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Abstract: Sugarcane is essential for global sugar production and its compressed juice is a key raw
material for industrial products. Sugarcane juice includes various metabolites with abundances and
compositional balances influencing product qualities and functionalities. Therefore, understanding
the characteristic features of the sugarcane metabolome is important. However, sugarcane com-
positional variability and stability, even in pretreatment processes for nuclear magnetic resonance
(NMR)-based metabolomic studies, remains elusive. The objective of this study is to evaluate sugar-
cane juice metabolomic variability affected by centrifugation, filtration, and thermal pretreatments,
as well as the time-course changes for determining optimal conditions for NMR-based metabolomic
approach. The pretreatment processes left the metabolomic compositions unchanged, indicating that
these pretreatments are compatible with one another and the studied metabolomes are comparable.
The thermal processing provided stability to the metabolome for more than 32 h at room temperature.
Based on the determined analytical conditions, we conducted an NMR-based metabolomic study
to discriminate the differences in the harvest period and allowed for successfully identifying the
characteristic metabolome. Our findings denote that NMR-based sugarcane metabolomics enable us
to provide an opportunity to collect a massive amount of data upon collaboration between multiple
researchers, resulting in the rapid construction of useful databases for both research purposes and
industrial use.

Keywords: metabolomics; nuclear magnetic resonance; sugarcane juice; metabolite composition;
support vector machine; machine learning; harvest period

1. Introduction

Sugarcane is an indispensable crop for global sugar production and is used as feedstock
for sugar, bioethanol, and other industrial products. Sugarcane is typically cultivated in
tropical and subtropical regions in countries such as Brazil, India, and China. In Japan, sug-
arcane is commercially produced on the Nansei islands located in Okinawa and Kagoshima
prefectures where sugarcane cannot be replaced with other crops [1]. Therefore, sugarcane
plays a pivotal role in the economy, as well as the social and sustainable development in
the Nansei islands [2].

Although sugarcane improvement techniques are important for an efficient crop, feed-
stock, and industrial product production and quality improvements, it is hampered by
several factors such as higher polyploidy and a longer production cycle [3]. To tackle this
obstacle, omics approaches, including metabolomics, are potential biotechnological inter-
ventions to improve sugarcane quality and productivity [4]. Metabolomics is an approach
for the comprehensive detection and analysis of various metabolites produced by the com-
plex metabolic reactions in biological systems. Nuclear magnetic resonance (NMR), a key
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technique in the metabolomics, exhibits several advantages such as high reproducibility,
noninvasive measurement approach, and interinstitutional compatibility [5]. NMR-based
metabolomics is applied in various research fields including food science and nutrition
research [6,7].

In sugarcane research, the NMR-based metabolomic approach was successfully applied
for metabolite composition profiling, genotype discrimination, and metabolic biomarker
discovery. For example, Mahmud et al. reported distinct metabolomic profiles between
embryogenic and nonembryogenic callus tissues [8] and revealed the biochemical rela-
tionship between callus tissues and their culture media [9]. Sabino et al. demonstrated
higher chlorogenic acid accumulation in sugarcane leaves and its function as a natural
biopesticide in response to Diatraea saccharalis [10]. Using a combined approach of NMR
and mass spectrometry, Coutinho et al. explored metabolite biomarkers for a breeding
program of sugarcane cultivars in Brazil [11]. Ali et al. reported the metabolomic profiles
and antioxidant activity of sugarcane juice and its byproduct molasses [12]. In this sense,
NMR-based metabolomics is a powerful tool to analyze the sugarcane metabolome and is a
potential assistance tool for sugarcane quality and productivity improvement.

Sugarcane juice is a key raw material for industrial products such as refined sugar,
brown sugar, or molasses, and it is also consumed as a beverage. Sugarcane juice is also
used in the treatment of urinary diseases [13]. Sugarcane juice includes not only sucrose
but also various metabolites such as amino and organic acids, and their abundances and
compositional balances involve the product qualities and functionalities. Therefore, under-
standing characteristic metabolomic features and compositional variabilities in sugarcane
juice is important for quality control and consistent production in the manufacturing pro-
cesses. Moreover, sugarcane juice is a perishable product. However, little is known about
the compositional variability and stability of not a specific sugarcane metabolite, such as
sucrose, but the entire metabolome.

This study focused on the evaluation of metabolomic profiles and compositional
variabilities in sugarcane juice using an NMR-based metabolomic approach. Since little
information was available on how the NMR measurement pretreatment processes could
impact the metabolomic profiles, we evaluated the compositional variabilities during
the centrifugation, filtration, and thermal treatment processes for determining optimal
conditions to perform NMR-based metabolomic approach targeted for sugarcane juice
samples. Time-course variations at room temperature were also evaluated to determine how
long the metabolome would remain stable and unchanged. Based on the obtained analytical
chemical information, an NMR-based metabolomic approach was used to discriminate the
metabolomic differences during the harvest period to capture the trend and characteristics
in sugarcane juice compositional variabilities.

2. Materials and Methods
2.1. Plant Material

Sugarcane samples were cultivated at an agricultural field in the Tanegashima Research
Station, Kyushu-Okinawa Agricultural Research Center, NARO, Japan (30◦43′ N, 131◦04′ E).
The soil type in the field was Silandic Andosols. The agricultural filed has gentle slope
on east side with an altitude of 45 m. Average annual temperature and annual amount of
precipitation in this area is 19.6 ◦C and 2322 mm, respectively. The sugarcanes used in this
study included a total of 562 samples of 6 varieties (Harunoogi [14] (see also the related
website, https://www.jircas.go.jp/sites/default/files/seika/2019/2019_B06_A4_en.pdf)
(accessed on 1 August 2022), KTn03-54 [15], NCo310, Ni22, NiF8, and NiTn18) and dozens
of selected clones collected from the 4th selection, regional adaptability test, and local yield
evaluation in the sugarcane breeding program in Japan [1]. The sugarcane sets were planted
and the grown stalks were harvested in April and upcoming January, respectively. First
ratoon canes sprouted from the plant canes were harvested mainly in November (several
samples were harvested in early December). Second ratoon canes sprouted from the first
ratoon canes were harvested in November of the following year. These cultivations were
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repeated for three years between 2018 and 2020. Chemical fertilizer was applied three times
a year as one basal (7.2 g N m−2, 12.0 g P2O5 m−2, 6.0 g K2O m−2) and two top (4.5 g N m−2,
4.5 g K2O m−2) dressings. Irrigation was not applied for the sugarcane cultivation.

2.2. Sample Preparation

The head part of sugarcanes was removed from the stalk part. We then finely crushed
10 whole stalk parts using a shredder (KS-MS, Matsuo, Kagoshima, Japan) and subsequently
pressed 500 g of the finely crushed stalk using a Hotpress machine (CSS-NP-02H, Nittoku,
Chiba, Japan). The obtained sugarcane juice was located on ice within 30 min and stored at
−20 ◦C within several hours until further analysis.

2.3. Preparation for NMR Measurements

The sugarcane juice samples were immediately pretreated after thawing with shaking
at 1400 rpm for 10 min using a ThermoMixer comfort (Eppendorf GmbH, Hamburg,
Germany) at constant temperatures (55 ◦C, 65 ◦C, 75 ◦C, 85 ◦C, or 95 ◦C) to evaluate how
thermal treatment affects metabolite compositions. The samples were then centrifuged
at 4 ◦C and 15,000 rpm (20,630× g) for 10 min. To evaluate the filtration effects and
metabolomic characterization for the sugarcane harvest period, the sugarcane juice samples
were filtrated with a filter aid (super light 4–7 µm, Tokyokonno Co. Ltd., Tokyo, Japan). All
samples were mixed with a phosphate-buffered solution (100 mM K2HPO4/KH2PO4 and
10% deuterium oxide, pH 7.4) including an internal standard for NMR spectroscopy (1 mM
sodium trimethylsilylpropanesulfonate (DSS)-d6).

2.4. NMR Measurements

All NMR spectra obtained in this study were recorded on a Bruker Avance III HD
700 NMR spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped with a
5 mm Cryo TCI probe and an autosampler (SampleJet, Bruker BioSpin GmbH, Rheinstetten,
Germany). For the metabolomic analysis, two-dimensional J-resolved NMR measurements
were performed at 298 K using a slightly modified version of the Bruker standard pulse
program “jresgpprqf” with the following acquisition parameters; data points, 32 for F1
and 16 K for F2; number of scans, 8; number of dummy scans, 16; spectral widths, 43.8 Hz
for F1 and 11 ppm for F2. The obtained spectra were preprocessed using the TopSpin
software version 4.1.1 (Bruker BioSpin GmbH, Rheinstetten, Germany) and converted
into pseudo-one-dimensional 1H NMR spectra by skyline projection. The spectra were
subsequently processed by rNMR [16] running on the R software version 3.6.1 (R core team,
Vienna, Austria) [17] in order to convert the NMR signals into numerical values based on
the regions of interest (ROIs).

2.5. Data Analysis

The ROIs derived from and largely affected by sucrose, DSS, and the solvent were
excluded from further analyses. The dataset was normalized based on the signal intensity
of the DSS internal standard. The support vector machine (SVM) was performed using
an e1071 package coupled with a mean decrease accuracy method reported in a previous
study [18] running on RStudio desktop open source edition version 1.4.1717 (R version
4.0.2 (R core team, Vienna, Austria)) [19]. The model construction, hyperparameter op-
timization, and validation were performed by a repeated (n = 10) 3- and 5-fold double
(nested) cross-validation. The receiver operating characteristic (ROC) curve and the area
under the curve (AUC) were analyzed using an ROCR package. The metabolite annota-
tions were performed using the SpinCouple program [20] combined with validation by
reference to the Human Metabolome Database version 5.0 (https://hmdb.ca/) (accessed
on 5 July 2022) [21]. Significant differences were calculated using Welch’s t test.

https://hmdb.ca/
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3. Results
3.1. Metabolomic Evaluation of Compositional Variability in Sugarcane Juice

Since sugarcane juice is well-known to be perishable, we assumed that its chemical
composition might be changeable and unstable. Therefore, we evaluated if the NMR
measurement pretreatment could induce variability and stability in the sugarcane juice
chemical composition before evaluating the sugarcane harvest period-related metabolomic
profiles using our NMR-based metabolomic approach. For this analysis, we used the juice
of the “NiF8” sugarcane variety collected from an agricultural field in the Tanegashima
Research Station.

3.1.1. Filtration and Centrifugation Process-Related Effect

In general, the elimination of suspended solids in a sample solution is preferred for
solution-state NMR measurements. To eliminate any turbid materials in the sugarcane
juice samples, we performed filtration using a filter aid or centrifugation at 15,000 rpm
for 10 min. The comparison of the filtration and the centrifugation processes indicated
that the filtered sample solution treated was clearer than the centrifuged one, while little
difference could be observed between them in terms of signal pattern and intensities in the
NMR spectra (Figure 1). The NMR spectrum of the filtrated sample with no sugarcane juice
exhibited slight contamination, a small peak derived from acetic acid, and a very small
peak derived from formic acid using the filter or filter aid in the filtration process. This
contamination barely affected the NMR spectra due to the very small intensities of the
contaminants compared to the sugarcane juice components.
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3.1.2. Thermal Treatment-Related Effect

Thermal treatment is often applied as a pretreatment step for NMR measurements
in metabolomic studies. The thermal treatment conditions are different with respect to
each previous study (e.g., the temperatures set to 55 ◦C [22] or 90 ◦C [23]). To evaluate
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how thermal treatment affects the NMR spectra, the sugarcane juice samples were heated
for 10 min at constant temperatures set to 55 ◦C, 65 ◦C, 75 ◦C, 85 ◦C, or 95 ◦C. The signal
pattern and intensities in the NMR spectra were almost identical with or without a series of
thermal treatments (Figure 2). This result indicated that the thermal treatments affected
hardly the alteration of the metabolite compositions in the sugarcane juice samples, i.e., the
metabolome was thermally stable.
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3.1.3. Metabolite Alterations during the NMR Measurement

Although the perishable nature of sugarcane juice leads to time-course-related changes
in its metabolite composition, the timing and impact of metabolite degradation on the
NMR spectrum remain unclear. We thus evaluated the metabolite composition stability
and deterioration at room temperature by continuous measurements of the sugarcane
juice samples in an NMR machine. The NMR spectra unraveled that the compositional
alterations of the metabolites could be observed approximately 15 h after the start of the
experiment, accompanied by the degradation of sugar and amino acid metabolites such as
glucose, alanine, and asparagine, and the production of organic acid and alcohol metabolites
such as acetic acid, formic acid, and ethanol (Figure 3a). Interestingly, a metabolomic profile
remained unchanged for the experimental period (approximately 32 h) in the case of the
sample processed at the thermal treatment of 95 ◦C for 10 min (Figure 3b).

Taken together, the signal pattern and intensities in the NMR spectra were rarely
affected by the pretreatment processes such as filtration, centrifugation, and thermal treat-
ment. Therefore, due to its relatively easy handling, we adopted filtration with filter aid as
an NMR measurement pretreatment step for the subsequent metabolomic analysis.
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3.2. Metabolomic Characterization Based on the Harvest Period-Related Differences

In Tanegashima Island, plant and ratoon canes are harvested in January and November,
respectively. Since sugarcane juice metabolite compositions influence qualities of their
industrial products, understanding the harvest period-related differences, trends, and
characteristics of the sugarcane metabolome is important for feedstock quality control.
Therefore, we performed the metabolomic characterization of sugarcane juice based on
differences of harvest period using an NMR-based metabolomic approach.
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3.2.1. Sugarcane Harvest Period Classification Model

The metabolomic characterization was conducted using 562 sugarcane samples in-
cluding 6 varieties [1] harvested in November (first and second ratoon canes) and January
(plant canes) collected from an agricultural field in the Tanegashima Research Station
(Table S1). To maximize the metabolomic differences between the harvest periods, we
adopted a SVM for classification model construction as the SVM exhibits relatively good
performance in the case of small sample size [18]. The SVM model was constructed us-
ing 3-fold cross-validation for hyperparameter optimization nested in repeated (n = 10)
5-fold cross-validation for test data evaluation. The constructed SVM model displayed
a good classification performance (Table 1) with an accuracy of 95.3%. To verify the con-
structed SVM model for harvest period classification, we calculated the ROC curve and
the AUC (Figure 4). The AUC value was 0.966, indicating that the constructed SVM model
was reliable.

Table 1. Confusion matrix of the constructed SVM model for harvest period classification.

Predict\Correct November January

November 334.3 21.7
January 21.7 184.3

The displayed values represent the average (n = 10).
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3.2.2. Important Metabolites Contributed to the Harvest Period Discrimination

The SVM classification model construction was accompanied by the calculation of im-
portant variables contributing to the discrimination of the harvest periods. The calculation
was performed by the mean decrease accuracy method described in a previous study [18].
The calculation results identified several compounds, such as trans-aconitic acid, threonine,
alanine, and galactose, as characteristic metabolites in discriminating the differences be-
tween the harvest periods (Figure 5). The compositional balances of the top 10 metabolites
identified by the analysis of importance were different between the sugarcane juice samples
harvested in November and January (Figure 6). In particular, the compositional ratio of
trans-aconitic acid was likely to be relatively high in January compared to that in November,
whereas the same ratio of alanine was likely to be relatively low.
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4. Discussion

This study focused on the evaluation of compositional variabilities upon sugarcane
juice sample pretreatment processes for NMR measurements and the characterization of
metabolomic profiles based on the harvest periods. The metabolite compositions remained
unchanged upon pretreatment processes with or without centrifugation, filtration, and
thermal treatments conducted in this study. This result denotes that these pretreatment
processes are compatible with one another, and the metabolomic profiles are comparable in
NMR-based metabolomic studies. Considering the NMR-based metabolomic data compa-
rability among different laboratories and NMR machines [5], the stability and robustness
of the metabolomic profiling allow for the analysis of the own data of the researchers
combined with data obtained by a third party. In addition, the high-throughput NMR-
based metabolomic approach performance [24] should promote a massive amount of data
collection in sugarcane metabolomics by the collaboration of multiple researchers, resulting
in the rapid construction of useful databases for both research purposes and industrial use.
Therefore, NMR-based sugarcane metabolomics should be a helpful approach adapted to
the era of big data.
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In this study, only a specific filter was used for evaluation of filtration process-related
effect. Therefore, several effects such as contamination and adsorption might be caused
when the other filter types and materials were used for filtration. Moreover, although our
results indicated comparability in NMR-based metabolomic data affected by pretreatment
processes conducted in this study, it is still controversial whether the same conclusion is
obtained in terms of not only sugarcane juice but also sugarcane-derived materials and
products such as leaves and molasses.

The time-course incubation at room temperature demonstrated hardly altered metabo-
lite compositions for approximately 15 h despite the perishable nature of sugarcane juice,
indicating that sugarcane juice remained relatively more stable at room temperature than
expected regarding the detectable metabolites and their composition using the NMR-based
metabolomic approach. The metabolite alterations after 15 h demonstrated amino acid
and sugar consumption with organic acid and ethanol production, suggesting that the
metabolite components were degraded by the microbial community of the sugarcane juice
samples. In addition, the thermal processing of the sugarcane samples resulted in more
stable metabolite compositions or unchanged metabolomic profiles for more than 32 h.
Therefore, we recommend thermally pretreating sugarcane samples for NMR measure-
ments when metabolically stable samples are required.

The NMR-based metabolomic approach allowed for capturing the compositional dif-
ferences between the harvest periods in November (ratoon canes) and January (plant canes).
Abundances and compositional balances of the metabolome, such as in the case of trans-
aconitic acid, threonine, and alanine, were the major characteristic differences between
the harvest periods (and cultivation types) although further investigation was required to
elucidate the significance of the metabolome in crop productions and the effects on product
qualities and functionalities. This study is a first step in establishing a database of the sugar-
cane metabolome related to not only harvest periods and cultivation types but also various
characteristic phenotypes such as varieties, growth stages, and geographical origins using
an NMR-based metabolomic approach. The establishment of the sugarcane metabolome
coupled with the phenotypic information in the database should involve various challenges
such as further acceleration of research and development, efficient improvement of sugar-
cane crop production and quality, quality control optimization, and consistent production
during the manufacturing processes by the effective use of metabolomic big data. More
specifically, for example, the metabolomic approach provides a possibility for discovering
metabolite biomarkers from specific characteristic phenotype-based metabolite differen-
tiation, e.g., high disease resistance and tolerance to low temperatures. At the moment,
the discovered biomarkers should have significant potential as indicators for improving
sugarcane qualities and optimizing sugarcane cultivation adapted to low temperatures in
a given region. Therefore, NMR-based metabolomic approaches combined with big data
should provide accelerative and efficient crop improvement and production with high
added value, leading to the sustainable development of the local economy and society in
the future.

5. Conclusions

In this study, we evaluated sugarcane juice metabolomic variability affected by cen-
trifugation, filtration, and thermal pretreatments for determining optimal conditions to
perform NMR-based metabolomic approach. The results indicated that the pretreatment
processes conducted in this study left the metabolomic compositions unchanged, indicating
that these pretreatments are compatible with one another and the studied metabolomes are
comparable in NMR-based metabolomic studies. The thermal processing of the sugarcane
samples resulted in more stable metabolite compositions for more than 32 h at room tem-
perature. The NMR-based metabolomic approach allowed for capturing the compositional
differences between the harvest periods in November and January and successfully iden-
tifying the characteristic metabolome such as trans-aconitic acid, threonine, and alanine.
This study is a first step in establishing a database of the sugarcane metabolome related
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to various characteristic phenotypes such as harvest periods, cultivation types, varieties,
growth stages, and geographical origins using an NMR-based metabolomic approach. Our
findings denote that NMR-based sugarcane metabolomics enable us to provide an opportu-
nity to collect a massive amount of data upon collaboration between multiple researchers,
resulting in the rapid construction of useful databases for both research purposes and
industrial use.
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