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Abstract: Developing risk assessment tools for CAD prediction remains challenging nowadays. We 
developed an ML predictive algorithm based on metabolic and clinical data for determining the 
severity of CAD, as assessed via the SYNTAX score. Analytical methods were developed to deter-
mine serum blood levels of specific ceramides, acyl-carnitines, fatty acids, and proteins such as ga-
lectin-3, adiponectin, and APOB/APOA1 ratio. Patients were grouped into: obstructive CAD (SS > 
0) and non-obstructive CAD (SS = 0). A risk prediction algorithm (boosted ensemble algorithm 
XGBoost) was developed by combining clinical characteristics with established and novel bi-
omarkers to identify patients at high risk for complex CAD. The study population comprised 958 
patients (CorLipid trial (NCT04580173)), with no prior CAD, who underwent coronary angi-
ography. Of them, 533 (55.6%) suffered ACS, 170 (17.7%) presented with NSTEMI, 222 (23.2%) with 
STEMI, and 141 (14.7%) with unstable angina. Of the total sample, 681 (71%) had obstructive CAD. 
The algorithm dataset was 73 biochemical parameters and metabolic biomarkers as well as anthro-
pometric and medical history variables. The performance of the XGBoost algorithm had an AUC 
value of 0.725 (95% CI: 0.691–0.759). Thus, a ML model incorporating clinical features in addition to 
certain metabolic features can estimate the pre-test likelihood of obstructive CAD. 
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disease; SYNTAX score; atherosclerosis; acute coronary syndrome; metabolomics 
 

1. Introduction 
In an ever-changing environment with substantial medical achievements, coronary 

artery disease (CAD) remains the leading cause of mortality worldwide [1]. Therefore, 
current research predominantly focuses on the efficient prevention, risk-stratification, and 
management of patients with CAD to optimize their prognosis. Concurrently, several 
basic, translational and clinical research efforts aim to determine the etiological mecha-
nisms underlying CAD pathogenesis and identify lifestyle-dependent metabolic risk fac-
tors or genetic and epigenetic parameters responsible for CAD occurrence and/or progres-
sion [2]. Thereby, clinicians could ultimately develop feasible and accurate risk assess-
ment and prediction models with the potential to be incorporated into routine clinical 
practice. 
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Undoubtedly, as we have already entered the age of precision medicine, novel and 
promising CAD stratification strategies, based on the “-omics” fields, such as metabolom-
ics, become even more salient [3,4]. Metabolic profiling based on sophisticated analyses 
can reveal serum metabolites whose levels could serve as a direct functional readout of 
the physiological state of an organism, thereby, reflecting the onset and progression of 
CAD [5]. Metabolic profiling data and publications on metabolic markers related to car-
diovascular diseases have increased exponentially during the last decade, and some me-
tabolites-based risk scores have been already developed; however, most investigations 
failed to translate into clinical benefit [6]. This might be associated with the large volume, 
challenging structure, and nonlinear interaction of metabolomics data, which render the 
conventional data analytic strategies less effective for such data characterization, annota-
tion, and integration into risk scores [7]. Hence, the metabolomics community eagerly 
awaits to adopt novel mathematical and computational tools, able to refine data analysis 
and exploit the advanced applications of mass spectrometry to metabolic phenotyping [8]. 

To this end, machine learning (ML), a branch of artificial intelligence (AI), has been 
increasingly utilized across metabolomics studies due to the inherent nonlinear data rep-
resentation and the ability to rapidly process large and heterogeneous data [7,9]. Although 
ML-based big data utilization is still in its infancy across cardiovascular medicine and still 
has some innate weaknesses (e.g., ‘black-box’ criticism, lack of design standardization, 
and limited applicability to clinical trials), ML techniques have been already applied to 
identify unknown CAD risk factors, automate imaging interpretation, enhance clinical de-
cision-making, and bridge the gap between disease pathogenesis and phenotyping, facil-
itating precision medicine [10–12]. More accurate ML-based CAD prediction would em-
power clinicians with enhanced diagnosis, risk stratification, and ultimately, management 
of CAD patients, whilst potentially minimizing the necessary interventions [13,14]. Nev-
ertheless, to the authors’ knowledge, there is not yet any clinically oriented ML-based ap-
proach incorporating metabolic markers analyses for the prediction of obstructive CAD 
among patients undergoing invasive coronary angiography (ICA). 

Against this background, we sought to develop an accurate ML model, utilizing clin-
ical and metabolite data from a real-world population undergoing ICA, to predict patients 
likely to have obstructive CAD on ICA and to assess its effectiveness in combination with 
an established clinical risk stratification algorithm. We hope that this pretest assessment 
tool could provide a framework that would guide the establishment of novel metabolic 
biomarkers for CAD development and would hopefully provide physicians with clinical 
decision support to optimize referrals to ICA versus noninvasive diagnostic modalities.  

2. Materials and Methods 
2.1. Study Population and Eligibility Criteria 

The CORLIPID trial (NCT04580173) is a non-interventional cohort trial, which en-
rolled 1065 adult patients without prior CAD undergoing ICA in AHEPA University Hos-
pital of Thessaloniki within the period of July 2019–May 2021, and aimed to associate CAD 
severity with patients’ serum metabolic profile [15]. Prior percutaneous coronary inter-
vention (PCI) or coronary artery bypass grafting (CABG), along with cardiopulmonary 
arrest at presentation or severe comorbidity with a life expectancy of less than 1 year con-
stituted the exclusion criteria of the study. 

2.2. Study Outcomes 
The primary outcome of this study was to combine clinical characteristics with estab-

lished and novel metabolic biomarkers aiming to develop an obstructive CAD risk pre-
diction model based on an ML approach. The secondary study outcome was to distinguish 
patients with acute coronary syndrome (ACS) from those with chronic coronary syn-
drome (CCS) through metabolite pattern differentiation. 
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2.3. Metabolic Marker Analyses 
Venous blood samples were collected prior to ICA execution. Mass spectrometry an-

alytical methods were developed and applied to define serum levels of specific lipid bi-
omarkers: four ceramides, 13 acyl-carnitines, and a comprehensive profile of 23 fatty ac-
ids. Galectin-3 was also determined for all study participants, while other protein levels, 
including adiponectin, apolipoproteins (A1 and B), and neutrophil gelatinase-associated 
lipocalin (NGAL) were measured for a subset of study participants (216, 405, and 119 pa-
tients, respectively).  

2.4. Angiographic Analyses 
All coronary angiograms were visually assessed by two blinded experienced inva-

sive cardiologists (EK and GS); each cardiologist calculated the SYNTAX score [16] for 
each patient and any disagreements were resolved through consensus. Patients were cat-
egorized into corresponding groups based on the indication for ICA [ACS, CCS] and on 
the severity of CAD using the SYNTAX score. In categorical terms, obstructive CAD was 
defined as ≥50% stenosis of any major epicardial vessel of >2 mm in diameter [17]. 

2.5. Statistical Considerations 
Conventional statistical analysis of the data was performed through IBM SPSS Sta-

tistics for Windows, version 26 (IBM Corp., Armonk, NY, USA) and Microsoft Excel. Clin-
ical, procedural, and demographic data are presented as the mean ± standard deviation 
(SD) or frequencies and percentages as appropriate. Our data were not parametric, thus, 
categorical differences between patient groups were evaluated by the χ2 test for discrete 
clinical variables, while differences in paired concentrations were evaluated by the Wil-
coxon signed-rank test. To assess the differences in serum concentrations or measured 
areas among study groups, the Mann–Whitney U or Bonferroni corrected for multiple 
comparisons Kruskal–Wallis test was used. Statistical significance was defined as a value 
of p < 0.05. 

2.6. Machine Learning Algorithm 
Patients included in the analyses were characterized by a total of 8 readily available 

demographic and clinical variables, including age, gender, CAD risk factors (including 
diabetes mellitus, hypertension, dyslipidemia, smoking, family history of premature 
CAD, and body mass index), along with 12 biochemical and 52 novel protein-markers and 
metabolites variables available in our dataset.  Within the selected variables, no further 
clinical metrics are included with the aim to establish an application feasible also in a non-
hospital diagnostic setting. 

In order to produce an efficient, reliable, and accurate SS prediction model, ML meth-
ods were applied, using XGBoost as the algorithm of choice. XGBoost is a non-linear, su-
pervised algorithm, capable of handling both regression and classification prediction 
problems, which has recently been dominating applied ML competitions for structured 
and tabular data. 

XGBoost (stands for eXtreme gradient boosting) belongs to the more general category 
of decision-tree-based ensemble ML algorithms which are considered among the best op-
tions for the analysis of small-to-medium structured data. In particular, XGBoost is an 
optimized gradient boosting algorithm, which in turn is an evolution of the family of 
boosting ensemble algorithms. Boosting algorithms build the sequential models in such a 
way as to minimize the errors of previous models and enhance the impact of high-per-
forming models [18,19]. Gradient boosting is a special case of boosting which implements 
a gradient descent algorithm to minimize errors in sequential models [20]. Finally, 
XGBoost further improves gradient boosting using a combination of software and hard-
ware optimization techniques, achieving superior results in terms of execution speed and 
model performance [21]. 
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The aforementioned software and hardware optimization techniques include, among 
others, parallelization in the building of successive models, decision tree pruning to a spe-
cific depth, regularization [22] (both l1 and l2) to prevent overfitting, and sparsity aware-
ness for the optimal handling of datasets with missing values, etc. The effect of these tech-
niques is controlled by a series of hyperparameters of the XGBoost algorithm, which are 
set to their optimal value before the analysis of each dataset. Evaluation metrics equations 
are presented in the Supplementary Materials. 

2.7. Prediction Model Evaluation 
To evaluate the performance of the ML SS prediction model, the 10-fold cross-vali-

dation (10CV) technique was used, which is completed in 10 consecutive stages [23]. Ini-
tially, the samples (rows) of the dataset under study are randomly divided into 10 equal-
sized segments. At each stage of the technique, a different segment is selected and used 
as the test set with which the performance of the algorithm is evaluated, while the remain-
ing 9 segments form the training set with which the algorithm is trained. In this way, each 
segment of the dataset is used exactly once as a test set. At each stage and before training 
the algorithm, the processes of data scaling and hyperparameter tuning are implemented, 
which are described in the following subsections. By combining the predictions for the 
individual test sets, the predictions for the overall dataset are obtained, which are used 
for the final evaluation of the predictive algorithm using the appropriate evaluation met-
rics. Figure 1 illustrates the general methodology followed for the dataset analysis. 

 
Figure 1. Data analysis workflow. 

2.8. Post-Hoc Model Correction 
Aiming to improve the predictive capability of the CorLipid algorithm, we combined 

post hoc the XGBoost model with the Diamond–Forrester score for CCS patients and with 
the Grace score for ACS patients [24,25]. Such a strategy has been applied in previous 
relevant studies, for example, in the study by Al’ Aref et al., (2020) [26], where an XGBoost 
algorithm was combined with the Diamond–Forrester score for 13,054 CCS patients from 
the international CONFIRM registry. 

2.9. Data Scaling 
Before their use and in order to be better exploited by the predictive algorithm, the 

values of each individual feature (column) of the dataset are appropriately scaled so that 
the resulting distribution exhibits a mean of 0 and a standard deviation of 1. This process 
is repeated at each individual stage of the central 10CV technique. The scaler used is first 
fitted on each individual training set and then applied to both the training and the corre-
sponding test set. 
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2.10. Hyperparameter Tuning 
As mentioned previously, the optimization techniques inherently used by the 

XGBoost algorithm are controlled by a set of hyperparameters. The hyperparameters are 
an important component of any ML algorithm playing a central role in determining the 
structure, complexity, and performance of the resulting predictive models [27]. In the pre-
sent analysis, hyperparameter tuning is implemented in each individual stage of the cen-
tral 10CV technique. A secondary 10CV procedure (nested CV) is applied to each individ-
ual training set in order to determine the optimal hyperparameter values for the specific 
part of the dataset. In each case, a total of 200 randomly selected hyperparameter sets of 
values are evaluated using Logloss (Equation (S5) Supplement) as the loss function. The 
overall best hyperparameter values set were then used for the fitting of the predictive 
model. Table S1 contains the hyperparameters optimized for the XGBoost algorithm, 
along with their respective ranges of investigated values. 

2.11. Probability Threshold Tuning 
The evaluation of the performance of a predictive binary classifier usually assumes a 

default probability threshold value of 0.50 in order to assign predicted probabilities to a 
given class. In order to reduce the proportion of false negative (FN) events, a separate 
analysis of the samples’ predicted probabilities is performed, where the proportion of FN 
events resulting in different values of the probability threshold is calculated. The value 
where at most 1% (or 5%) of samples belonging to the positive class are classified as FN is 
selected and used for the final evaluation of the predictive model. The analysis is carried 
out using in-house Python scripts. 

2.12. Code Development 
The programming part of the present analysis was implemented on a Linux-based 

desktop PC (Ubuntu 20.04.2 operating system, kernel v5.11.0, AMD Ryzen 5 3600 CPU, 64 
GB RAM) using the JupyterLab web-based development environment. Code develop-
ment was implemented using the Python (v3.8.10) programming language and the fol-
lowing main libraries: ipython v8.0.0, jupyterlab v3.2.8, matplotlib v3.5.2, numpy v1.22.4, 
pandas v1.4.2, scikit-learn v1.1.1, scikit-posthocs v0.6.7, scipy v1.8.1, seaborn v0.11.2, 
xgboost v1.6.1. 

Code used in this project is available at the following repository: 
https://github.com/TheoLiapikos/Syntax_Score_prediction_model_for_CV_patients_us-
ing_XGBoost_Classifier (accessed on 29 August 2022). 

3. Results 
3.1. Baseline Characteristics 

Our analysis includes data from 958 out of the 1065 study participants enrolled in the 
CorLipid trial, due to the unavailability of clinical and laboratory data for some of the 
samples. Almost 3 out of 4 study participants (73.4%) were of male gender. Moreover, 
55.6% of our population presented with ACS, while the remaining patients underwent 
ICA due to CCS. Of the 533 patients suffering from ACS, 170 presented with NSTEMI, 222 
with STEMI, and 141 with unstable angina (17.7%, 23.2%, and 14.7% of the total popula-
tion). Median age of the total population was 65 years old (95% Cis: 64–66) and median SS 
was equal to 10 (95% Cis: 9–12). Two hundred and seventy-seven patients (28.9%) had 
non-obstructive CAD according to the coronary angiogram assessment, while 210 patients 
(21.9%) suffered from severe CAD (SS > 22). Almost half of our population (50.8%) were 
under statin medication. Baseline clinical and demographic characteristics are presented 
in Tables 1 and 2. 
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Table 1. Baseline clinical and demographic characteristics of the CorLipid trial. 

For 958 CORLIPID Patients N N % 

Sex 
Female 255 26.6% 
Male 703 73.4% 

Hypertension 
No 398 41.5% 
Yes 560 58.5% 

Diabetes mellitus 
No 642 67.0% 
Yes 316 33.0% 

Dyslipidaemia 
No 594 62.0% 
Yes 363 37.9% 

Family history 
No 788 82.3% 
Yes 169 17.6% 

Smoking 
No 535 55.8% 
Yes 423 44.2% 

Statin administration No 487 50.8% 
 Yes 455 47.5% 

Age group 
65< 504 52.6% 
65> 452 47.2% 

Previous stroke 
No 929 97.0% 
Yes 28 2.9% 

Peripheral vascular disease 
No 914 95.4% 
Yes 43 4.5% 

Aortic aneurysms 
No 928 96.9% 
Yes 29 3.0% 

Chronic pulmonary obstructive disease 
No 904 94.4% 
Yes 54 5.6% 

Autoimmune disease 
No 941 98.2% 
Yes 17 1.8% 

Atrial fibrillation 
No 858 89.6% 
Yes 100 10.4% 

ACS  
No 425 44.4% 
Yes 533 55.6% 

CAD groups 

NSTEMI 170 17.7% 
STEMI 222 23.2% 

Unstable angina 141 14.7% 
Stable angina 425 44.4% 

Syntax score groups 
0 277 28.9% 

1–22 471 49.2% 
<22 210 21.9% 

Data discrepancies are due to missing medical information. 

Table 2. Baseline continuous clinical characteristics of the CorLipid trial. 

 Median ↓95.0% CIs ↑95.0% CIs 
Age 65 65 66 

Syntax score 10.0 9.0 12.0 
Body mass index 28.00 27.80 28.40 
Total cholesterol 159.0 156.0 163.0 

Triglycerides 125 122 130 
High-density lipoprotein 40 39 41 
Low-density lipoprotein 88 85 92 
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High-sensitivity troponin T 35.0 30.0 46.0 
Low ventricular ejection fraction (%) 55 55 60 

3.2. Descriptive Analyses of Categorical and Continuous Variables According to CAD 
Subgroups 

In our population, the male-to-female ratio was not different amongst the studied 
CAD subgroups (STEMI, NSTEMI, stable and unstable angina). The percentage of hyper-
tensive and dyslipidemic patients differed across those groups (Table 3; p < 0.05). Family 
history of premature CAD was more evident in the STEMI subgroup compared to patients 
with stable angina (p = 0.012).  

Table 3. Descriptive analyses of categorical variables per CAD subgroup. 

  CAD Groups  

  NSTEMI(α) STEMI(β) Unstable Angina(γ) Stable  
Angina(δ) 

(Pair) p-Value * 
  N % N % N % N %  

Sex 
Female 41 24.10 45 20.30 43 30.50 126 29.60 

0.063 Male 129 75.90 177 79.70 98 69.50 299 70.40 
Total 170 100.00 222 100.00 141 100.00 425 100.00 

Hypertension 
No 63 37.10 129 58.10 57 40.40 149 35.10 0.005 (β-α), <0.001 (β-γ), 

<0.001 (β-δ), Yes 107 62.90 93 41.90 84 59.60 276 64.90 
Total 170 100.00 222 100.00 141 100.00 425 100.00 

Diabetes mellitus 
No 111 65.30 160 72.10 86 61.00 285 67.10 

0.164 Yes 59 34.70 62 27.90 55 39.00 140 32.90 
Total 170 100.00 222 100.00 141 100.00 425 100.00 

Dyslipidemia 
No 104 61.20 166 74.80 92 65.20 232 54.60 

0.045 (β-α), <0.001 (β-δ), Yes 65 38.20 56 25.20 49 34.80 193 45.40 
Total 169 100.00 222 100.00 141 100.00 425 100.00 

Family history 
No 133 78.20 169 76.10 121 85.80 365 85.90 

0.012(δ-β) Yes 37 21.80 53 23.90 19 13.50 60 14.10 
Total 170 100.00 222 100.00 140 100.00 425 100.00 

Smoking 
No 78 45.90 94 42.30 77 54.60 286 67.30 

<0.001(δ-α), <0.001(δ-β) Yes 92 54.10 128 57.70 64 45.40 139 32.70 
Total 170 100.00 222 100.00 141 100.00 425 100.00 

Age (groups) 
65< 93 54.70 143 64.40 67 47.50 201 47.30 

0.013 (β-γ), <0.001 (β-δ), 65> 76 44.70 79 35.60 73 51.80 224 52.70 
Total 169 100.00 222 100.00 140 100.00 425 100.00 

Previous stroke 
No 166 97.60 214 96.40 138 97.90 411 96.70 

0.602 Yes 4 2.40 8 3.60 2 1.40 14 3.30 
Total 170 100.00 222 100.00 140 100.00 425 100.00 

Peripheral vascular disease 
No 160 94.10 215 96.80 133 94.30 406 95.50 

0.53 Yes 10 5.90 7 3.20 8 5.70 18 4.20 
Total 170 100.00 222 100.00 141 100.00 424 100.00 

Aortic aneurysms 
No 167 98.20 220 99.10 141 100.00 400 94.10 0.003 (γ-δ), 0.003 (β-δ), 

0.016 (α-δ) 
Yes 2 1.20 2 0.90 0 0.00 25 5.90 

Total 169 100.00 222 100.00 141 100.00 425 100.00 

Chronic pulmonary ob-
structive disease 

No 158 92.90 213 95.90 134 95.00 399 93.90 
0.574 Yes 12 7.10 9 4.10 7 5.00 26 6.10 

Total 170 100.00 222 100.00 141 100.00 425 100.00 

Autoimmune disease 
No 167 98.20 219 98.60 137 97.20 418 98.40 

0.758 Yes 3 1.80 3 1.40 4 2.80 7 1.60 
Total 170 100.00 222 100.00 141 100.00 425 100.00 

Atrial fibrillation 
No 155 91.20 208 93.70 127 90.10 368 86.60 

0.03 (δ-β) Yes 15 8.80 14 6.30 14 9.90 57 13.40 
Total 170 100.00 222 100.00 141 100.00 425 100.00 
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Known CAD 
No 138 81.20 201 90.50 121 85.80 321 75.50 

0.318 Yes 9 5.30 8 3.60 6 4.30 26 6.10 
Total 147 100.00 209 100.00 127 100.00 347 100.00 

eGFR<60 
No 132 77.60 191 86.00 121 85.80 374 88.00 

<0.001 (δ-α) Yes 38 22.40 29 13.10 19 13.50 41 9.60 
Total 170 100.00 220 100.00 140 100.00 415 100.00 

* Bonferroni corrected for multiple comparisons Kruskal–Wallis test. 

The assessment of continuous variables based on CAD subgroups is illustrated in 
Table 4. Mean GRACE score and mean troponin, glucose, and SGPT values were signifi-
cantly higher in patients with STEMI, compared to the rest subgroups (p <0.05). 

Table 4. Descriptive analyses of continuous variables per CAD subgroup. 

 CAD Groups  

 NSTEMI(α) STEMI(β) Unstable  
Angina(γ) 

Stable  
Angina(δ) 

p-Value *(Pair) 
 Mean ±SD Mean ±SD Mean ±SD Mean ±SD  

BMI 27.84 4.33 28.74 4.64 28.35 4.87 28.73 4.54 0.189 

Grace Score 123 41 125 37 96 32 89 25 
<0.001 (δ-α), <0.001 
(δ-β), <0.001 (γ-α), 

<0.001 (γ-β), 
eGFR 88.2 40.17 98.1 38.42 92.93 33.41 93.17 32.66 0.086 

Total glucose 122.15 59 134.72 67.83 117.38 42.05 115.37 57.85 
0.002 (δ-β), 0.032 (α-

β) 
Creatinine 1.3 1.38 1.04 0.6 1.01 0.79 1.02 0.87 0.076 
Cholesterol 162.9 46.1 168.9 45.3 162.1 39.1 163.1 41.8 0.648 

Triglycerides 158 128 158 190 147 72 144 119 0.159 

High-density lipoprotein 40 13 39 10 42 12 45 14 
<0.001 (β-δ), <0.001 

(α-δ) 
Low-density lipoprotein 92 39 101 39 91 34 90 35 0.024 (γ-β) 

High-sensitivity troponin T 564.5 936 2442.30 2675.80 106.1 397.6 38.5 159.9 

<0.001 (δ-α), <0.001 
(δ-β), <0.001 (δ-γ,) 

<0.001 (γ-α), <0.001 
(γ-β), <0.001 (α-β), 

Serum glutamic-oxaloacetic transami-
nase 

42.2 60.8 172 508.2 24 16.9 22.1 17.3 

<0.001 (δ-α), <0.001 
(δ-β), <0.001 (γ-α), 
<0.001 (γ-β), <0.001 

(α-β), 

Serum glutamic pyruvic transaminase 297.5 3372.40 78.9 341.8 26.7 25.3 24.3 33.3 
0.017 (δ-α), <0.001 (δ-

β), <0.001 (γ-β), 
<0.001 (α-β), 

Lactate dehydrogenase 308 165 629 601 211 66 222 120 

<0.001 (δ-α), <0.001 
(δ-β), <0.001 (γ-α), 
<0.001 (γ-β), <0.001 

(α-β), 

Creatine phosphokinase 317 693 1166 1763 113 159 114 131 

<0.001 (δ-α), <0.001 
(δ-β), <0.001 (γ-α), 
<0.001 (γ-β), <0.001 

(α-β), 

Low ventricular ejection fraction (%) 0.5 0.11 0.44 0.1 0.54 0.1 0.56 0.09 

<0.001 (δ-α), <0.001 
(δ-β), 0.015 (γ-α), 

<0.001 (γ-β), <0.001 
(α-β), 

* Bonferroni corrected for multiple comparisons Kruskal–Wallis test. 
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Focusing now on the primary aim of the CORLIPID study, the comparison of meta-
bolic biomarkers among the CAD subgroups yielded some significant differences as de-
tailed in Table S4.  

Regarding ceramides, patients with stable angina had significantly lower measured 
C16:0 and C18:0 ceramide levels compared to patients with NSTEMI and STEMI. C24:0 
and C24:1 were substantially higher in STEMI patients compared to patients with unstable 
and stable angina. Regarding acylcarnitines, five of those species showed significant level 
variations, with C5 carnitine having higher mean values in STEMI patients compared to 
patients with unstable angina, and C10, C16 C18.1, and C18.2 carnitines having lower 
mean values in STEMI compared to stable angina. Lipids showed also significant varia-
tion amongst CAD groups with most lipids being lower in the stable angina group than 
in ACS, except for C20:1n11 and C20:2 cis lipids which had lower values in STEMI com-
pared to stable angina (Table S4).  

3.3. Metabolite Analyses According to SYNTAX Score Groups 
In Supplementary Tables S2 and S3, we present the results from the descriptive anal-

yses of categorical and continuous study variables, as well as the biochemical parameters 
according to CAD severity groups (SS subgroups: SS = 0, 1–22, >22). Mean GRACE score 
and mean troponin values were significantly higher in the high-severity group, while pa-
tients with diabetes mellitus (DM) and those presenting with higher glucose levels were 
at higher risk for severe CAD (p <0.05). 

The results deriving from the determined metabolites are presented in detail in Table 
S5, as compared among the SS groups. Regarding the protein markers evaluated, only 
ApoB/ApoA1 ratio differed significantly among the SS groups, with its lowest values be-
ing observed across the SS = 0 group. As for ceramides, C18:0 levels were significantly 
lower in the SS = 0 group compared to the other two groups. Mean values of the C4 and 
C5 acyl-carnitines were also significantly lower in the SS = 0 group, whereas C16 and C18:2 
acyl-carnitines were significantly lower in the SS > 22 group. Regarding the fatty acids, 
mean C17:1 and cis C18:1 values were significantly lower in the SS = 0 group. 

3.4. ML Results 
A total of 958 serum samples with 73 selected parameters were used as the algorithm 

dataset. The panel (see Figure 2) selection was based on available biochemical and meta-
bolic markers and anthropometric and medical history variables that were recorded in the 
CorLipid dataset and presented herein.  
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Figure 2. The 73 parameters that constitute the CorLipid algorithm input biomarker panel. ApoAI: 
apolipoprotein AI, ApoB: apolipoprotein B, NGAL: neutrophil gelatinase-associated lipocalin, Gal-
3: galectin-3. 

All 73 parameters were used in the algorithm without any imputations or sample 
removal for empty cells thus leaving the dataset intact. The performance of the XGB algo-
rithm on the full dataset to separate patients into: patients with SS = 0 and those with SS ≥ 
1, was acceptable with an AUC value of 0.725 (95%Cis: 0.69–0.76). The evaluation of the 
performance of the developed model is presented in Figure 3.  
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Figure 3. (A) Probability threshold and all quality metrics for the CorLipid algorithm. (B) Confusion 
matrices for true false positive and negative for the model with different false negative thresholds. 
FNs: false negative predictions, expressed as a percentage of the sum of FN and TP, FNs = FN/FN + 
TP). 

3.5. Post-Hoc Model Correction 
After combining XGBoost with Diamond–Forester and GRACE scores for CCS and 

ACS patients, respectively, there was no difference in algorithm performance, but the pro-
portion of false negatives decreased with a small increase in false positives. Figure 4 in-
cludes the combined ROC AUC along with the FN percentages for both the original and 
the corrected models.  
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Figure 4. (A) Original and corrected ROC AUC of the CorLipid algorithm, (B) confusion matrices 
for true false positive and negative for the original and corrected models. 

4. Discussion 
In this study, a number of specific lipid metabolites were determined by three tar-

geted metabolomics methods to identify CAD-related serum metabolic biomarkers. We 
screened their potential as biomarkers serving for the non-invasive detection of obstruc-
tive CAD through a comprehensive XGBoost approach. The combination of the large in-
put dataset containing several metabolic features with the ML methods constitutes the 
novelty of the presented study. This study is considered a preliminary approach; it is vital 
to further validate our results in larger datasets. Our results may be useful for utilizing 
metabolic data to improve early CAD prediction and may offer insights into the metabolic 
pathways involved in CAD pathogenesis. Furthermore, this clinical model will hopefully 
trigger further research efforts investigating whether a panel with some of those metabo-
lites could enhance the diagnostic yield of ICA through optimized patient selection. 

4.1. Metabolites in Cardiovascular Diseases 
The field of cardiovascular metabolomics has seen substantial growth during the last 

decade. Most studies have been performed in less clinical settings aiming to gain deeper 
insight into pathophysiological interactions of metabolites and disease states [28,29]. A 
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recent study briefly overviews the existing cardiovascular metabolomics studies, and 
makes clear that glucose, fatty-, and amino- acid metabolism perturbations are associated 
with the development of atherosclerosis and ischemic cardiomyopathy [6].  

Targeted metabolomics have been already utilized for the discovery of CAD bi-
omarkers with the aid of ML, revealing serum sphingolipids as cholesterol-independent 
biomarkers of CAD [30]. Based on targeted LC-MS/MS lipidomics, sphingolipid species 
were found to be positively associated with CAD. Other ML methods have also identified 
metabolic signatures that predict the risk of recurrent angina in patients discharged after 
PCI based on broad-spectrum LC-MS/MS targeted metabolomic data which were ac-
quired by a method monitoring 606 MRM channels [31]. Atargeted SPE-LC-MS/MS 
method has been also applied for the analysis of omega-6-derived eicosanoids in the se-
rum of CAD patients [32] to investigate their inflammatory response to CAD risk factors. 
Since alterations in xanthine oxidase activity are known to be pathologically associated 
with CAD, blood purine metabolite-based ML models have been developed for risk pre-
diction, prognosis, and diagnosis of CAD [33]. The levels of xanthine and uric acid were 
proven to be critical in the development of ML models for primary/secondary prevention 
or diagnosis of CAD. 

Several ceramides, phosphatidylcholines, and acylcarnitines have been recently 
linked with the incidence and progression of CAD. More specifically, in a multinational 
cohort “Biomarkers for Cardiovascular Risk Assessment in Europe” of more than 70,000 
individuals, five phosphatidylcholines were significantly associated with increased risk 
of incident CAD and showed similar prognostic values as individual classic risk factors 
[34]. Moreover, our previous works based on the CorLipid dataset demonstrated that se-
rum acylcarnitine levels are significantly associated with the SS, whilst the same applies 
to ceramide levels of diabetic individuals [35,36]. Elevated levels of specific serum 
ceramide species have been also linked with larger thrombus burden showing that 
ceramides emerge as potential mediators and prognostic biomarkers of CAD [37]. Fur-
thermore, metabolic profiling technologies have been also utilized to reveal the prognostic 
course of CAD patients, either through a traditional risk score (e.g., CERT2 score) or 
through an ML algorithm (e.g., random forest algorithm) [38–40].  

Thus, it is evident that as sample sizes [8] and the number of measured metabolites 
progressively increase in epidemiological settings, the conjunction of metabolites data 
across studies with other clinical and biochemical data will bolster our understanding of 
the cardio-metabolic background of CAD. Metabolic phenotyping paves the way to new 
mechanistic understanding and therapies, as well as improves the risk prediction of CAD 
patients.  

To that end, non-linear ML approaches for metabolite data seem to be very promising 
due to their non-linear nature and the existing interactions between multiple metabolite 
predictors and endpoints [28]. Nevertheless, selecting the optimal ML model for a given 
dataset is quite challenging since the choice depends on data properties and the project 
goal [41]. The implemented frameworks in such studies include random forest, deep 
learning and extreme gradient boosting (XGBoost) approaches that aimed to capture the 
metabolic complexity of several diseases [28,42]. The predictive capability of the XGBoost 
algorithm for the stratification of metabolic phenotypes seems to outperform other classi-
fication ML algorithms.  

However, an acceptable AUC cut-off to be used in clinical practice and the appropri-
ate algorithms to be applied in metabolite datasets remain to be assessed, since the appli-
cation of ML concepts is substantially limited by the unavailability of appropriate clinical 
datasets. An ML model that incorporates clinical features could lead to better risk stratifi-
cation and help guiding subsequent management. An example of such a model has been 
previously communicated by Al’ Aref et al. [26], where a combination of XGBoost with 
the Diamond–Forrester score for 13,054 CCS patients of the international CONFIRM study 
was applied. Therefore, a post hoc correction of the CorLipid algorithm was performed in 
combination with Diamond–Forester and GRACE risk-stratification scores for CCS and 
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ACS patients, respectively, and there was a decrease in the FN percentage; however, there 
was no significant increase in the generated AUC ROC. Hence, the post hoc corrected 
model might be more suitable for clinical use and not for the general public as the original 
CorLipid model, since it warrants an improvement in its predictive capability in conjunc-
tion with clinically available scores. 

4.2. Coronary Artery Disease Prediction 
From the point of statistical modeling, the prediction of CAD is a widely studied 

problem either through traditional (one-dimensional) regression analyses or through ML 
algorithms. The target of ML approaches is to specifically interpret how risk factors affect 
the outcome [43]. According to a recent meta-analysis on 45 cohorts encompassing a total 
of 116,227 individuals and using ML (CNN, SVM, RF, custom-built and boosting algo-
rithms) for the prediction of CAD, the prediction of CAD with boosting algorithms was 
associated with pooled AUC of 0.88 (95% CI 0.84–0.91), sensitivity of 0. 86 (95% CI 0.77–
0.92), and specificity of 0.70 (95% CI 0.51–0.84) [44]. The ensemble methods (such as the 
one implemented herein, XGBoost) use the boosting procedure to combine stumps of 
trees. This can be loosely conceptualized as forming an overall prediction by aggregating 
the predictions of many simpler predictive models. This might seem similar to the process 
of deriving a clinical diagnosis for a patient by utilizing consultations from many special-
ists, each of whom would look at the patient in a slightly different way.  

There is an anticipation that AI will result in a paradigm shift toward precision car-
diovascular medicine in the near future [45]. Novel research strategies exploiting the ML 
powers could help clinicians in the prediction of patients that would benefit from invasive 
or non-invasive diagnostic modalities [46]. ICA constitutes the gold-standard test for CAD 
diagnosis; however, better pretest assessment could ultimately improve patient safety and 
decrease healthcare costs by optimizing referral for outpatient ICA [47].  

4.3. Limitations, Strengths and Further Research 
When interpreting our outcomes, some caveats could be recognized. The sample size 

could be considered relatively limited, as compared to other ML studies on CAD predic-
tion, whilst the general lack of training and validation data limit the generalizability of 
our findings. Therefore, a more detailed input space and a larger external dataset of pa-
tients may ensure the applicability of our model as an effective multimodal prediction 
scheme. The practical applicability of this algorithm might also be somewhat restricted 
due to the requirement of expensive instrumentation and trained personnel for data ex-
traction and interpretation.  

Nevertheless, the present study included the largest dataset of metabolites analyzed 
using targeted methods for ceramides [48], acylcarnitines [49] and fatty acids [50], to date, 
used for the development of a predictive ML score for the presence of obstructive CAD, 
as assessed through the SS. The created model is unique for several reasons. First, this ML-
based predictive model was generated based on a diverse real-world cohort and did not 
require the execution of specialized clinical procedures, such as echocardiography or 
other imaging assessment tests. The developed algorithm solely requires patients’ serum 
extraction and the documentation of baseline medical history and demographic parame-
ters. Implementing this metabolites-based model as part of a point-of-care decision could 
be particularly relevant for CAD patients presenting without standard modifiable CAD 
risk factors after validation of its predictive capability. If a patient is deemed to be “low 
risk” according to the prediction model, then a non-invasive diagnostic modality might 
be preferred in the diagnostic algorithm. Finally, our analysis did not warrant any impu-
tation, sample removal, or variable discount, based on the strength of the ML model to 
incorporate a large number of variables, including highly correlated ones. Finally, our 
study could collaborate well with upcoming studies in the fields of prevention and diag-
nosis of CAD offering a good starting point for addressing the complexity of interrelated 
metabolites and elucidating potential therapeutic targets. 
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5. Conclusions 
In this study, we developed an ML model, utilizing readily available clinical and de-

mographic characteristics combined with a panel of metabolites acquired by a targeted 
metabolomics approach to predict patients likely to have obstructive CAD on ICA. Imple-
menting ML frameworks of metabolite datasets might further improve clinical decision 
making in low-to-intermediate risk patients regarding the need for further testing, as well 
as for the need for preventive therapies. These methods will ultimately contribute to ex-
tracting the full potential from metabolomics: to guide clinical decisions and deepen our 
knowledge of CAD metabolism. 
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