed sex, Ross 308, 42 days of age) were scored for WS and WB
as outlined above, and muscle samples were analyzed for vitamin K2 (MK-7) using LC-MS.
Samples were grinded and 20 mL of acetonitrile was added. This was mixed for 60 min
and then analyzed.

2.2. Sample Analysis

Metabolomic analysis of the 51 samples was performed by Metabolomic Discoveries
(Potsdam-Golm, Germany), which is described in more detail by Boerboom (Boerboom
et al., 2018). Muscle samples were also analyzed for phosphorus (P), sodium (Na), potas-
sium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), zinc (Zn), cobalt (Co),
nickel (Ni), and selenium (Se). Samples were weighed, destructed using 16 N HNO3, and
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then analyzed by inductively coupled plasma mass spectrometry using a NexION 350 D
(Perkin-Elmer, Waltham, MA, USA) according to method NEN-EN 15510 [25].

Table 1. Ingredient and nutrient composition of the experimental diets as fed to the birds sampled
for metabolomics. Data are in % except where noted.

Ingredient Supplementation (%) Starter Phase
(d0–7)

Grower Phase
(d7–25)

Finisher Phase
(d25–35)

Wheat 52.63 56.00 61.70

Soybean meal 47 28.77 25.89 21.51

Maize 10.00 8.81 8.00

Soy oil 4.41 4.25 4.37

Glycerin 99.5% 2.00 2.00

Soycomil 0.20

Monocalcium phosphate 1.24 0.63 0.32

Calcium carbonate, 1.17 0.54 0.45

Sodium bicarbonate 0.28 0.22 0.24

NaCl 0.15 0.16 0.16

L-lysine·HCl 0.30 0.27 0.29

DL-methionine 0.23 0.21 0.19

L-threonine 0.066 0.070 0.076

Xylanase (Axtra XB) 0.10 0.10 0.10

Phytase (Phyzyme XP TPT) 0.10 0.10 0.10

Maxiban 16% 0.063

Elancoban 20% 0.050

Premix 1 0.50 0.50 0.50

Calculated Nutrient values

Crude protein 21.7 20.4 19.4

AME broilers (kcal/kg) 2850 2922 3000

dLys 11.5 10.60 9.80

dMet 5.03 4.69 4.30

Ca 9.0 5.50 4.5

dP 4.6 3.50 2.90
1 Provided per kilogram of complete diet: vitamin A, 7500 IU; vitamin D3, 1500 IU; vitamin E, 6 IU; vitamin K3,
2.0 mg; vitamin B1, 2.0 mg; vitamin B2, 3.0 mg; vitamin B6, 3.0 mg; vitamin B12, 0.03 mg; niacinamide, 20 mg;
D-pantothenic acid, 6.5 mg; folic acid, 0.5 mg; biotin, 0.1 mg; choline, 295 mg; iron, 40 mg (as FeSO4•7H2O);
copper, 12 mg (as CuSO4•5H2O); manganese, 90 mg (as MnSO4•H2O); zinc, 60 mg (as ZnO); iodine, 1.0 mg (as
CaI); selenium, 0.20 mg (as Na2SeO3•5H2O); (supplied by Trouw Nutrition Spain).

2.3. Data Analysis

Metabolomics data were analyzed using MetaboAnalyst (Xia Lab, McGill, Ste. Anne
de Bellevue, Quebec, Canada) [26–30]. Data were normalized on internal standards, log
transformed and auto-scaled to remove heteroscedasticity and reduce bias. The p-value
was adjusted using the false discovery rate (FDR) correction and was deemed significant if
p < 0.05 [31]. Pathway analysis was done using MetaboAnalyst. The significance was calculated
using pathway enrichment analysis which groups functionally related metabolites and tests
whether they are significantly enriched. The impact was calculated by taking the pathway
structure into account, thereby assigning more impact to changes in key positions in a pathway.
As a measure for this, betweenness centrality was chosen, which takes into consideration the
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global network structure and not only the immediate neighbor of the metabolite like degree
centrality does [30,32]. Additionally, a Partial Least Squares—Discriminant Analysis (PLS-DA)
was performed using JMP 16.2 Pro (SAS Inst., Cary, NC, USA) using both WB and WS as
discrete response parameters. Full cross validation and two rounds of very important variable
selection (threshold > 1) were used. Data were also analyzed by multi-factor ANOVA using WS,
WB, and their interaction WS × WB. Vitamin K2 data were analyzed using ANOVA including
WB, WS, gender, and their 2-way interactions; this model was simplified prior to final analysis
to only WB, as other factors were not significant (p > 0.2).

3. Results

Birds with severe WB averaged 2500 ± 62 g at sampling (mean ± SEM; day 35), birds
scored as normal averaged 2380 ± 28 g (p = 0.08). The animals not selected were weighed
on a pen basis and averaged 2289 ± 20 g; daily gain averaged 64.5 ± 0.58 g/d, feed intake
averaged 94.5 ± 0.76 g/d, and FCR averaged 1.466 ± 0.005.

Out of a total of 51 samples (Table 2), 14 samples (27%) received a WB score of severe.
Moderate WS was observed in 24 samples (47%), and severe WS was observed in eight
birds (16%). Ten birds exhibited both WB and WS (of which one severe WS). The PLS-DA
analysis (Figure 1) indicated that WB was placed effectively orthogonal to WS.

Table 2. Bird count for the various myopathy scores.

WS

Normal Moderate Severe WB Total

WB
Normal 15 15 7 37

Severe 4 9 1 14

WS total 19 24 8 51

In the metabolomics data, bias was removed by the pre-processing steps described
before [15], limiting the difference in absolute magnitude and difference in variance, thereby
improving the quality of the dataset. The total number of annotated metabolites used in the
analysis was 497. An ANOVA was used to determine the significant differences between
the metabolites in normal birds and WB-affected birds. Afterwards, relative fold change
was taken into account, and a volcano plot was created. The cut-off was set at an FDR-
corrected p-value of 0.05 and a fold change threshold of 2. This yielded 65 metabolites
(Supplementary Table S1). A positive fold change indicates that the severe WB group had
increased concentrations of metabolites compared to the normal group. Several metabolites
quantified were plant metabolites with poorly defined metabolic function. These will not
be discussed in detail. It is worth noting that there is a high number of small peptides and
of fat-soluble components that appear to be affected by the occurrence of WB.

Pathway analysis (Table 3) showed that histidine metabolism was most significantly
affected. The highest impacted pathway was the taurine and hypo-taurine metabolism,
which is somewhat confounded by the method applied, as these pathways are small and as
such will more easily rank high. Individual pathway visualization was performed for the
impacted pathways to ensure a more precise interpretation of the data. This highlighted
the metabolism of arginine and proline, taurine, β-alanine, and glutathione. The pathways
with a low impact were removed due to their lower biological effect.

The results of the mineral analysis indicated significant changes occurring between
normal and WB-affected breast tissues (Figure 2). The levels of sodium and selenium
were elevated in WB-affected tissues (p < 0.05), while the levels of phosphorus, potassium,
magnesium, copper, and nickel were lowered in WB-affected tissues (p < 0.05).
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Table 3. Pathway analysis results using MetaboAnalyst. The p-value was calculated using path-
way enrichment analysis and the impact was calculated using pathway topological analysis using
betweenness centrality and using Gallus Gallus as a pathway library.

Pathway Name p-Value
(FDR Corrected) Impact

Histidine metabolism 0.002106 0.54917

Starch and sucrose metabolism 0.019798 0.22073

Beta-alanine metabolism 0.019798 0.51119

Taurine and hypotaurine metabolism 0.023189 0.71428

Arginine and proline metabolism 0.026478 0.48672

Glutathione metabolism 0.038001 0.37762

Glycerophospholipid metabolism 0.042407 0.43635

Cysteine and methionine metabolism 0.042453 0.44302

D-Glutamine and D-glutamate metabolism 0.043772 0.50000
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Figure 2. Effect of WB on tissue mineral level. Ratios are in relation to the normal WB group
(* p < 0.05).

The ANOVA analysis indicated that approximately 20 metabolites were decreased
by over 95%, while 18 increased by more than 100% (Figure 3), most of them significantly
so (such drastic downshifts were not seen in WS). In Figure 3, it is apparent that the
compounds decreased are mainly lipophilic compounds with a uniquely dietary and/or
microbial origin; several of these lipophilic compounds clustered strongly in Figure 1D.
The most strongly increased metabolite was guanosine triphosphate adenosine and also
taurine and the lysine catabolite 2-amino adipic acid stand out.
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Figure 3. Metabolites most strongly decreased (<5% vs. normal) and most strongly increased (>100%
vs. normal) as a result of WB (* p < 0.05).

An in-depth look at the two metabolites with the strongest drop, vitamin K1 2.3-
epoxide, and sorbitan palmitate (Figure 4), shows that both metabolites were effectively 0
in all birds with WB. In the normal birds, a wide range of concentrations was found.
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and stars (*) severe WS.

To further investigate a vitamin K2 deficiency as a possible factor in WB, we measured
vit. K2 in birds collected in a separate trial (47 birds, of which 15 had WB; Figure 5). Neither
sex nor WS affected vit. K2 levels. Birds without visible WB again showed a wide spread
in vit. K2 levels, while in the affected birds the majority did not have detectable vit. K2
(Control: 10.6 µg/kg, WB: 0.8 µg/kg, p = 0.0003).
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4. Discussion

Meat myopathies such as WS and WB are of huge concern to the broiler industry.
Their occurrence is linked to the high appetite and consequently fast growth of the current
genetic strains of birds used, and the resulting compromised blood supply and hypoxia
are commonly brought forward as a starting point for their development [9,33]. The
results of the PLS-DA analysis in the current study imply that WB and WS do not share a
similar metabolic profile, but rather, express different changes in metabolite profiles, even
if pathophysiological similarities might occur between the two diseases. Our results also
imply that the metabolomics profile can be used to differentiate the two groups, in line
with observations in the literature [34].

Arginine and proline metabolism were shown to be affected by WB occurrence, ap-
parently like previous findings for WS [15]. However, the metabolites that changed within
these pathways for WS were not the same metabolites as the ones changed in WB. Arginine
to citrulline conversion was hypothesized to be increased in WS due to the observation of
lower arginine levels and higher citrulline levels in WS cases [15]. In contrast, arginine lev-
els showed an increase in WB-affected tissues (p < 0.05). This appears to indicate that there
was still arginine available for conversion to citrulline for production of nitric oxide, re-
quired for enhanced blood flow [35,36]. Arginine in animals is used in two direct metabolic
pathways: 1. Arginine is decomposed into ornithine and urea by arginase, and 2. Arginine
and molecular oxygen generate citrulline and nitric oxide (NO) by nitric oxide synthase
(NOS) [37]. However, no change in ornithine or citrulline was observed, indicating that
none of the previously cited metabolic pathways of arginine utilization were being used.

Anserine (beta-alanyl-methyl-L-histidine) was reduced in WB-affected tissues (p < 0.05).
Anserine is important for antioxidant functions, pH buffering and anti-glycation agents [38,39].
Anserine levels tend to be lower when birds get older resulting in reduced antioxidant capacity [40].
This reduction is in accordance with literature on WB, where a reduction in anserine has been
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observed more frequently [9,41]. A potential contributor to the lower levels of anserine that were
observed in this study could be the lower levels of beta-alanine, which was also observed (p < 0.05).
The rate of anserine synthesis in skeletal muscle is dependent on the amount of circulating beta-
alanine. In line with these findings, a recently published article on metabolomics in WB-affected
birds indicated that 3-methyl-histidine was the top metabolite being affected in plasma, with eight
more metabolites involved in histidine metabolism being affected, further indicating the effect WB
occurrence has on histidine metabolism [34]. Surprisingly, though, a study feeding high levels
of histidine indicated no effects on meat quality, even though a higher level of carnosine was
observed [42].

Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in
eukaryotic cells [43]. It has diverse cellular functions that include serving as a precursor
for the formation of phosphatidylcholine, influencing membrane topology and promoting
cell and organelle membrane fusion, oxidative phosphorylation, mitochondrial biogenesis,
and autophagy. It is also an important precursor for other lipids [43–45]. The results of
the metabolomics indicate that the levels of PE in WB-affected tissues are lowered. In
case of limited availability, mitochondrial activity is negatively affected given the impor-
tance of PE in mitochondrial stability and activity [43]. This could have compromised
cellular energy metabolism in WB-affected tissues, in line with lowered levels of cAMP
and phospho-creatine. Furthermore, it has been observed that the level of PE is important
for membrane stability, and as such, the lower levels of PE observed could have led to
membrane destabilization, leading to WB [46]. This is further substantiated by the mineral
results, which show a reduction in phosphorus, magnesium, and copper along with an
increase in sodium. These changes fit with an impairment in metabolic activity of the cell
as phosphate and magnesium are key in energy metabolism while copper is an important
cofactor for various oxidases. Perturbed energy metabolism can subsequently lead to an
efflux of potassium and an influx of calcium (ns) and sodium into the cells [47]. In order
to compensate for this, the cells might have produced high amounts of glutathione (GSH)
as this is a master regulator of metabolism within the cell [48]. Aside from its function
as a regulator of metabolism, it is also a cysteine-derived antioxidant and important for
detoxification, protection from oxidative stress and maintenance of redox balance. In
line with this antioxidant effect, a significant increase in selenium was observed in WB
birds. Synthesis of GSH is driven by the activity of the pentose phosphate pathway [49],
which has been shown to be influenced by WB in previously published literature [34,41].
They indicated that WB affected purine metabolism, which was a result of the increased
activity of the pentose phosphate pathway or a decreased nucleotide utilization. In this
dataset, serine levels tended to be higher in WB-affected tissues (p = 0.05) and they play an
important role in the metabolism of purines and pyrimidines, further substantiating the
effect WB has on purine metabolism [50]. Numerous studies have indicated that glycine
can exert anti-inflammatory and antioxidant effects, protecting against hypoxia induced
injuries, albeit in renal tissue [51]. It could also be that serine expression is increased in
WB-affected tissue to protect against the hypoxic state that is created by damaged vascular
support system [17]. The conversion of serine into glycine leads to an increase in Ca influx,
something that is also observed in the WB-affected tissues in this study (Figure 2).

As described for WS, taurine is often released at higher levels to protect against
damage of hypoxic nature, and in addition, it plays a pivotal role in Ca homeostasis [2,15].
Levels of taurine, a metabolite of methionine, increased similarly for both WB and WS
(p < 0.05). The key effect of taurine is stabilization of the sarcolemma. Besides this, taurine
also modulates the activity of various types of K channels and, in particular, those able to
couple metabolic state of striated fibers to electrical activity. Lastly, it controls intracellular
calcium homeostasis by modulating calcium handling mechanisms and consequently
excitation-contraction coupling [52]. Taurine uptake into cells also has an osmotic function,
and high levels may reflect swollen cells, which is a common observation in WB-affected
tissues [53]. Another affected metabolite in the cysteine and methionine metabolism is
3-methylthiopropionic acid, which is almost absent in the WB-affected tissue (p < 0.01).
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3-methylthiopropionic acid is an intermediate in the transamination pathway of methionine
metabolism. As methionine was not affected, a possible explanation for low levels of 3-
methylthiopropionic acid is that the transamination pathway for methionine catabolism
was downregulated and methionine instead was converted to taurine, in line with increased
taurine levels [54].

The drastic reduction in various diet-derived lipids as observed in the ANOVA analysis
implies that lipid digestion was impaired, which may well be linked to the very high feed
intake of birds affected by WB. Indeed, Nir et al. (1973) and Krogdahl (1985) showed that
digestion of fat is typically first limiting when intestinal passage rate is increased [55,56].
This observation also aligns with changes in lipid-related genes [23,57]. Liu et al. also
showed strong changes in lipids, but their analysis focused on lipids that are not per se
obtained from the diet [58]. Several of the affected lipids are linked to specific metabolic
functions, like a vitamin, in either the bird or in the feedstuffs the birds consumed. These
lipids may well be harder to digest than those used as energy sources, aggravated by very
high feed intake. For example, for vitamin E a bioavailability of only 5% was obtained [59].
In line with this, Thompson (1989) highlighted numerous case reports describing patients
developing deficiencies of vitamins D, E, and K as a consequence of lipid malabsorption [60].
As shown in Figure 4, birds with WB had effectively tissue levels of zero for the most
severely affected lipids. In the ‘normal’ birds, interestingly, also several birds registered at
0, but also a substantial number of birds had higher levels. A possible explanation, in line
with field observations, is that deficiencies of these diet-derived lipids and thus problems
with WB start earlier in some birds than others; those that appeared normal at slaughter
may well have developed WB if they had been slaughtered a week later due to aggravating
deficiencies of these lipids. A vitamin K2 analysis of 47 samples of breast muscle tissue
obtained from an independent flock of birds confirmed that birds with severe WB had
practically zero vit. K2, while normal birds again had a wide spread in vit. K2 levels
(Figure 5). Vit. K2 is involved in calcium metabolism; when animals are deficient, it leads to
calcium deposits in blood vessels, in line with what Sihvo and Mutryn showed, and in line
with data from Abasht et al. (2021) showing vascular endothelial dysfunction [17,57,61,62].
This may well impede blood flow into breast muscle tissue, resulting in atrophy, in line
with the observations that creatine kinase (a marker for muscle injury) increased with WB
severity [63]. Several of the observations in the metabolic pathways fit with this observation
as does the appearance of petechia and hemorrhages.

Another interesting lead is the enormous increase in guanosine triphosphate adenosine
(Figure 3; also seen in WS). This class of molecules is used to cap mRNA protecting it from
degradation [64]. In addition, they are strong agonists of the purinergic system involved
in vasoregulation [65]. High levels may well mean that the animal was trying to counter
hypoxia by vasodilation and vascular regeneration, but unsuccessfully did so as blood
vessels were damaged by calcium deposits linked to a vitamin K2 deficiency.

5. Conclusions

Taken together, the results of our analyses seem to indicate that birds suffering from
WB suffer from a problem with the digestion of lipids such as vitamin K2. Although not
evaluated in this experiment, these digestive problems could potentially be the result of
feed intake that exceeds the digestive capacity of the birds. The resulting lipid deficiencies
may well impair vascular health and antioxidant defenses, resulting in tissue hypoxia and
irreparable damage. Tissue hypoxia is something that WS and WB have in common, but
the magnitude/extend of the hypoxic state as well as the expression do differ. In the case of
WS, the hypoxia appears more manageable, allowing the tissue to retain some functionality
and growth, albeit with an altered nutrient profile. In the case of WB, the hypoxia appears
more severe resulting in tissue that has severely compromised functionality, in line with
other observations [66]. Problems with fat digestion as a result of excessive feed intake
deserve further attention and, hence, should be investigated further.
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