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Abstract: The main glucocorticoids involved in the stress response are cortisol and cortisone in
most mammals and corticosterone in birds and rodents. Therefore, these analytes are currently the
biomarkers more frequently used to evaluate the physiological response to a stressful situation. In
addition, “total glucocorticoids”, which refers to the quantification of various glucocorticoids by
immunoassays showing cross-reactivity with different types of glucocorticoids or related metabolites,
can be measured. In this review, we describe the characteristics of the main glucocorticoids used to
assess stress, as well as the main techniques and samples used for their quantification. In addition,
we analyse the studies where at least two of the main glucocorticoids were measured in combination.
Overall, this review points out the different behaviours of the main glucocorticoids, depending on
the animal species and stressful stimuli, and shows the potential advantages that the measurement of
at least two different glucocorticoid types can have for evaluating welfare.
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1. Introduction

Currently, stress is defined as a state of threat to homeostasis [1]. Glucocorticoids
are presently the group of biomarkers most frequently used to evaluate the physiological
response to stress [2]. The reason is that from a neuroendocrinological point of view, any
stressful stimulus triggers the release of the adrenocorticotropic hormone (ACTH), which
leads to the secretion of these molecules (Figure 1) [3–6].

The most common glucocorticoid used to assess stress in humans and many animal
species is cortisol [7]; although others such as cortisone [8] and corticosterone (this last
one in species such as rats and mice, birds, and reptiles) [9,10] can also be measured. In
addition, another way to assess the activity of the hypothalamic–pituitary–adrenal (HPA)
axis in stressful situations is via the determination of “total glucocorticoids”. The term
“total glucocorticoids” refers to what is measured when immunoassays with non-specific
antibodies showing cross-reactivity with different glucocorticoids or related metabolites
are employed [11].

This review has two main aims. The first one is to provide some general concepts
on glucocorticoids, with a special focus on the general characteristics of the main types of
glucocorticoids (cortisol, cortisone, and corticosterone), and on the assays and sample types
used for their measurement. The second one is to perform a comparative analysis of the
studies published in which at least two different types of glucocorticoids (cortisol, cortisone,
corticosterone, or total glucocorticoids) were measured in combination. The study of the
reports in which the combined use of two or more different types of glucocorticoids is
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performed is the main novel point of this review, which, overall, will contribute to a better
understanding of the different glucocorticoids that can be used to evaluate stress and
welfare (understanding welfare as the presence of normal biological functioning and an
adequate emotional state [12]) and the possibilities of their combined use.
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Figure 1. Schematic representation of glucocorticoid release following a stressful situation.

2. General Characteristics of the Main Glucocorticoids

Glucocorticoids are a group of endogenous adrenal hormones with a 21-carbon skele-
ton that are derived from cholesterol and that are released in a stressful situation. When
released, they bind mainly to the corticosteroid-binding globulin (CBG), making them
available for use at systemic or tissue level [13]. Their function is performed by intracellular
binding to glucocorticoid receptors (GRs), which belong to the family of nuclear recep-
tors [14]. Although the name “glucocorticoids” originates from their effects on plasma
glucose, they are also involved in catabolic metabolism, inflammatory and immune re-
sponse, and other physiological functions [15,16].

The main glucocorticoids involved in the stress response are cortisol, cortisone, and
corticosterone (Table 1). Their concentrations allow the species to be classified as cortisol-
dominant (most mammals) or corticosterone-dominant (such as rats, mice, birds or reptiles).
Cortisone is produced mainly in the cortisol-dominant species, and its concentration de-
pends on the activity of the 11β-hydroxysteroid dehydrogenase (11β-HSD) type 2 enzyme,
which is expressed mainly in kidney, colon, and salivary glands [14].



Metabolites 2023, 13, 106 3 of 13

Table 1. Main glucocorticoids and their main characteristics.

Cortisol Cortisone Corticosterone

Formula

11β,17α,21-trihydroxypregn-4-
ene-3,20-dione [17]

1
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Structural differences An extra hydroxyl group
attached to the 17th carbon [20].

A ketone group attached to the
17th carbon [21].

No extra hydroxyl group on the
17th carbon [20].

Metabolism

Synthesised from pregnenolone
in adrenal gland.

Inactivated mainly in the kidney
by 11β-hydroxysteroid

dehydrogenase (11β-HSD) type
2 into cortisone [22,23].

Transformation in the liver,
lungs, ovaries, and central

nervous system by 11β-HSD
type 1 into cortisol [24].

Derived from pregnenolone in
adrenal gland [19].

Activity Active molecule [25] Inactive molecule Active molecule

Half-life In plasma: 66 min
In tissues: 12 h [26,27] In plasma: 90 min [21] In plasma: 60–90 min [28]

Predominant species It is the main glucocorticoid in
most mammals [29] Same species as cortisol

It is the main glucocorticoid in
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due to a lack of the enzyme 17-α
hydroxylase [9]

1 Cortisol. (s.f.). ChEBI. https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:17650 (accessed on 15
November 2022); 2 Cortisone. (s.f.). ChEBI. https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:16962
(accessed on 15 November 2022); and 3 Corticosterone. (s.f.). ChEBI. https://www.ebi.ac.uk/chebi/searchId.do?
chebiId=CHEBI:16827 (accessed on 15 November 2022).

In addition, glucocorticoid metabolites derived from 5α- or 5β-reductions, hydrox-
ylation, or reductions of the functional group, such as 11β-hydroxyaetiocholanolone, 11-
oxoaetiocholanolone I and II, and 5α-pregnane-3β,11β,21-triol-20-one [30,31], can be mea-
sured. These are usually analysed in faeces [32–34] because of the variety of glucocorticoid-
related metabolites present in them. In this line, the term “faecal corticoid metabolites”
(fGCM) instead of “faecal total glucocorticoids” has been used since there are metabolites
present in the faeces that can also potentially be measured [29].

3. Measurement

In general, there are two types of assays for the quantification of glucocorticoids:

(1) Those using techniques based on the reaction of an antibody with the analyte to be
measured, such as radioimmunoassay (RIA), enzyme immunoassay (EIA), chemilumi-
nescence, and, more recently, bead-based luminescent amplification assays (AlphaL-
ISA). RIA assays are currently used with less frequency due to the need of special
facilities and the radioactive nature of some components.

(2) Techniques based on the direct quantification of the analyte, including high-performance
liquid chromatography (HPLC) [35,36] and liquid chromatography–mass spectrome-
try (LC-MS/MS) [37,38], with the latter being the most sensitive [8].

The main methods, with some selected references as examples of applications, used
for the measurement of each type of glucocorticoid are listed in Table 2.

https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:17650
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:16962
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:16827
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:16827


Metabolites 2023, 13, 106 4 of 13

Table 2. Main methods used for glucocorticoid measurement.

Analyte Analytical Method Reference

Cortisol

EIA [34,39,40]

RIA [41,42]

Chemiluminescence [43]

AlphaLISA [44]

HPLC [35,36]

LC-MS/MS [37,38]

Cortisone

AlphaLISA [44]

UHPLC-MS/MS [45,46]

LC-MS/MS [47]

LC-MS3 [48,49]

Corticosterone
EIA [50,51]

RIA [52,53]

Total steroids
EIA [54–56]

RIA [57,58]

Glucocorticoids can be measured in different sample types. Although blood has been
traditionally frequently used, the stress that individuals suffer from blood collection [29]
can interfere with the results. In this line, non-invasive alternatives, such as saliva, hair,
faeces, or feathers, are becoming increasingly important [40,59–61].

4. Studies Where Cortisol and Cortisone Were Measured in Combination
4.1. Studies on Animals
4.1.1. Studies on Pigs

Cortisol and cortisone were measured in blood using LC-MS/MS to determine the
effect of minimally invasive heart catheterization on animal welfare [62]. For both analytes,
a significant increase in basal levels after catheterization was observed, although this
increase was greater in cortisone (10-fold) than in cortisol (1.5-fold). This increase occurs
earlier in cortisol values; however, cortisone levels remain elevated for a longer time. For
this reason, the author considers that measuring both glucocorticoids is important for a
better interpretation of the results.

In another report, cortisol and cortisone were measured in plasma and also in the
saliva of pigs using LC-MS/MS [63]. This study had a control group and an experimental
group that was subjected to a stressor (nasal snare), and samples were obtained at baseline,
directly after stress and 30 min after the stimulus [63]. The experimental group showed
significantly higher concentrations of both cortisol and cortisone than the control group
in saliva samples, with this difference being maintained at 30 min in the case of cortisol.
These differences before and after stress in both glucocorticoids were smaller in plasma
than in saliva, which the author relates to the stress in the control group caused during
blood collection. Both plasma and saliva cortisol concentrations were higher than cortisone
concentrations. This, together with the lower variability of results, makes cortisol more
reliable than cortisone for these authors.

Both analytes were also measured in pig hair at different reproductive periods using
AlphaLISA technology [44]. Cortisone concentrations and the cortisone/cortisol ratio
increased to a greater extent than cortisol during periods of higher stress due to an increase
in the activity of 11β-HSD type 2. The authors recommend measuring both analytes—
cortisol and cortisone—because this allows estimating the activity of 11β-HSD type 2, which
was the most sensitive marker to detect chronic stress in their experimental conditions.
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4.1.2. Studies on other Species

Studies were carried out on captive-bred rainbow trout, where plasma and water-
released cortisol and cortisone were measured by RIA and LC-MS/MS, after the trouts
were suspended in the air for 1.5–3 min as a stressor [64,65]. In both plasma and water,
cortisol and cortisone levels increased significantly two hours after stressor application,
with cortisol showing higher values than cortisone. This makes cortisol a more reliable
biomarker according to the authors.

Cortisol and cortisone were also assessed in sheep hair by EIA after bacterial inocula-
tion of the right foot as a model of chronic stress [66]. Samples were taken one week before
and three weeks after inoculation. Overall, hair cortisone levels were higher than hair
cortisol. Furthermore, cortisone levels increased significantly two weeks after inoculation
and cortisol levels decreased from baseline. According to the authors, these results may be
due to an increase in the local action of the enzyme 11β-HSD type 2 as a result of stress.

4.2. Studies on Humans

In humans, there are more studies than on animals in which cortisol and cortisone are
measured. These studies could be divided into those assessing acute stress, those assessing
chronic stress, and those that studied selected diseases.

To evaluate acute stress, cortisol and cortisone were measured by LC-MS/MS in the
saliva and serum of healthy men, with one group undergoing a stressful psychophysio-
logical situation (Trier Social Stress Test, TSST) and a control group [67]. In this report,
salivary cortisone was considered a promising stress marker since, after application of the
TSST, it was significantly higher than cortisol levels, possibly due to its rapid generation
from cortisol by the action of the 11B-HSD type 2 enzyme. Moreover, salivary cortisone
correlated better with serum-free cortisol and other stressor parameters (anxiety and heart
rate) than salivary cortisol, in line with other studies [68,69].

Cortisol and cortisone concentrations were also compared in the saliva and plasma of sub-
jects undergoing intense physical exercise using an immunoassay and a chemiluminescence-
based assay, respectively [70]. A baseline sample was taken and samples at 5 and 20 min after
exercise in the morning and afternoon were taken. Samples were also obtained the follow-
ing day at the same time but without exercise, serving as the control. Plasma and salivary
cortisol and cortisone showed different release patterns throughout the day due to circadian
rhythms. In general, salivary cortisol increased more and this increase was maintained longer
than salivary cortisone, although the cortisone concentration was higher than the cortisol
concentration. In plasma, the increase in both analytes was similar but lower than in saliva.

To evaluate chronic stress, hair cortisol and cortisone values were measured by
LC/MS [71], HPLC [49], and LC-MS [72] in people with emotional and work-related
stress and pregnancy status. All three studies had similar results, showing that cortisone
was the metabolite showing major increases under the effect of the long-term stressor. This
may be due to an increase in 11B-HSD type 2 associated with the chronic stress [49].

Cortisol and cortisone were also used to study diseases such as Cushing’s syn-
drome [73,74], metabolic syndrome [75], or obesity [76]. Both analytes were increased
in these situations, having a similar value for assessing these diseases.

As can be observed, both glucocorticoids were measured in different sample types.
Interestingly, cortisol and cortisone correlations between saliva and hair were studied using
LC-MS/MS [77]. In this report, saliva samples of female students were collected on three
consecutive weekends, while a single hair sample was taken two weeks after the last saliva
collection. The results determined that there was a good correlation when hair cortisol and
cortisone values when compared to mean values of the three saliva samples.

Studies described in the previous paragraphs are summarised in Table 3. They are
classified by species, and the analytical method, type of stressor, and values obtained
are indicated.
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Table 3. Examples where cortisol and cortisone were measured in combination after a stressor.

Species Study Cohort Analytical
Method Stressor Matrix

Values (Plasma/Saliva: ng/mL; Hair: pg/mg;
Water-Borne: ng/L−1)

Metabolite Before
Stressor

After
Stressor

Pig

[63] 14 LC-MS/MS Nasal snare
Saliva (Sl)
Plasma (P)

Cortisol Sl: 0.06–0.25 *
P: 100 *

Sl: 1–4 *
P: 60–140 *

Cortisone Sl: 0.01–0.125 *
P: 19 *

Sl: 0.25-1 *
P: 17–33 *

[44] 32 AlphaLISA Farrowing Hair
Cortisol 31.9 33.7

Cortisone 119.9 527.2

[62] 25 LC-MS/MS Catheterisation Serum (S)
Cortisol 42.8 71

Cortisone 1.8 19

Human

[71] 197 LC/MS Emotional
stress Hair

Cortisol 3.2 3.7

Cortisone 5.9 7.4

[49] 239 HPLC Pregnancy Hair
Cortisol ND 3.75

Cortisone ND 14

[72] 229 LC/MS
Ocean-going
fishing 1–3

months
Hair

Cortisol 12.8 10.5

Cortisone 3.3 4.9

[67] 67 LC-MS/MS Trier Social
Stress Test

Saliva
Serum

Cortisol S: 2.2
Sl: 0.7

S: 17.5
Sl: 0.41

Cortisone 4.2 Sl: 9

[70] 12
EIA (cortisol)

Chemiluminescence
(cortisone)

GXT
(morning)

Plasma
Saliva

Cortisol P: 170
Sl: 2.6

P: 250
Sl: 4.9

Cortisone P: 37.5
Sl: 13.6

P: 72.1
Sl: 21.1

Others
species

[64] 120 LC-MS/MS Air exposure Plasma
Cortisol 10 * 55 *

Cortisone 10 * 40 *

[65] 12 RIA Air exposure Water-borne
Cortisol 1.1 25.2

Cortisone 0.7 8 *

[66] 24 EIA Bacterial
inoculation Hair

Cortisol 9 * 2 *

Cortisone 100 * 170 *

* Approximately (based on the graph presented in the referenced article).

5. Studies Where Cortisol and Corticosterone Were Measured in Combination
5.1. Studies on Animals
5.1.1. Studies on Cows

Cortisol and corticosterone concentrations in cow serum after the application of dif-
ferent stress models were evaluated by spectrophotometry, RIA, and EIA [78,79]. These
models were ACTH injection and intramammary bacterial infection, respectively. One hour
after ATCH injection there was a more than two-fold increase in cortisol levels, decreasing
again two hours post-injection, while corticosterone levels remained in similar concentra-
tions before and after injection [78]. Similarly, in the second model [79], cortisol showed
higher increases than corticosterone. A positive correlation between cortisol levels and
increased rectal temperature was also observed (r ≈ 0.7).

5.1.2. Studies on Birds

Cortisol and corticosterone concentrations were measured in plasma and feathers of
sparrows by LC-MS/MS [80]. The feathers analysed were from birds at the time of the
autumn moult, after the season of food abundance, and before winter stress. The analysis
of plasma samples determined the presence of circulating corticosterone, but no cortisol
levels were detected. Cortisol and corticosterone showed similar concentrations in feathers
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at the time of sampling, and an increase in both analytes in feathers was related to lower
survival in the next winter season. The authors indicate that this difference between plasma
and feather cortisol levels may be due to a localised secretion of cortisol in feather follicles
or skin.

Cortisol and corticosterone concentrations were measured in plasma and different
organs (bursa, thymus, spleen, and brain tissue) of starlings on the same day of hatch-
ing (P0) and ten days later (P10), before and after food restriction at each time [81]. The
measurement was carried out by RIA for corticosterone and EIA for cortisol. At P0, no sta-
tistically significant differences were found in plasma and tissue cortisol and corticosterone
before and after food restriction. At P10, there was a significant increase in corticosterone
levels in plasma and all tissues analysed and a significant increase in cortisol levels in
plasma, thymus, and brain after food restriction. However, in line with the previous report,
plasma cortisol levels were significantly lower than corticosterone levels, with values below
2 ng/mL, whereas corticosterone values had a mean of 8.30 ng/mL in basal conditions.

In addition, studies were carried out on plasma from farmed ducks to determine
cortisol and corticosterone levels by EIA and RIA respectively after transport and ACTH
injection [82,83]. In both cases, corticosterone levels were higher than cortisol at baseline
and showed a greater increase (up to 4.55-fold) after the stressor. However, cortisol concen-
trations showed similar dynamics and a good correlation with corticosterone levels, so the
authors consider it as an alternative to assess acute stress in this species.

5.1.3. Studies on Laboratory Rodents

Overall, rodents are considered corticosterone dominant species, with cortisol lev-
els being <1% of corticosterone levels [84]; however, there are rodent species such as
squirrels in which cortisol concentrations were found to be equal to or even higher than
corticosterone [85,86].

In mice, corticosterone and cortisol were measured by EIA and RIA, respectively,
to assess the response to acute (48 h of uninterrupted movement restriction and forced
swimming) and chronic (movement restriction 8 h/day for 23 days) stress [87]. During acute
stress, cortisol levels increased earlier and remained increased? longer than corticosterone
levels. When chronic stress was applied, while cortisol did not show any significant change,
corticosterone levels decreased significantly from day 1 onwards.

In hamsters, corticosterone and cortisol in serum were measured by RIA after chronic
restrictive stress and acute stress [88]. At basal time, corticosterone levels were higher
than cortisol levels. Following the acute stressor, the concentration of both glucocorticoids
increased, with corticosterone levels being higher than cortisol levels. However, after
chronic stress, there was only an increase in cortisol values.

In other rodent species such as tuco-tucos, an increase in cortisol after acute stress was
observed but corticosterone concentrations were not increased [86].

These data suggest that both hormones are independently regulated and that react
differently, possibly due to differences in the sensitivity of each glucocorticoid to the
hormone ACTH, depending on the species and the stressor, which is consistent with other
studies [89]. The high variability in the response leads to recommending the measurement
of both corticosteroids to assess adrenal function in rodents.

5.1.4. Studies on Other Species

In amphibians, water-borne cortisol and corticosterone produced by captive-bred Rana
berlandieri tadpoles were measured using an EIA [90]. An ACTH injection was used as a
stress model to compare both glucocorticoids. While cortisol release decreased after ACTH
injection, corticosterone levels in water after injection increased significantly. Therefore, the
authors considered that corticosterone reflects the stress response better than cortisol in
this experiment.
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5.2. Studies on Humans

Corticosterone circulates in the blood at levels 10–20 times lower than cortisol in
humans [91]. Therefore, it is not common to find studies that measure this glucocorticoid.
However, plasma corticosterone concentrations using an EIA after intense exercise were
determined [70], showing a similar increase to cortisol.

Studies described at this point are summarised in Table 4. They are classified by
species, and the analytical method, type of stressor, and values obtained are indicated.

Table 4. Examples where cortisol and corticosterone were measured in combination after a stressor.

Species Study Cohort (n) Analytical Method Stressor Matrix

Values (Plasma/Saliva: ng/mL; Faces/Tissues: ng/g;
Feathers: ng/g; Water-Borne: pg/g)

Metabolite Before
Stressor

After
Stressor

Cow

[78] 18
IDMS

(Isotope dilution and
spectrophotometry)

Injection of ACTH Serum
Cortisol 3–6 4.1–8.9

Corticosterone 2.4–3.5 3–4.1

[79] 10
RIA (cortisol)

EIA (corticosterone) LPS infection Plasma (P)
Cortisol 0.5 18

Corticosterone 0.4 2.8

Birds

[80] LC-MS/MS Moult
Plasma

Feathers (F)

Cortisol P: 0.17 P: 0
F: 4.4–75.5

Corticosterone P: 8.6 P: 13–17
F: 4.1–372.9

[81] 70
EIA (cortisol)

RIA (corticosterone)
Restraining (P10) Plasma

Tissues (T)

Cortisol P: 0.9 *
T: 0.5–1.5 *

P: 1.5 *
T: 1–2.2 *

Corticosterone P: 11 *
T: 2–8 *

P: 30 *
T: 5–20 *

Rodents

[88]
Not

specified RIA

Acute (A): supine
restraint

Chronic (C): cold
restraint (2–4/day)

Plasma
Cortisol 4 * A: 60 *

C: 15 *

Corticosterone 12 * A: 65 *
C: 15 *

[87] 6
RIA (cortisol)

EIA (corticosterone)

Acute: restraint,
forced swimming
Chronic: restraint

Serum
Cortisol 8–14 * A: 30–35 *

C: 15–30 *

Corticosterone 40–160 * A: 800–1200 *
C: 200–1000 *

Others
species [90] 17 tadpoles EIA ACTH injection Water-borne

Cortisol 4–5 * 3–3.5 *

Corticosterone 100–180 * 180–350 *

Human [70] 12 EIA Graded exercise
test Plasma

Cortisol 170 * 250 *

Corticosterone 14 * 47 *

* Approximately (based on the graph presented in the referenced article).

6. Studies Where Total Steroids and Selected Glucocorticoids Were Measured in
Combination

The measurement of faecal glucocorticoid metabolites to assess animal welfare, as an
alternative to plasma, is gaining importance in recent years, especially in wildlife. This is
due to the greater ease of sample collection, avoiding stress in animals, and the fact that
samples are less affected by daily variations [11,92]. In this point, we will differentiate
the studies carried out on cortisol-dominant species and those where the species are
corticosterone-dominant.

6.1. Studies on Cortisol-Dominant Species

Assays that were carried out for faecal glucocorticoid metabolite measurements in
cortisol-dominant species such as elephants, antelopes, tigers, and primates are based
on EIAs whose antibody has an affinity for the metabolite 11β-hydroxyetiocholanolone,
recognising cortisol metabolites with a 5ß-reduced structure [54,93–95].

Different studies have compared total steroid and cortisol values, obtaining diverse
results. Some studies in bears and monkeys in models of stress consisting of an ACTH
injection carried out several EIAs in faeces for different cortisol metabolites and also
measured cortisol. In these cases, the cortisol assay showed a higher increase after the
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stressor with less variation between baseline concentrations [96,97]. However, an EIA
against 11β-hydroxyetiocholanolone was the most sensitive to detect stress after a model
consisting of routine management in mandrills [98].

6.2. Studies on Corticosterone-Dominant Species

In a study in rodents, plasma corticosterone concentrations were compared with those
of corticosterone metabolites in faeces, measured by two different EIAs (a 5a-pregnane-
3b,11b,21-triol20-one EIA and an 11-oxoetiocholanolone EIA) after a stressor [99]. The
5a-pregnane-3b,11b,21-triol20-one EIA was the most sensitive to detect stress in this model.

7. Conclusions

There are three main glucocorticoids used to evaluate stress: cortisol, cortisone, and
corticosterone, which vary in their amounts in different sample types and animal species.
In addition, there is the concept of total steroids, which is used when immunoassays with
antibodies showing cross-reactivity with different glucocorticoids or related metabolites
are employed, being mostly used in faeces.

The examination of the reports included in this review, in which a variety of these
glucocorticoid types are measured together, gives two ideas that can be used for future
studies to assess animal stress or welfare status. One is the possibility of using a variety
of these glucocorticoids in combination, providing on some occasions more information
than assessing a single type. For example, the measurement of both cortisol and cortisone
in mammals allows the evaluation of the activity of 11β-hydroxysteroid dehydrogenase
in the case of using saliva or hair as a sample. The second is that, since the behaviours
of these specific glucocorticoids vary depending on the species and the stressor stimulus,
it would be recommend to do pilot studies to elucidate which glucocorticoid/s could be
more appropriate to be evaluated, if no previous references are available.
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