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Abstract: Identification of plant species is a crucial process in natural products. Ocimum, often
referred to as the queen of herbs, is one of the most versatile and globally used medicinal herbs for
various health benefits due to it having a wide variety of pharmacological activities. Despite there
being significant global demand for this medicinal herb, rapid and comprehensive metabolomic
fingerprinting approaches for species- and variety-specific classification are limited. In this study,
metabolomic fingerprinting of five Ocimum species (Ocimum basilicum L., Ocimum sanctum L., Ocimum
africanum Lour., Ocimum kilimandscharicum Gurke., and Hybrid Tulsi) and their varieties was performed
using LC-MS, GC-MS, and the rapid fingerprinting approach FT-NIR combined with chemometrics.
The aim was to distinguish the species- and variety-specific variation with a view toward developing
a quality assessment of Ocimum species. Discrimination of species and varieties was achieved using
principal component analysis (PCA), partial least squares discriminate analysis (PLS-DA), data-driven
soft independent modelling of class analogy (DD-SIMCA), random forest, and K-nearest neighbours
with specificity of 98% and sensitivity of 99%. Phenolics and flavonoids were found to be major
contributing markers for species-specific variation. The present study established comprehensive
metabolomic fingerprinting consisting of rapid screening and confirmatory approaches as a highly
efficient means to identify the species and variety of Ocimum, being able to be applied for the quality
assessment of other natural medicinal herbs.

Keywords: metabolomic fingerprinting; Ocimum species and varieties; medicinal herbs; chemometrics

1. Introduction

Plants are effective biochemists, producing potent biomolecules used since ancient [1]
times for curing a range of diseases in the form of traditional systems medicine [2]. More
than half of the global population is dependent on traditional medicines for health care,
as cited in a World Health Organisation report [3]. The global demand for medicinal
plants has increased considerably due to their proven effectiveness in treating various
diseases [4]. The beneficial medicinal effects of plant materials result from the combination
of secondary metabolites present in the plants, according to the specific chemical structure
of each biochemical active compound [5]. The medicinal activity obtained from these wide
varieties of different phytochemicals is plant, tissue, species, or variety specific or taxonomy
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specific. In many parts of the world, medicinal herbs play a substantial part in diets as they
are key ingredients in many foods, beverages, pharmaceuticals, and cosmetics [4,6].

Ocimum, a genus of aromatic annual and perennial herbs in the family Lamiaceae, has
been used for thousands of years due to its diverse medicinal properties [7]. It is widely
distributed over temperature zones (warmer regions) of the world [8]. It has been used
for antioxidant and anti-inflammatory purposes as its extracts protect nerves and tissues
by preventing the generation of free radicals [7,9]. Furthermore, this plant is well known
for its anti-depressant and anti-aging properties due to the presence of a wide variety of
secondary metabolites [10]. Moreover, this plant is most popular in the culinary world, and
it is widely used in cooking, in many types of cuisines, and it is also used in food flavouring
and preservation [11,12]. Ocimum is known as the queen of herbs and is prominently
featured in various cuisines across the world including Italian, Vietnamese, Chinese, Thai,
Laotian, and Indian [11–13]. This plant contains a wide variety of antioxidants and has
anti-microbial properties, due to which it is widely used in food and beverages [7,14].
Further, this is an aromatic and medicinal plant with high economic value that is used
in the pharmaceutical and aroma industries [15]. Compared to most other herbs, the
taxonomy of the Ocimum genome is considered to be very complex. More than 100 species
have been recognised within the genus [16]. The quality control of such medicinal plants
is extremely challenging as it is not only limited to the botanical level but also given that
there are significant variations of chemical profiles within the same species [17]. Indeed,
the secondary metabolite expression in a given plant is a function of biotic, abiotic, and
genetic factors that specify species, varieties, and cultivars [18]. Effective identification
systems and robust methods for the species and variety classification of medicinal plants
are needed.

Most of the taxa classification is based on morphology (macro and microscopic identifi-
cation) and the colour of leaves [19]. These morphological properties frequently depend on
a range of environmental conditions, leading to ambiguity in the classification within the
genus, and there is enormous variation in the shape and colour of the leaves from different
species and within the varieties. In addition to these techniques, DNA-based methods
have been proven to be robust for the unambiguous identification of the medicinal plant
genus; however, these methods fail to identify the mixing of species that is responsible for
the lowering of the quality of medicinal plant products [16]. Furthermore, classification
based on volatile oil composition requires the distillation and fractionation of oils, and the
chemotype classification based on only one major volatile oil is erroneous as one plant may
contain two or more chemical compounds in nearly equal amounts [15,20,21]. In addition,
the overall oil profile of major constituents above the fixed threshold 20% of total essential
oil content should be considered.

Plant-metabolome-based fingerprinting methods are gaining more attention to address
the pitfalls of the previously mentioned techniques to determine metabolite fingerprints for
species-specific and variety-specific variation [22–25]. Nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS) are commonly used metabolomics platforms.
Although NMR is a non-destructive and straightforward procedure, limited number of
metabolites are identified due to the complex spectra of wider plant metabolome consisting
of primary and secondary metabolites [26]. The separation and identification of complex
spectra of metabolite profile obtained by MS-based analytical platforms are improved by
the coupling to a range of separation techniques such as gas chromatography and liquid
chromatography, the latter of which not only enhances the separation efficiency but also
improves the performance of MS. Liquid chromatography/gas chromatography coupled
to mass spectrometry have become central platforms in metabolomics studies, and the
recent application of these metabolomics platforms, specifically in natural products and
plant sciences, has gained more attention [27]. The resolution of hundreds of metabolites
with analyte-specific detection and the ability to identify unknowns make these MS-based
platforms suitable tool for fingerprinting studies. In addition to these, spectroscopic
methods are gaining more attention for metabolic fingerprinting as they are quick and
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non-destructive [28]. Spectroscopy has been used as a herbs and spices screening tool.
For example, Fourier transform infrared (FT-IR) has been used in a range of medicinal
herbs and natural medicine. Recently, medicinal herb metabolome fingerprinting has been
used for the assessment of various species and authenticity [28]. A significant number of
studies have been devoted to describing Ocimum essential oils [21,29,30], but relatively few
studies have been devoted to Ocimum leaves as there is a lack of a comprehensive and rapid
fingerprinting approach [16,31,32]. Given the fact that Ocimum leaves are used for various
medicinal uses and to add distinctive flavours and aromas for the food and pharmaceutical
industries, there is a need for comprehensive and rapid metabolomic fingerprinting of
Ocimum species and varieties.

In the present study, an untargeted comprehensive multi-metabolomics approach was
used to investigate the phenotype of five different Ocimum species: Ocimum basilicum L.
(O. basilicum), Ocimum sanctum L. (O. sanctum), Ocimum africanum Lour. (O. africanum), Oci-
mum kilimandscharicum Gurke. (O. kilimandscharicum), and Hybrid Tulsi, which are the major
species used globally. GC-MS- and LC-MS/MS-based metabolomics combined with multi-
variate pattern recognition analysis was used to identify fingerprints with potential marker
metabolites of Ocimum species. The abundance of nine chemical classes of metabolites were
compared between these samples. Further, FT-NIR-based metabolic fingerprinting com-
bined with one-class classifier models, DD-SIMCA and K-nearest neighbor, were used to
classify the Ocimum species and varieties. Moreover, eight different varieties from Ocimum
species were studied. The aim of the study was to identify metabolite markers through
comprehensive and rapid metabolomic fingerprinting of Ocimum species and variants
because they are utilised for numerous therapeutic purposes and to offer distinctive flavour,
fragrance, and aroma to the food and the pharmaceutical industries.

2. Materials and Methods
2.1. Plant Materials

The leaves of five different Ocimum species, namely, O. basilicum, O. sanctum, O.
africanum, O. kilimandscharicum, and Hybrid Tulsi with different varieties, were collected
from the research field of the CSIR—Central Institute of Medicinal and Aromatic Plants
(CIMAP) in October 2021 (Table S1). CSIR-CIMAP has a history of Ocimum cultivation
for more than fifty years, and all the Ocimum varieties planted have been confirmed by
expert botanists. Ocimum plants with similar growth without diseases were randomly
selected. It is important to note that fresh Ocimum leaves are rarely available on the markets
and are usually dried and then packaged for storage, transportation, and processing. It
is also important to note that freeze-drying (lyophilisation) is an effective drying process
without compromising the quality [33]. Therefore, after harvest, the fresh Ocimum leaves
were rinsed with water and subjected to freeze-drying. The dried Ocimum leaves were
ground to a powder, passed through a mesh, sealed in tubes, and then stored at −80 ◦C
until further use.

2.2. Sample Preparation and LC-MS/MS Conditions

The dried powder of Ocimum leaves of each sample was weighed precisely and
extracted with 1.5 mL of 70% methanol (HPLC grade, Sigma Aldrich, St. Louis, MO, USA)
containing U13C6 glucose (an internal standard, Cambridge Isotope laboratories, Andover,
MA, USA). Briefly, the extraction process involved the sonication of samples (using an
ultrasonic water bath) for 10 min under ice-cold conditions, a further vortex mix for 30 min,
followed by centrifugation for 20 min at 13,523 rcf. The supernatant was collected into fresh
tubes. The above extraction process was repeated twice, and the combined extracts were
concentrated using lyophilisation (Alpha 2-4 LD plus, Christ, Germany). The dried samples
were reconstituted with 400 µL of 70% methanol (HPLC grade) for the LC-MS analysis.

The UPLC analysis was performed on an instrument of the Agilent 1290 series (Agilent
Technologies, Santa Carla, CA, USA), composed of a Binary pump (G7120A), autosampler
(G7129A), Column oven (G7130A), and diode array detector (G4212B). The UPLC separa-
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tion was accomplished on an Acquity UPLC BEH C18 1.7 µm 2.1 mm× 150 mm (Waters,
Milford, MA, USA) operated at 40 ◦C. Gradient elution was achieved using two solvents:
0.1% (v/v) formic acid aqueous solution (A) and 0.1% (v/v) formic acid in acetonitrile
(B) at a flow rate of 0.2 mL/min. The 30 min UPLC gradient elution program was as
follows: (i) 75%, from 0 to 20 min (B); (ii) 75%, from 25 min (B); (iii) 5%, from 26 to 30 min
(B) of total run time; the injection volume was 2 µL. The MS analyses were performed
on a QTOF–MS/MS instrument of the Agilent 6545 series (G6545A), connected with an
Agilent 1290 UPLC (Agilent technologies, Santa Clara, CA, USA) through a dual AJS ESI
interface. Nitrogen was used as the drying and collision gas in the ESI source. The ion
source parameters were as follows: drying gas flow rate, 10 mL/min; heated capillary
temperature, 330 ◦C; nebuliser pressure, 35 psi; VCap, fragmentor, skimmer, and octopole
RF peak voltages set at 4000, 180, 45, and 750 V, respectively. The detection was carried
out in positive and negative electrospray ionisation modes, and spectra were recorded
by MS scanning in the range of m/z 80–1500. The MS/MS analyses were carried out by
data-dependent acquisition, and the collision energy was set at 10–30 eV. Mass Hunter
software version B.07.00 (Agilent Technology) was used to control the LC-MS/MS system,
data acquisition, and processing.

2.3. Sample Preparation and GC-MS Conditions

The lyophilised samples of different varieties of Ocimum were stored in air-tight
containers at −80 ◦C after being treated with liquid nitrogen to prevent metabolic activity.
Before extraction, dried leaves were ground using a mortar and pestle. The dried powder
of the leaves of each sample was weighed precisely and we added 1.5 mL of 70% methanol
(HPLC grade) containing 10 µg/mL uniform 13 C6 glucose (an internal standard for relative
quantification); following this, the mixture was vortexed vigorously for 10 min and then
sonicated for 30 min at 20 using an ultrasonic water bath (53 kHz). Extracts were then
vortexed vigorously for 40 min and centrifuged at 13,523 rcf for 20 min at 21 ◦C to remove
plant debris. The supernatant was collected and transferred into a clean tube, and after
the extraction of each sample, the supernatant was concentrated by lyophilisation. QC
samples were prepared by pooling aliquots (10 µL) from all extracted samples. QC samples
were dried again completely using the lyophiliser. The dried samples were resuspended in
60 µL of methoxyamine hydrochloride solution in pyridine (20 mg/mL), then vortexed for
thorough mixing and thereafter incubated in a thermomixer for 2 h at 37 ◦C with 60 rcf.
MSTFA (110 µL) (Sigma Aldrich, St.Louis, MO, USA) was then added to each sample, and
then we vortexed all the samples and incubated in a thermomixer for 30 min at 37 ◦C with
60 rcf and injected the samples into GC-MS for analysis.

The GC-MS analysis was performed using an Agilent Technologies 7980A gas chro-
matography system with the 5977A mass selective detector (Santa Carla, CA, USA). The
HP5-MS column with a dimension of 30 mL × 250 µm with film thicknesses of 0.25 µm
was used for obtaining the peak separation in the chromatogram. Helium in a split ratio of
3:1 and a flow rate of 1.5 mL/min was used as the carrier gas. The running condition for
the samples was 70 ◦C for 2 min as initial hold and heating ramp of 12.5 ◦C/min until the
temperature reached 295 ◦C, and finally, with a ramp rate of 25 ◦C/min, the temperature
reached 320 ◦C, with 5 min as a final hold. Mass spectrometry was conducted at 230 ◦C as
a transfer line and ion source temperature, while 150 ◦C was the quadrupole temperature,
70 eV the ionisation potential, and 40 to 700 the atomic mass units scan range. Identification
of the compounds was performed by comparing their retention indices with those of known
compounds obtained by injecting a mixture of standards containing a homologous series of
C7–C30 alkanes analysed in the same column under the same chromatographic conditions.

2.4. FT-NIR Spectroscopy Analysis

FT-NIR spectra were acquired using the ANTARIS II FT-NIR spectrometer (Thermo
Scientific Co., Waltham, MA, USA) equipped with an interferometer and an integrated
sphere. Approximately 1 g of weighed powdered samples were placed in glass vials, and
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spectra were recorded in the range of 10,000–4000 cm−1 by using 64 scans. The FT-NIR raw
datasets were measured with a spectral resolution of 4 cm−1, resulting in 1557 variables.
The FT-NIR reflectance spectra were expressed as log (1/R), where R is the reflectance. In
order to remove any systematic variation in the model, sample spectra were randomly
generated. All spectral measurements were carried out at room temperature (26 ± 1 ◦C).

2.5. Data Processing and Analysis

The raw LC-MS and GC-MS files were processed using Agilent Mass Hunter software
and Progenesis. Automated peak detection, retention time alignment, and peak matching
were performed, and the data matrix consisted of Rt/(m/z); samples and intensities were
further used for statistical analysis [24,34]. Total area normalisation of samples and scaling
were performed to make features more comparable in magnitude to each other. Multivari-
ate statistical analysis was performed by using the online platform R. Principal component
analysis (PCA) was performed in order to have a better visualisation of all the information
contained in the dataset. To further identify the differential metabolites that account for the
separation between groups, supervised PLS-DA was used [35]. The developed PLS-DA
model was validated using the leave one out cross validation method, and its quality was
assessed on R2 and Q2 scores [36]. Furthermore, this model was validated using 1000 times
permutation tests [36]. The PLS-DA model generates variable importance in projection
(VIP) scores. Metabolites with VIP values greater than 1 were identified as potential dif-
ferential compounds [37]. The unpaired t-test was used to perform univariate analysis.
Hierarchical cluster analysis was performed for identifying relatively homogenous clusters
of various sample groups on the basis of measured characteristics. For LC-MS, metabolites
with mass error less than 5 ppm were considered, and further MS/MS identification of
metabolites were performed. These were identified using Metlin, HMDB, PubChem, and
KEGG libraries and using an inhouse library. An Automated Mass Spectral Deconvolu-
tion and Identification System (version 2.0, NIST, Gaithersburg, MD, USA) was used to
perform deconvolution, which enabled us to extract the clean mass spectra from a complex
process and helps in the correct identification of the metabolites. The spectra obtained after
deconvolution were compared with the pure spectra of standards, when available, and the
spectra available, with the NIST library (a match quality of 90% minimum was used as a
criterion (v 2.2 g distributed with NIST 2014, USA)) [38].

2.6. One Class Classification Model

MATLAB R2021a version 9.10 (MathWorks, Inc., Natick, MA, USA) was used for
performing DD-SIMCA models [35]. This one class classifier method is meant to distinguish
objects of one target class from all other objects and classes. R version 3.4.1 was used for
performing K-nearest neighbour classification [39,40].

3. Results and Discussion

Plant species identification is one of the essential aspects. Identification of species
or a variety of natural medicinal herbs is of great interest to select the correct plants with
specific pharmacologically active secondary metabolite profiles, ensuring no adulteration
along its complex production chain, and protecting the product’s commercial value. There
is a growing body of evidence that metabolic fingerprinting can be used to identify the
species/variety characterisation of natural medicines. Despite Ocimum being widely used
across the world as a traditional medicine and in pharmaceutical and food industries to
add a distinctive flavour and aroma to foods, the comprehensive and rapid metabolic
fingerprinting of species and varieties of this herb has not been well defined. Therefore, the
LC-MS, GC-MS, and FT-NIR-based comprehensive metabolic fingerprinting approach was
employed to identify marker compounds and spectral fingerprints to classify samples on
the basis of species/varieties.



Metabolites 2023, 13, 122 6 of 18

3.1. LC-MS-Based Metabolic Profiling of Ocimum Leaves Identified Species-Specific Variation

Untargeted metabolite profiling using LC-QTOF-MS was performed in both ESI (+)
and ESI (−) ionisation modes to cover the maximum metabolome of Ocimum samples. The
corresponding QC plots for pooled quality control samples explained the tight clustering
of samples, as shown in Figure S1A,B. The corresponding TIC of the acquired metabolite
profiles in both ESI (−) and ESI (+) ionisation modes are shown in Figures S2 and S3,
respectively. PCA was performed to gain a better visualisation of all the information
presented in the datasets collected as it was possible to identify the differences among the
various sample groups by projecting dataset objects into the space of the first few principal
components. The unsupervised PCA obtained from the LC-MS spectra of all samples
revealed the general structure of the complete dataset, in which the first two principal
components accounted for 47.4% and 50.8% of the total variation in negative ionisation
mode and positive ionisation mode, respectively (Figure S4A,B). Supervised PLS-DA was
further performed to identify a small number of linear combinations of the original variables
that described most of the variability of the metabolite profile of the five different species of
Ocimum samples. As presented in Figures 1B and S5, five different clusters corresponding
to five different Ocimum species were identified in the PLS-DA scores plot for both (+)
and (−) ionisation modes, in which the first two components cumulatively accounted for
34.9% variation in negative ionisation mode and 46.7% variation in positive ionisation
mode, and with the first component explaining (23.9% for ESI negative mode; 36.1 for
ESI positive mode) the variation between Ocimum sanctum samples from the remaining
four species O. basilicum, O. africanum, O. kilimandscharicum, and Hybrid Tulsi and the
second component explaining (11% for ESI negative mode; 10.6% for positive mode) the
variation between Hybrid Tulsi and O. sanctum samples from O. basilicum, O. africanum,
and O. kilimandscharicum samples.

The corresponding loading plot responsible for the clustering of five different Ocimum
species samples is shown in Figure S6. Tenfold cross-validation was further performed to
find the predictive accuracy and fit of the polynomial model (Figure S6A,B). The PLS-DA
cumulative values with Accuracy = 1.0, R2 = 0.9982, Q2 = 0.9949 for negative ionisation
mode and Accuracy = 1.0, R2 = 0.9993, Q2 = 0.9965 for positive ionisation mode showed a
good fit of the model. Furthermore, to assess the statistical significance of these deceptively
highly predictive multivariate models, permutation tests were conducted by validating the
models with 1000 permutation tests (Figure S7C,D). From the analysis of these distributions,
the significance of the power of the optimal models to predict the Ocimum sample metabolite
profile was determined to be p < 0.001. To correlate different Ocimum sample groups,
Pearson correlations were performed between sample groups, and each Ocimum species
sample group had a strong positive correlation with the corresponding sample groups
(Figure 1C). In total, 3626 metabolite features were detected both in positive and negative
ionisation modes. The identified metabolites were grouped into nine different chemical
classes, including terpenes, amino acids, phenolics, lipids, flavonoids, anthraquinones,
sterols, sugars, and aromatic compounds. Unsupervised hierarchical cluster analysis was
performed for the quantitative analysis of nine metabolite classes from these five different
Ocimum species samples (Figure 2A). O. basilicum, O. africanum and Hybrid tulsi, and O.
kilimandscharicum were clustered together while leaving O. sanctum samples separately.
There was a relatively higher quantity of terpenes and phenolics present in O. basilicum
samples, while O. africanum contained a high concentration of amino acids. Conversely,
high quantities of flavonoids, phenolics, anthraquenones, sterols, sugars, and aromatic
compounds were present in O. sanctum samples. Importantly phenolic and flavonoid
metabolite classes were responsible for the species-specific discrimination of Ocimum
samples according to VIP values (Figure 2B).
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In the present study, key flavonoids were identified as significant marker metabolites
for the differentiation of species-specific Ocimum samples (Figure 3). These flavonoids
are derived from the phenylpropanoid and flavone synthesis pathway [41]. The crucial
function of flavonoids in plants are to protect them against various abiotic (salt, drought,
UV radiation, and heat) and biotic stresses such as pathogen and herbivore attacks [42].
Plants use them as one of their defence mechanisms against oxidative damage and to
combat fungal infections of plant leaves. Importantly, flavonoids quench the ROS by
reducing the singlet oxygen levels, hindering of enzymes, lipoxygenase, xanthine oxidase,
monooxygenase, and cyclooxygenase involved in ROS generation and help in the recycling
of other antioxidants in plants. In the present study, high concentrations of apigenin
apigenin-7-O-glucuronide, kaempferol, and cirsilineol were present in O. sanctum samples
in comparison to other Ocimum species. Conversely, high concentration of gardenin B was
present in O. basilicum and O. kilimandscharicum samples in comparison to other species. A
relatively high concentration of kaempferol-3-O-rutinoside was observed in Hybrid Tulsi
and O. basilicum and high concentration of kaempferol was observed in O. sanctum.
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Rosmarinic acid is an ester of 3,4-dihydroxyphenyllactic acid and caffeic acid, and both
were found abundance in plants of the Lamiaceae family biosynthesised from phenylpropanoid-
and tyrosine-derived pathways [43]. Plants use this antioxidant phenolic compound for
their defence system [43]. In the present study, high concentrations of rosmarinic acid were
present in O. sanctum samples in comparison to other species. Carvacrol is a monoterpene
phenol with an abundant presence in many aromatic plants. This metabolite is produced
through the methylerythritol (MEP) pathway obtained from isopentyl diphosphate (IDP)
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and dimethylallyl diphosphate (DMADP) in plastid [44]. In the present study, a relatively
high concentration of carvacrol was present in O. kilimandscharicum samples in comparison
to other Ocimum species. Salvianolic acid, a phenolic metabolite derived from the phenyl-
propanoid pathway, promotes osmotic stress survival in plants. In the present study, a
relatively high concentration of levels of this metabolite was found in Ocimum basilicum
in comparison to other Ocimum species samples. Carvacrol, a monoterpenoid phenol, is
derived mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids.
This molecule is known for its high antimicrobial activity. Substantial concentration of
carvacrol was found in O. kilimandscharicum. Caftaric acid, a phenolic acid, provides plant
better UVB protection [45]. In the present study, a high concentration of caftaric acid was
found in O. africanum, O. basilicum, and O. sanctum samples. Further, the concentrations
of phenolic acid metabolites coniferaldehyde (precursor of eugenol) and protocatechuic
acid were found to be relatively higher in O. sanctum samples and Hybrid Tulsi samples,
respectively, in comparison to other samples. Random forest classification classified all
samples correctly with an OOB error 0 (Figure S8). Further untargeted metabolite profiling
classifies species variety-specific variation of Ocimum samples (Figure S9).

3.2. GC-MS-Based Metabolic Fingerprinting Identified Ocimum Species-Specific Variation

The GC-MS chromatographic profile of five Ocimum species is shown in Figure 4A.
A tight clustering of QC samples explains the repeatability of the analytical system used
for untargeted metabolite profiling (Figure S9A). Initially, a non-parametric multivariate
analysis method, PCA, was used to project GC-MS spectra into lower dimensional space so
that inherent data structure with reduced dimensional representation of original data can
be revealed. The PCA model obtained revealed a general structure of the complete dataset,
in which the first two principal components cumulatively accounted for 50% of the total
variation, with PC1 accounting for 29.6% of the variation discriminating O. sanctum species
samples from the other four species (Figure S9B). PC3 with 20.4 variation explains the
variation of O. basilicum and O. africanum from the other two species Hybrid Tulsi and O. kil-
imandscharicum. A supervised PLS-DA was also performed to find a small number of linear
combinations of the original variables that described most of the variability of metabolome
of the Ocimum samples from five different species. As presented in Figure 4, five different
clusters were identified in the PLS-DA scores plot, in which two components cumulatively
accounted for 45.1% of the total variation with first component explaining (28.1%) variation
between O. sanctum and O. basilicum, O. africanum, Hybrid Tulsi, and O. kilimandscharicum
samples and the second component explaining the variation between Hybrid Tulsi, O.
kilimandscharicum, O. africanum, and O. basilicum samples (Figure 4B). The corresponding
loading plot that was responsible for the observed separation between Ocimum species
samples is shown in Figure 4C. Fivefold cross-validation was further performed to find the
predictive accuracy and fit of the polynomial model (Figure S11A). A permutation test was
performed to assess the statistical significance of these apparently highly predictive multi-
variate models. For this, the supervised models were validated using 1000 permutation
tests (Figure S11B). From the analysis of these distributions, the significance of the power of
the optimal models to predict the metabolic profiles of sample groups was determined to be
p < 0.001. Specific metabolites responsible for the species-specific discrimination of Ocimum
samples were further identified using VIP values obtained from the corresponding loading
plot (Table S3). Nine metabolites, in which four of them were the primary metabolites malic
acid, citramalic acid, ribose, and fructose, and the other five were the secondary metabolites
quininic acid, eugenol, gluconic acid, quercetin, and shikimic acid, were considered as
discriminatory markers to identify species-specific Ocimum samples (Figure 4D).
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Malic acid, a TCA cycle intermediate, plays a crucial role in stomatal opening and
closing in plant leaves [46]. Furthermore, this metabolite in mitochondria acts as a common
reserve anion in plant vacuoles [46]. Citramalic acid, an analogue of malic acid, was also
detected in Ocimum samples. This is a methyl derivative of malic acid derived from the
C5-branched dibasic acid metabolism that takes place in the chloroplast stoma [46]. In
the present study, a high concentration of malic acid and citramalic acid were present in
O. kilimandscharicum in comparison to the other Ocimum species samples.

Ribose is a monosaccharide produced in plant cells through the pentose phosphate
pathway that is essential for ATP production [47]. In addition to its critical role in en-
ergy production, this five-carbon chain sugar is a vital component of the synthesis of
biomolecules, DNA, RNA, and acetyl coenzyme A [46,47]. Supplementing ribose exter-
nally in the soil/diet enhances plant growth. Furthermore, this metabolite helps plants
to incur additional stress/shock following transplantation [48]. A high concentration of
ribose was found in Ocimum sanctum in comparison to other Ocimum species. Fructose,
a six-membered monosaccharide, is a secondary product of plant photosynthesis after
glucose. This molecule is the sweetest naturally occurring sugar, estimated to be twice as
sweet as sucrose with a fruity aroma. Further, this metabolite functions as a regulatory
sugar and interacts with signalling by plant hormones [49]. In the present study, a high
concentration of fructose was found in O. basilicum samples in comparison to other species.

Eugenol, a phenolic monoterpenoid derived from the phenylpropanoid pathway, is
usually found in aromatic herbal plants [43]. Plants use this secondary metabolite as a
defence molecule against microorganisms and pests, and as a floral attractant of pollinators.
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This molecule has high economic value as it has been widely used as an essential oil,
aroma ingredient, and food flavouring [50]. In addition, this molecule exhibits effective
antioxidant activity. In the present study, a high concentration of eugenol was found
in Ocimum sanctum samples in comparison to other Ocimum species. Shikimic acid is a
crucial metabolite in plant metabolism for the synthesis of aromatic amino acids, tyrosine,
tryptophan, phenylalanine, and vitamins, and the corresponding shikimate pathway is a
major link between primary and secondary metabolism, responsible for the synthesis of
different secondary metabolites [46]. In the present study, a high concentration of shikimic
acid was found in Hybrid Tulsi samples. Quercetin, a penta hydroxyl flavanol derived from
the phenylpropanoid pathway, potently provides plants with tolerance against several
abiotic and biotic stresses. In the present study, a high concentration of quercetin was found
in O. sanctum leaf samples in comparison to other Ocimum species samples. Further, the
random forest classification model classified samples with OOB error 0 (Figure S12).

3.3. Rapid Metabolic Fingerprinting with FT-NIR Identified Species- and Variety-Specific Variation
of Ocimum Samples

FT-NIR is a spectroscopic technique that has been widely using in the authentication
of herbal products and agricultural products, as well as in numerous natural product analy-
ses [25,28]. However, to date, the rapid spectroscopic method combined with chemometrics
has not been developed and applied to the authentication of species or varieties of Ocimum
herbs. In this study, eight different types of Ocimum plant leaves, namely, O. africanum,
O. basilicum variety 1 (OB-v1), O. basilicum variety (OB-v2), Hybrid Tulsi variety-1 (HT-v1),
Hybrid Tulsi variety-2 (HT-v2), O. kilimandscharicum (OK), O. sanctum variety-1 (OS-v1),
and O. sanctum variety-2 (OS-v2), were analysed using FT-NIR. Overall, 280 samples, with
each species/variety having 35 replicates, were analysed in the range of 10,000–4000 cm−1

using FT-NIR spectroscopy, and the spectral profile obtained is shown in Figure 5. In all
models, the best pre-processing was quantile normalisation followed by Pareto scaling.
The average profiles of all samples are shown in Figure 5. The differences were essentially
in the absorption intensities. FT-NIR peaks were attributed for stretching and bending
vibrations that characterised the functional groups: (i) 4200–4800 cm−1; (ii) 4800–5250 cm−1;
(iii) 5400–6000 cm−1; (iv) 6300–7200 cm−1; (v) 8000–8800 cm−1.
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Figure 5. FT-NIR-based rapid metabolic fingerprinting identified species- and variety-specific vari-
ation of Ocimum samples. (A) Images of eight different Ocimum samples. (B) FT-NIR spectrum of
average spectra of Ocimum samples from eight different varieties. (C) The corresponding PLS-DA
plot for the first component (27.4%) vs. second component (21.7%) differentiated the Ocimum species
and varieties.

From the spectral profiles obtained, it was observed that there were spectral differ-
ences in absorbance intensities of Ocimum samples. Chemometric models were built to
discriminate between and classify the samples according to their species/variety. Initially, a
preliminary exploratory analysis of the data using PCA was employed. The unsupervised
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PCA model obtained from FT-NIR spectra of all samples revealed the general structure of
the complete dataset, in which the first two principal components cumulatively accounted
for 62.5% of the total variation, with PC1 most importantly accounting for 39% of variance,
discriminating HT-v2, OS-v1, and OK from OA and OS-v2 samples (Figure S13). PC2 was
responsible for 23.5% variance for discriminating OS-v2 and HT-v2 samples from all other
Ocimum samples (Figure S13). Furthermore, supervised PLS-DA was performed addition-
ally to find a small number of linear combinations of the original variables, which was
predicted for the class membership, and that described most of the variability of the FT-NIR
metabolic profile of all Ocimum group samples. As presented in Figure 5C, eight distinct
clusters were identified in the PLS-DA scores plot, in which two components cumulatively
accounted for 49.1% of the total variation, with the first component explaining 27.4% of the
variation between OB-v1, OB-v2, HT-v1, HT-v2 and OS-v1, OS-v2, and OA and the second
component explaining 21.7% of the variation. PLS-DA was used to validate individual
models with 2/3 samples considered as the calibration set and the remaining 1/3 samples
considered as the validation set (Figure 6). The PLS-DA model, having 100% sensitivity and
100% specificity with 100% accuracy and 100% reliability, was obtained for the training sets
and validation sets for all samples of Ocimum groups. Table 1 shows the values obtained for
the merit figures for the complete PLS-DA model, and Figure 6 illustrates the corresponding
predictions of Ocimum sample groups. The calculated values for the DD-SIMCA model
using FT-NIR data are presented in Table 2, with 100% sensitivity of all Ocimum training
sample groups. For the test samples set, 100% specificity was obtained for all groups of
Ocimum samples.
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Figure 6. Predicted models for Ocimum samples by PLS-DA model. (A) HT-v1—Hybrid Tulsi variety
1; (B) HT-v2—Hybrid Tulsi variety 2; (C) OB-v1—Ocimum basilicum variety 1; (D) OB-v2—Ocimum
basilicum variety 2; (E) OS-V1—Ocimum sanctum variety 1; (F) OS-V1—Ocimum sanctum variety 2;
(G) OA—Ocimum africanum; (H) OK—Ocimum kilimandscharicum.
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Table 1. Calculated values for the merit figures for the PLS-DA model using FT-NIR data for Ocimum
species and varieties.

Complete Model

Training

Variety Sen (%) TFN (%) Spe (%) TFP (%) Acc (%) Rel (%)

HT-V1 100 0 100 0 100 100
HT-V2 100 0 100 0 100 100

OA 100 0 100 0 100 100
OB-V2 100 0 100 0 100 100
OB-V1 100 0 100 0 100 100

OK 100 0 100 0 100 100
OS-V2 100 0 100 0 100 100
OS-V1 100 0 100 0 100 100

TEST
HT-V1 100 0 100 0 100 100
HT-V2 100 0 100 0 100 100

OA 100 0 100 0 100 100
OB-V2 100 0 100 0 100 100
OB-V1 100 0 100 0 100 100

OK 100 0 100 0 100 100
OS-V2 100 0 100 0 100 100
OS-V1 100 0 100 0 100 100

Note: 70% of samples were considered as training set and 30% samples were considered as test set.

Table 2. Summarisation of the performance of the DD-SIMCA models for Ocimum variety samples.

Types PC α γ DOF (SD) DOF (OD) SEN SPE

HT-v1 2 0.010 0.01 1 1 100 100
HT-v2 2 0.010 0.01 1 2 100 100

OA 2 0.010 0.01 2 2 100 100
OB-v1 2 0.010 0.01 2 3 100 100
OB-v2 2 0.010 0.01 1 1 100 100

OK 2 0.010 0.01 1 2 100 100
OS-v2 2 0.010 0.01 1 1 100 100
OS-v1 2 0.010 0.01 3 3 100 100

Note: PCs denotes the number of principal components; DoF denotes the degree of freedom; SD denotes score of
distance; OD denotes orthogonal distance; SEN denotes the sensitivity of the model; SPE denotes the specificity of
the model; α and γ denote type I error and outlier significance level, respectively.

In the DD-SIMCA method, one class model was also used for classification. The model
was used to identify species- and variety-specific Ocimum samples. The method consists
of two-steps: Firstly, the decomposition of training data matrix by PCA and the secondly
classification of new sample set with the derived principal components, represented by the
acceptance area in the orthogonal distance (OD) vs. score distance (SD) as an accepted plot,
with tan α value. This α value specifies a type 1 error, i.e., false negative decisions. Here,
in the models, we considered performing external validation using 70% of the target class
samples from each species/variety samples in the calibration set, as well as the remaining
samples in the test. The models of the acceptance plots for training and test sets are shown
in Figure 7. One hundred percent sensitivity and specificity were obtained for all four
groups samples. The summary of DD-SIMCA performance is presented in Table 2.

Another supervised model, K-nearest neighbours, was used for the classification of
Ocimum samples. Initially, the complete model (built with 1557 variables obtained in the
FT-NIR) did not perform well. Classification using the top 18 variables (value less than 2%
of the original quantity) had better results for all Ocimum group samples. In this case, we
considered all 280 samples for the analysis. A total of 105 of 280 samples were randomly
selected for model validation, i.e., the test set. The remaining 175 samples were considered
as a training set. Factor K = 16 was used for classification in the region of 7500 to 4300 cm−1.
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The model classified all samples correctly with 100% sensitivity and specificity, and there
were no cases of false positives and false negatives. The corresponding results are presented
in Table S4.
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the acceptance plots. The acceptance plot for training set provides a graphic representation of the
acceptance area, the area inside the green curve and the red line is the outlier cut-off with threshold
α = 0.01. Authentic samples falling outside the green curve were considered extremes.

Upon analysing the profiles, we noted that spectral regions related to hydroxyl
(4817 cm−1 and 4913 cm−1) and C-O plus O-H combinations first overtone region (5210
to 5314 cm−1) were selected [51]. The variations in the absorption intensities of these
regions are related to the main differences in composition between eight different varieties
of Ocimum samples, justifying the selection of these variables.

Overall, the work presented here involves a comprehensive approach including both
FT-NIR-based rapid fingerprinting and mass-spectrometry-based confirmatory methods
for the identification of Ocimum species. The key strengths of the present work involve the
rapid screening of Ocimum samples without any sample destruction and without the need
of isolation of essential oils from Ocimum leaves for their species identification. Further,
mass-spectrometry-based complementary approaches with minimal sample preparations
for the species and variety confirmation of Ocimum samples are presented. Identification
of Ocimum species in real time in the field is challenging. The present study needs to be
further explored for the real-time screening of Ocimum leaves from the fields that would
greatly help farmers.

4. Conclusions

Natural medicinal herbs consist of many diversified metabolites and the classifi-
cation of species and varieties, and blends are difficult to accomplish. Comprehensive
metabolomic fingerprinting approaches may offer rapid and confirmatory metabolite fin-



Metabolites 2023, 13, 122 15 of 18

gerprinting for the classification of medicinal herbs. In this study, we presented for the
first time the species and variety discrimination of medicinal herb Ocimum samples using
rapid FT-NIR-based metabolic fingerprinting and LC-MS- and GC-MS-based untargeted
metabolomics with the aid of chemometrics including multivariate and one-class mod-
els. The high predictive ability of models including PLS-DA, DD-SIMCA, and KNN, in
which all samples were correctly classified, was demonstrated. Untargeted LC-MS-based
metabolomics identified flavanoids and phenolics as a major class of metabolites that distin-
guished species-specific variation of Ocimum samples. Moreover, metabolic fingerprinting
identified sub-variety classification of different Ocimum species. The key advantage of the
comprehensive metabolic fingerprinting system is that a large number of samples can be
screened using NIR-based fingerprinting and non-confirming samples can be referred to for
confirmatory analysis using LC-MS-based metabolite marker analysis. The present work
demonstrated that using a two-tiered system of the rapid fingerprinting method alongside
a confirmatory method is appropriate to classify Ocimum species and varieties. The present
strategy can also be used for the classification of other natural products and herbs with
various species, varieties, and chemotypes.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/metabo13010122/s1, Supplementary information is available alongside
the article. Figures S1–S13; Tables S1–S4. Figure S1: QC plots for (A) LC-MS neg mode; (B) LC-MS
pos mode. Figure S2: TIC metabolite profile Ocimum samples from five different species in LC-MS
neg mode. Figure S3: TIC metabolite profile Ocimum samples from five different species in LC-MS
pos mode. Figure S4: PCA plots for (A) LC-MS neg mode; (B) LC-MS pos mode. Figure S5: PLS-DA
scores plot for five different species of Ocimum samples acquired in LC-MS-positive ionisation mode.
Figure S6: PLS-DA loadings plot for the Ocimum species acquired in (A) LC-MS ESI (−) mode and
(B) LC-MS ESI (+) mode. Figure S7: PLS-DA validation results for Ocimum samples analysed by
LC-MS. Figure S8: Random forest classification of model Ocimum samples. Figure S9: Variety specific
variations of Ocimum samples. Figure S10: QC plot and PCA plot for Ocimum species samples
obtained by GC-MS. Figure S11: PLS-DA cross-validation results for Ocimum samples analysed by
GC-MS. Figure S12: Random forest classification of models for Ocimum samples acquired using
GC-MS. Figure S13: PCA analysis of FT-NIR spectral profiles of Ocimum samples from different
species and varieties. Table S1: Ocimum species and the varieties used in the present study. Table S2:
Discriminatory markers based on LC-MS/MS for Ocimum samples from different species. Table S3:
Discriminatory markers for Ocimum samples from different species. Table S4: Classification results
for test samples with K-Nearest Neighbors.
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