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Abstract: Admission-based circulating biomarkers for the prediction of outcomes in trauma patients
could be useful for clinical decision support. It is unknown which molecular classes of biomolecules
can contribute biomarkers to predictive modeling. Here, we analyzed a large multi-omic database of
over 8500 markers (proteomics, metabolomics, and lipidomics) to identify prognostic biomarkers in
the circulating compartment for adverse outcomes, including mortality and slow recovery, in severely
injured trauma patients. Admission plasma samples from patients (n = 129) enrolled in the Prehospital
Air Medical Plasma (PAMPer) trial were analyzed using mass spectrometry (metabolomics and
lipidomics) and aptamer-based (proteomics) assays. Biomarkers were selected via Least Absolute
Shrinkage and Selection Operator (LASSO) regression modeling and machine learning analysis. A
combination of five proteins from the proteomic layer was best at discriminating resolvers from non-
resolvers from critical illness with an Area Under the Receiver Operating Characteristic curve (AUC)
of 0.74, while 26 multi-omic features predicted 30-day survival with an AUC of 0.77. Patients with
traumatic brain injury as part of their injury complex had a unique subset of features that predicted
30-day survival. Our findings indicate that multi-omic analyses can identify novel admission-based
prognostic biomarkers for outcomes in trauma patients. Unique biomarker discovery also has the
potential to provide biologic insights.

Keywords: multi-omics; trauma; machine learning; biomarkers; prognostic; proteomics

1. Introduction

Trauma is one of the leading causes of human morbidity and mortality worldwide,
resulting in both short- and long-term health impairment and a significant economic
burden [1]. The clinical trajectories for patients with seemingly similar injury complexes
can vary widely and the basis for this variation remains unknown [2,3]. Some patients
recover quickly, while others suffer from further complications such as nosocomial infection
and sepsis, multiple organ dysfunction, and cognitive disabilities resulting in extended
intensive care unit lengths of stay (ICU LOS) [4,5].

Advances in prehospital patient management and inpatient hospital care at designated
trauma centers have increased 30-day survival in trauma patients. This improved survival
is associated with a concomitant increase in the percentage of patients who remain critically
ill after trauma [4,6]. Given its well-defined starting point, trauma as a disease process
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can be easily studied longitudinally from onset to clinical outcome. However, specific
and sensitive biomarkers to predict survival or clinical course at the time of presentation
are limited [7,8].

Large-scale, admission-based multi-omic profiling has the potential to identify unique
prognostic biomarkers and point to biologic processes associated with patient outcomes.
A deep analysis of a high dimensional multi-omic dataset derived from a clinical trial
(Prehospital Air Medical Plasma [PAMPer] trial) that demonstrated a survival benefit of
prehospital thawed plasma was previously reported [9,10], as well as proteomics from
a clinical trial that assessed the use of tranexamic acid after injury (Study of Tranexamic
Acid During Air Medical and Ground Prehospital Transport [STAAMP]). Both of these
studies were interventional, placebo-controlled, randomized clinical trials. The standard-
of-care arm from these multi-institutional studies is representative of severely injured
adult patients transported to Level 1 trauma centers in the USA. Temporal and outcome-
based patterns seen in severely injured trauma patients were previously analyzed [10–12].
Here, we identified which markers have the potential to predict specific outcomes from
an admission-based blood draw taken in the emergency department. In order to account
for the high-dimensional multi-omic datasets, statistical methods with the capability of
dimensionality reduction and feature selection were used to assess the predictive power of
these markers. We report here the application of machine learning algorithms to a database
of proteomic, lipidomic, and metabolomic plasma markers to identify admission-based
prognostic biomarkers for adverse outcomes.

2. Methods
2.1. Patient Enrollment

Human plasma samples (n = 112 for PAMPer and n = 93 for STAAMP) were obtained
upon emergency department admission (0 h (h) timepoint). Patients transported by air
ambulance were enrolled if they had tachycardia (defined as a heartrate > 108 beats per
minute) and experienced at least one episode of hypotension (defined as systolic blood
pressure < 90 mm Hg) or if they experienced severe hypotension (defined as systolic blood
pressure < 70 mm Hg). Patients from the PAMPer dataset were used to train our models,
which were validated for proteomics using patients from the STAAMP clinical trial. Further
information on enrollment criteria for the PAMPer and STAAMP trials have been pub-
lished [9,13]. Injury severity score (ISS) was calculated based on the established Abbreviated
Injury Scale score that is allocated to one out of six body regions. The 3 scores from the
most severely injured body regions produce the ISS score, as described previously [13,14].

2.2. IRB Approval

This study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Institutional Review Board (IRB) of the University of Pittsburgh
(code NCT01818427, 26 March 2013). The PAMPer Trial received approval through the
Emergency Exception from Informed Consent (EFIC) protocol from the Human Research
Protection Office of the U.S. Army Medical Research and Material Command. Detailed
information and study protocol for the PAMPer Trial are available through the following
link: https://clinicaltrials.gov/ct2/show/NCT01818427 (accessed on 1 June 2022).

The Study of Tranexamic Acid During Air Medical and Ground Prehospital Trans-
port (STAAMP) Trial enrolled adult trauma patients that had at least 1 episode of hy-
potension (systolic blood pressure < 90 mm Hg) or tachycardia (heart rate 110 bpm or
greater). This study received approval through the EFIC protocol by the U.S. Food and
Drug Administration as well as a community consultation process under the investiga-
tional new drug application (IND) protocol (IND # 121102). Detailed information and
study protocol for the STAAMP Trial are available through the following link: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4623322/#S3title (accessed on 1 June 2022).

https://clinicaltrials.gov/ct2/show/NCT01818427
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623322/#S3title
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623322/#S3title
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2.3. Untargeted Metabolomic and Lipidomic Assays

Untargeted lipidomic and metabolomic assays (898 metabolites and 997 lipids) were
conducted by Metabolon (Durham, NC, USA); detailed information can be found in our
previous analysis [10,11]. Briefly, an ultra-high performance liquid chromatography mass
spectrometry (UPLC-MS) platform was utilized for the extraction of the raw data. Following
this, the data were analyzed and processed by Metabolon through their in-house software
and extensive library of purified standard compounds.

2.4. Multiplexed Proteomics Assay

An aptamer-based, multiplexed method was used to measure protein levels (7000+ proteins,
SomaLogic Inc., Boulder, CO, USA) for 84 patients included in this study. Further details
on the specific techniques are found in [15].

2.5. Data Normalization, Noise Reduction, and Scaling

Missing data were less than 10% across all variables and the mean value for each
variable was used to fill for any missing data points. Other methods of missing data
imputation did not affect the data due to the low number of missing data. A prescreening
of the biomarkers was conducted to reduce each layer (metabolomic layer, proteomic layer,
lipidomic layer) to the same number of variables based on median and quartiles to filter
the most variable markers between patient groups. The bottom quartiles were removed
based on abundance and the top 10% most variable markers between groups using R were
kept. Each omic layer consisted of approximately 550 biomarkers after this prescreening,
as shown in Figure S1. These omic databases were then both analyzed as separate data
layers and joined as a combined database, and the data were autoscaled (z-score) across
each variable using natural logarithmic transformation and scale functions on R. This is
important for dimensionality reduction and heatmap graphics. Z-scores for the heatmap
were calculated within the ComplexHeatmap package in R. These datasets can be found
online [10,15,16]. Data are available in a publicly accessible repository. The data presented
in this study are openly available in https://data.mendeley.com/datasets/vt8nhp2y2t/1
(accessed on 1 June 2022).

2.6. Feature Selection and Regression Analysis

Several statistical and predictive models (Receiver Operating Characteristic (ROC)
Curve, generalized linear model with Least Absolute Shrinkage and Selection Operator
(LASSO) regression, support vector machine, random forest) were used to evaluate the
predictive nature of biomarkers on either the individual layer scale or on the multi-omic
platform for a binary outcome (resolving status, 30-day survival, and 30-day survival in
patients with traumatic brain injury (TBI)). The R Caret package was used to train the
data with a 10-fold cross validation. A Mann–Whitney U-test was incorporated to rank
the significance and contribution of each biomarker during the analysis for both support
vector machine and random forest methods of machine learning analysis along with a
Benjamini–Hochberg correction with a false discovery rate of less than 5%.

Linear regression with LASSO regularization was tuned by 6 different lambda (penalty)
values ranging from 0.5 to 1 by 0.1 increments, making sure only balanced lambda coeffi-
cients were chosen to represent the model to avoid over- and under-fitting errors. These
regularized data were used to train the support vector machine and random forest models.

2.7. Gene Set Enrichment Analysis

GSEA was carried out using the proteins’ EntrezGeneID and the Princeton GO term
site (https://go.princeton.edu/cgi-bin/GOTermMapper) (accessed on 1 June 2022).

2.8. Predictive Modeling at Admission

The regularized data were used to train two different separate methods of machine
learning (support vector machine and random forest). For each outcome tested (resolution

https://data.mendeley.com/datasets/vt8nhp2y2t/1
https://go.princeton.edu/cgi-bin/GOTermMapper
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from critical illness, 30-day survival, 30-day survival with TBI), these models were repeated
20 times with 10-fold cross validation at each lambda value tested. The performance of each
model was examined by calculating both the accuracy and Area Under the ROC Curve
(AUC) of each model. The layers (proteomics only, lipidomics only, metabolomics only,
and the 3 combined into one multi-omic layer) were analyzed to determine which had the
best predictive potential based on highest AUC and accuracy. For 30-day survival and TBI,
the multi-omic predictive model functioned best with 84 patients and approximately 1650
biomarkers per run. For prediction of resolving status, the proteomic layer performed best
with 84 patients and 550 biomarkers.

2.9. Cross-Prediction Validation across Two Trials

To validate the accuracy of the models, proteomic data from the standard-of-care arm
patient cohort derived from the STAAMP study [13] were used to validate the performance
of the machine learning model for proteomic markers. Data normalization and scaling
were applied to the STAAMP proteomic layer in the same manner as outlined above.
Based on the results of the PAMPER random forest cross-validated proteomic analysis,
the same features (5 total) from this model were filtered for in the STAAMP proteomic
data. The random forest machine learning model was trained on these features from
PAMPER proteomic data and used to predict the outcome of the STAAMP proteomic data
(the STAAMP dataset was used for independent validation).

3. Results
3.1. Overview of Study Design, Details, and Multi-Omic Layers

The admission circulating multi-omic data from patients in the standard-care arm of
the PAMPer Trial (n = 112), a prospective trial that enrolled severely injured trauma patients
transported to trauma centers via air ambulance [9], were used to identify prognostic
biomarkers. The proteomic findings were validated using the standard-care arm from the
STAAMP trial (n = 93) [13]. The multi-omic datasets are outlined in Figure 1 and in our
previous study describing the human response to severe injury [10]. Omic data included
untargeted metabolomics (898 metabolites) [10], quantitative lipidomics (987 lipids) [11],
and multiplexed assay-based proteomics (7211 proteins) [15].

Patients in the primary cohort were segregated based on three outcomes as outlined
in Table 1. In the first analysis, patients were divided into resolvers from critical illness
(intensive care unit length of stay (ICU LOS) < 7 days, n = 25) vs. non-resolvers (ICU LOS
≥ 7 days and/or died, non-resolvers, n = 50). The second clinical outcome was 30-day
survival with 55 survivors and 57 non-survivors. Finally, we assessed 30-day survival in
patients with TBI (survivors n = 27, non-survivors n = 28). Non-fasting healthy controls
(n = 17, 12 males, 5 females, age distribution 20–66 years, with mean age 42.5 years) were
included and described in previous metabolomic and lipidomic studies [10,11], while low
injury severity score (ISS) trauma patients (n = 29, ISS score of 1 or less) were from the
STAAMP trial and were used for controls in the proteomic analysis.

3.2. Proteomics Predicts Resolution from Critical Illness

First, multivariate machine learning analysis was used to determine which individual
data layer provided the most predictive features for outcomes. This was then compared to a
multivariate statistical model that combined the data layers of all three omics. LASSO-based
feature selection was used to classify the down-selected features. To prevent over-fitting,
L1-regularization and cross-validation were performed in every run. L1-regularization
was used for this high-dimensional dataset as the number of features was higher than the
number of sums. The performance of the models (using AUC) was measured in a k-fold
cross-validation framework with permutation testing, as described previously [17–19]. The
use of cross-validation provides a rigorous way to evaluate predictive performance with
data held out. Non-resolvers were defined as patients who had slow recovery with an
intensive care unit length of stay of 7 days or longer. The proteomic layer alone was the best
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at discriminating resolvers from non-resolvers with an AUC of 0.74, as shown in Table 2.
The metabolomic and lipidomic layers individually, along with a combination of these
layers, yielded AUCs ranging between 0.68 and 0.71 (Table S1).
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Figure 1. Overview of patient cohorts and multi-omic layers. (A) Breakdown of patients from
the clinical trials used to develop the predictive model and validation model looking at 30-day
survival and traumatic brain injury. (B) Breakdown of multi-omic layers and number of vari-
ables used for the predictive modeling. (C) Metabolomic and lipidomic subpathways and species.
(D) Overview of patients from PAMPer and STAAMP clinical trials looking at outcome based on ICU
LOS/time of death.
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Table 1. Demographic characteristics of patients used to train the LASSO models based on presence
of traumatic brain injury (TBI).

PAMPer Cohort TBI No TBI p-Value
N 64 48

Age (Average) 45.9 46.2
Gender >0.05
Males 53 35

Females 11 13
Outcome <0.05
Resolver 8 17

Non-resolver 34 16
Early non-survivor 22 15

ISS <0.05
Mild (ISS < 15) 4 13

Moderate (ISS 16–25) 12 17
Severe (ISS > 25) 48 18

Treatment <0.05
Standard of care 49 35

Experimental 38 27
Type of Injury <0.05

Blunt 64 36
Penetrating 0 11

Both 0 1
30-day Survival >0.05

Yes 27 28
No 37 20

Shock 0.29
Yes 34 26
No 30 22

Table 2. LASSO model AUC and accuracies for each group including validation cohort.

LASSO MODEL AREA UNDER THE ROC
CURVE ACCURACY

30-DAY SURVIVAL 0.77 70%
RESOLVING STATUS 0.74 70%

VALIDATION COHORT
FOR RESOLVING STATUS 0.81 78%

30-DAY SURVIVAL IN TBI
PATIENTS 0.75 76%

LASSO identified a minimal set of five proteins (Table S2) that were significantly
different between resolvers and non-resolvers at admission. Both activated protein C and
vitamin-K-dependent protein C (inactive form) were selected as part of the model. In non-
resolving patients, higher quantitative levels of activated protein C were observed, while
resolvers had higher inactivated protein C (Figure 2C). Endophilin-B2 (EB2) was also higher
in the non-resolving group. The functions of EB2 are not well understood but are known to
be related to mitochondrial apoptosis, regulation of growth factor signaling, and autophagy
induction [20,21]. Beta-microseminoprotein, a member of the immunoglobulin-binding
family, and the chemokine interleukin-8 (IL-8), were both higher in non-resolving patients
early after injury. Measured together at admission, these five proteins have the potential to
predict recovery from critical illness.
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1 
 

 

Figure 2. Proteomic markers predict resolution of critical illness based on ICU length of stay and
time of death. (A) Actual and permuted LASSO AUC graph showing AUC of 0.74 for the levels of 5
proteins. (B) Heatmap of selected proteins for different outcomes based on time of death and ICU
length of stay over time; 0, 24, and 72 h refer to time from emergency department admission. Low
ISS controls n = 29, resolvers n = 25, non-resolvers n = 50. (C) Box plots of LASSO-selected features
that are significantly different between resolvers and non-resolvers with raw value measurement.
(D) Selected features from model run on PAMPer patients predict non-resolving status in a validation
cohort (STAAMP clinical trial) with an AUC of 0.81 and an accuracy of 78%. (E,F) Correlation network
between selected features and proteomic database at Spearman’s r = 0.70 showing direct associations
(selected feature outlined in yellow). SHLB2 = Endophilin-B2.

We next characterized the temporal patterns of the five protein biomarkers based on
additional sampling time points of 24 and 72 h (Figure 2B). Activated protein C returned
to levels seen in low ISS controls by 24 h while the inactive form remained higher in the
resolving group through 72 h after injury. Endophilin-B2 also returned to levels similar
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to resolvers by 24 h. In contrast, beta-microseminoprotein and IL-8 remained consistently
higher over time in the non-resolving group compared to resolvers.

To gain a more comprehensive understanding of the entire spectrum of features track-
ing with outcome, we constructed correlation networks, as described previously, around
the LASSO-selected biomarkers [17–19]. The most significant associations (Spearman’s
r > 0.7) were examined with the full networks for all five biomarkers shown in Figure S2.
We also showed focused networks demonstrating correlations involving activated protein
C (Figure 2E) and endophilin-B2 (Figure 2F). Proteins in the correlation networks are listed
in Table S3.

Activated protein C is an anti-coagulant that degrades the inactivated forms of coagu-
lation factors V and VIII. Activated protein C also has anti-inflammatory and anti-apoptotic
properties [22]. Strong, direct associations were found between activated protein C and
high mobility group protein B1 (HMGB1). HMGB1 is a well-described damage-associated
molecular pattern protein [23,24] known to drive inflammation and organ injury in trauma
models [25]. This network also included gamma-interferon-inducible protein 16, which is
involved in transcriptional regulation and innate immunity [23]. The correlation network
included several other proteins in pathways relating to genotoxic stress resistance, DNA
repair, and transcription of zinc-binding domains that regulate gene expression [22].

Endophilin-B2 showed strong associations with ubiquitin carboxyl-terminal hydrolase
15, a key regulator of TGF-β receptor signaling, as well as serine/threonine-protein kinase
that plays a role in cell survival via the caspase-3-dependent pathway [23]. Associations
were also found with platelet-activating factor acetylhydrolase IB subunit gamma, which
functions in brain development and cognitive disability, and a protein regulator of voltage-
gated calcium channels on cannabinoid receptors [22,23].

To validate our findings, we carried out a cross-prediction analysis using data from
patients in the STAAMP clinical trial. These five proteins collectively predicted resolution
of critical illness within 7 days in the STAAMP dataset with an AUC of 0.81 (Figure 2D). Of
note, this group of patients had more resolvers (n = 46) than non-resolvers (n = 18).

3.3. Multi-Omic Markers from Three Omic Data Layers Predict 30-Day Survival

For 30-day survival, features identified from the combined multi-omic database were
the most predictive of outcome with an AUC of 0.77 (Figure 3). LASSO identified a minimal
subset of 26 multi-omic markers (11 metabolites, 9 lipids, 6 proteins) listed in Table S4
from approximately 1500 markers. The proteomic, lipidomic, and metabolomic individual
layers yielded AUCs less than 0.72. After carrying out a Benjamini–Hochberg correction for
multiple testing, nine of these features measured at admission were found to be significantly
different between survivors and non-survivors with an adjusted p-value < 0.03.

Relative values of all the selected features were projected for each layer in heatmaps
(Figure 3C,D) comparing controls, 30-day survivors, and 30-day non-survivors. Most of the
metabolites were higher in non-survivors except for lipids, which were consistently lower
in non-survivors, consistent with our previous studies [11,12]. Several proteins related
to coagulation were selected as part of the model. Activated protein C was found to be
significantly higher in 30-day non-survivors, while coagulation factor VIII showed the
opposite pattern.

To assess the prognostic capability of admission and multi-omic markers relative to
clinical variables, we ran the same models but incorporated clinical variables into the
model, including age, ISS, BMI, and other factors (Figure 4). ISS and BMI were part of
the selected features; however, the AUC dropped for both resolution from critical illness
and 30-day survival compared to the models with multi-omic markers only. ISS alone
yielded an AUC of 0.68. This indicates that the clinical variables did not add further value
to the predictive potential of these biomarkers for this outcome group. We note that ISS
is not typically calculated at admission, as the full extent of injuries is often not known
at that stage.
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Figure 3. Multi-omic markers predict 30-day survival. (A) Breakdown of markers from LASSO model
for 30-day survival with a total of 26 features. (B) Actual and permuted LASSO AUC graph with
an AUC of 0.77. (C) Heatmaps of metabolomic and lipidomic layers comparing healthy controls
(HC), 30-day survivors, and 30-day non-survivors at the 0 h timepoint, normalized and scaled.
(D) Numbers of subjects in each group: HC (n = 17), 30-day survivors (n = 55), 30-day non-survivors
(n = 57). (E) Box plots of LASSO-selected features that are significantly different between survivors
and non-survivors with raw value measurement.
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3.4. Unique Admission Multi-Omic Markers Predict 30-Day Survival in Patients with Traumatic
Brain Injury

A combination of eight admission biomarkers was selected by LASSO analysis from
the multi-omic dataset for the prediction of 30-day survival in patients with CT-confirmed
TBI. As shown in Figure 5A, selected features yielded an AUC of 0.75 (Figure 5B and
Table S5). The individual layers and a combination of these layers all yielded AUCs below
0.72. We compared the relative levels of these markers in the heatmaps (Figure 5C,D) with
healthy controls (n = 17) and low ISS controls over time (n = 29). For metabolomics and
lipidomics, 27 survivors and 37 non-survivors were included, while 21 and 28 were included
for proteomics, respectively. All the biomarkers were significantly higher (p < 0.05) in non-
survivors except for PC.14:0/18:2 (raw value plotted in Figure 5E), a phosphatidylcholine
phospholipid.

A correlation network analysis revealed several strong associations among these
LASSO-selected features with other proteins (Figure S3). HEBP1, or heme-binding protein
1 (Figure 5F), is thought to bind free toxic porphyrinogens present in the cell as well as
promote chemotaxis in monocytes and dendritic cells [26,27]. It is associated with several
ubiquitin proteins related to protein degradation and DNA repair. Hydroxyacylglutathione
hydrolase, which is vital for the production of D-lactic acid [23,28], was also highly corre-
lated to HEBP1.

Two proteins, eukaryotic translation initiation factor 1A (IF1AY) and protein SGT1
homolog (SUGT1), were correlated to two of the selected features, namely HEBP1 and
Poly(rC)-binding protein 1 (PCBP1). IF1AY and SUGT1 both have functions related to
protein biosynthesis and degradation [23,29]. PCBP1, a single-stranded nucleic acid binding
protein, has a known role in initiation of viral RNA replication and translation [23,29]. It
is associated with several proteins shown in Figure 5F related to the regulation of DNA
damage, recovery from replicative DNA stress, vesicular transport, and modification of
post-translational proteins [23,29]. Peptidyl-prolyl cis-trans isomerase A (cyclophilin A)
has strong chemotactic effects on leukocytes as well as a role in initiating a cascade that
activates the MAPK/ERK pathway. It also exerts a pro-inflammatory effect on endothelial
cells through NF-kappa-B and MAP-kinases [23].
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Figure 5. Multi-omic markers predict survival in trauma patients with traumatic brain injury.
(A) Breakdown of markers from LASSO model output with a total of 8 features. (B) Actual and
permuted LASSO AUC graph with an AUC of 0.75. (C) Heatmap of metabolomic and lipidomic
selected features looking at 30-day survival in patients with TBI only and healthy controls. Healthy
controls n = 17, 30-day survivors n = 27, non-survivors n = 37. (D) Heatmap of proteomic features
as in (C). Low ISS controls n = 29, 30-day survivors n = 21, non-survivors n = 28. (E) Box plots of
LASSO-selected features that are significantly different between 30-day survivors and non-survivors
with raw value measurement. (F) Correlation network between selected features and proteomic
database at Spearman’s r = 0.70 showing direct associations (selected feature outlined in yellow).
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Taken together, these analyses show that the addition of TBI to the injury complex
impacts the features that predict survival.

3.5. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was carried out between the outcome subgroups
(survivors vs. non-survivors and resolvers vs. non-resolvers, separately). Supplementary
Tables S6–S8 contain the genes with the strongest positive and negative scores that are
associated with each outcome analysis. A positive score indicated an enriched gene in
the first phenotype (30-day survivors, resolvers, TBI survivors), while a negative score
indicated enriched genes in the second phenotype (30-day non-survivors, non-resolvers,
and TBI non-survivors).

The “hallmark coagulation” gene set shown in Figure S4 was enriched in patients with
more favorable outcomes, including 30-day survivors and resolvers, suggesting the loss or
consumption of many coagulation factors in patients with worse outcomes. This gene set is
comprised of 138 genes involved in the blood-coagulation system and platelet function [30].
Consistent with the LASSO analysis, the vitamin-K-dependent inactive form of protein C
was significantly (p < 0.05) higher in resolvers, and coagulation factor VIII was highest in
30-day survivors. On the other hand, activated protein C (ApC) was significantly higher in
both 30-day non-survivors and non-resolving patients, as shown by the tests of significance
from the LASSO-selected features.

We also identified the “hallmark interferon-alpha response” gene set, comprised of 97
genes that are upregulated in response to alpha interferons [31] in 30-day non-survivors
and non-resolving patients. This gene set includes proteins related to cytokines and growth
factors, transcription factors, cell differentiation markers, and protein kinases.

4. Discussion

This study was undertaken to identify predictive biomarkers using high-dimensional
multi-omic datasets derived from admission blood draws. By utilizing the standard-of-care
arm patients from two recent interventional trials we were able to take advantage of patients
enrolled across multiple institutions to better understand the features of severely injured
humans. A multivariate machine learning model identified the combination of admission
omics features that were most predictive for death within 30 days or resolution of critical
illness. A consistent feature from both analyses was higher levels of activated protein C in
patients destined for adverse outcomes. Gene enrichment analysis also strongly identified
components of coagulation as correlative with patient outcomes. The inclusion of TBI in
the injury complex altered the prognostic markers, indicating the polytrauma patients with
TBI are likely to require unique models to predict outcomes.

Trauma management has become standardized in order to have consistent and sys-
tematic care for patients by following guidelines such as the Advanced Trauma Life Sup-
port [32,33]. However, there is still a need to identify admission biomarkers that are highly
predictive of adverse outcomes in order to prioritize and intensify care [34–36]. We recently
reported a circulating leukocyte transcriptomic classifier that accurately separated trauma
patients into those with rapid vs. slow resolution based on transcriptomic patterns assessed
at <12 h [37]. Raymond et al. showed that a NanoString-based assessment of 63 genes
in whole blood measured at 24 h yielded an AUC of 0.84 [38]. Salve et al. showed that
admission serum copeptin predicted ISS > 15 and need for hospital admission [39]. Other
studies examined base deficit and blood lactate levels during early triage to differentiate
major from minor trauma and as prognostic markers [40,41]. We report here the first effort
to use high-dimensional multi-omic datasets to identify admission-based biomarkers for
adverse outcomes. Of note, these datasets include a large number of immune mediators
and metabolites previously studied in human trauma, including inflammatory mediators
and metabolites such as lactate and succinate. However, only the chemokine IL-8 was
identified by our machine learning analysis. This supports the notion that yet unstudied
biomarkers could have great utility in trauma. It is notable that the modeling yielded AUCs
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in the high 0.7 range. Furthermore, the combinations of variables that were most predictive
were dependent on the outcome of interest. This raises the possibility that predictive panels
may need to be adjusted to capture both mortality and resolution from critical illness. The
inclusion of other variables including patient demographics and clinical variables would
be likely to increase the sensitivity but did not increase the AUC of any of the models.

The GSEA and correlation network analysis yielded novel results with regards to
biological pathways related to traumatic injury. The MYC target genes are reported to
be involved in a large array of biological processes and have been studied in animals
as regulators of energy metabolism in response to renal injury, particularly facilitating
glycolysis [42]. Our previous analysis demonstrated a “systemic storm” early after injury
that included a massive release of molecules, many of which are energy metabolites, into
the circulation. Notably, this release was more extensive in non-survivors [10]. Another
selected feature specific to TBI 30-day survivor outcome was sedoheptulose, which controls
the interplay between glycolysis and the pentose phosphate pathway by functioning as a
biological switch [43].

In patients with worse outcomes (non-survivors and non-resolvers), heme metabolism
was enriched prominently compared to survivors and resolvers. The literature includes
reports studying the relation between heme-related products and injury severity, especially
in association with different arms of the immune system and brain recovery after stroke
and TBI [44–47]. Heme-binding P1 was a selected feature in predicting 30-day survival
in TBI patients as well. Furthermore, multiple studies document the detrimental role of
the interferon response in the context of brain injury [48,49]. Enriched alpha interferon
response pathways were noted in 30-day non-survivors with patients who have confirmed
TBI and in the group that includes patients with and without TBI.

The strengths of this study include a tightly controlled standard-care patient cohorts
from the PAMPer clinical trial, along with available multi-omic databases. We included
cross prediction and validation in an unrelated group of patients from another trauma
clinical trial (STAAMP). The limitations include the inability to establish causality. The
metabolomic layer uses qualitative ultra-performance liquid chromatography for measure-
ment and the results should be validated with quantitative assays. Ultimately, the use of
many of these biomarkers in the clinical setting would require validated assays. However,
our findings can serve as a guide and resource to identify sets of biomarkers that combine
predictive power and ease of measurement.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12090774/s1, Figure S1: Flow chart of methods used
for feature selection using LASSO; Figure S2: Correlation network analysis between LASSO-model
selected features for predicting persistent critical illness in trauma patients (Spearman’s r > 0.70);
Figure S3: Correlation network analysis between LASSO-model selected features for predicting 30-day
survival in trauma patients (Spearman’s r > 0.70); Figure S4: Top phenotype gene set enrichment
analysis in each group; Figure S5: Correlation network analysis between LASSO-model selected
features for predicting traumatic brain injury in trauma patients (Spearman’s r > 0.70). Table S1:
AUC’s of LASSO runs done for each outcome group; Table S2: Selected features for resolving status;
Table S3: List of protein names for correlation networks; Table S4: Selected features for 30-day survival;
Table S5: Selected features for 30-day survival in TBI; Table S6: Ranked Gene List between 30-day
survivors vs. non-survivors (GSEA); Table S7: Ranked gene list between resolvers and non-resolvers
(GSEA); Table S8: Ranked Gene List between TBI vs. NBI patients (GSEA).

Author Contributions: Conceptualization, S.S.A. and T.R.B.; methodology, S.S.A., J.S. (Jacob Scioscia),
J.D., A.R., E.S., S.R., R.V., J.L.D., S.L. and J.B.; resources S.S.A., J.S. (Jacob Scioscia), U.K.K., J.W., J.S.
(Jason Sperry) and M.D.N.; writing—original draft S.S.A., J.S. (Jacob Scioscia), Y.V. and T.R.B., writing—
review and editing, S.S.A., Y.V. and T.R.B.; visualization, S.S.A., J.S. (Jacob Scioscia) and J.D.; funding
acquisition, M.D.N., J.S. (Jason Sperry) and T.R.B. All authors have read and agreed to the published
version of the manuscript.

https://www.mdpi.com/article/10.3390/metabo12090774/s1
https://www.mdpi.com/article/10.3390/metabo12090774/s1


Metabolites 2022, 12, 774 14 of 16

Funding: This work was supported by the National Institutes of Health (R35-GM-127027 to T.R.B),
NIAID DP2AI164325 to J.D, R38 HL150207 to J.B, R35GM119526 to M.D.N. and the National Heart,
Lung, and Blood Institute (T32HL098036 to S.L.).

Institutional Review Board Statement: Ethical review and approval were waived for this study as
it involves trauma and emergency research, Ethic Committee Name: University of Pittsburgh Study
NCT01818427 26 March 2013.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in https://data.
mendeley.com/datasets/vt8nhp2y2t/1 (accessed on 1 June 2022).

Acknowledgments: This work was supported by the National Institutes of Health (R35-GM-127027
to T.R.B.), NIAID DP2AI164325 to J.D., R38 HL150207 to J.B., R35GM119526 to M.D.N. and the
National Heart, Lung, and Blood Institute (T32HL098036 to S.L.). The University of Pittsburgh
holds a Physician-Scientist Institutional Award from the Burroughs Welcome Fund (J.B., S.L.). J.W.
was supported by Xiangya Medical School, Changsha, China. We would like to acknowledge
the contribution of collaborators involved in the PAMPer and STAAMP studies for the clinical
data collection.

Conflicts of Interest: Y.V. is a co-founder of, and stakeholder in, Immunetrics Inc. M.D.N. holds
an equity stake in Haima Therapeutics. He has received research support and/or honoraria from
Haemonetics, Instrumentation Laboratories, Janssen Pharmaceuticals, and Meredian. T.R.B. is a
stakeholder in Immunetrics. Other authors declare no conflict of interests.

References
1. CDC. Underlying Cause of Death, 1999–2020 Results Form 2020. Available online: https://wonder.cdc.gov/controller/

datarequest/D76;jsessionid=2F705A64B38A54BD2E3C93BE1C4F (accessed on 16 March 2022).
2. Stoecklein, V.M.; Osuka, A.; Lederer, J.A. Trauma equals danger–damage control by the immune system. J. Leukoc. Biol. 2012,

92, 539–551. [CrossRef] [PubMed]
3. Asehnoune, K.; Roquilly, A.; Abraham, E.; Riou, B. Innate Immune Dysfunction in Trauma Patients: From pathophysiology to

treatment. Anesthesiology 2012, 117, 411–416. [CrossRef] [PubMed]
4. Mondello, S.; Cantrell, A.; Italiano, D.; Fodale, V.; Mondello, P.; Ang, D. Complications of Trauma Patients Admitted to the ICU in

Level I Academic Trauma Centers in the United States. BioMed Res. Int. 2014, 2014, 473419. [CrossRef] [PubMed]
5. Cuschieri, J.; Johnson, J.L.; Sperry, J.; A West, M.; Moore, E.E.; Minei, J.P.; Bankey, P.E.; Nathens, A.B.; Cuenca, A.G.; Efron, P.A.;

et al. Benchmarking Outcomes in the Critically Injured Trauma Patient and the Effect of Implementing Standard Operating
Procedures. Ann. Surg. 2012, 255, 993–999. [CrossRef]

6. Glance, L.G.; Osler, T.M.; Mukamel, D.B.; Dick, A.W. Outcomes of Adult Trauma Patients Admitted to Trauma Centers in
Pennsylvania, 2000–2009. Arch. Surg. 2012, 147, 732–737. [CrossRef] [PubMed]

7. Chrysos, E.; Lilitsis, E.; Xenaki, S.; Athanasakis, E.; Papadakis, E.; Syrogianni, P.; Chalkiadakis, G. Guiding management in severe
trauma: Reviewing factors predicting outcome in vastly injured patients. J. Emerg. Trauma Shock. 2018, 11, 80–87. [CrossRef]

8. Bonaroti, J.; Li, S.; Abdelhamid, S.; Billiar, T. Prognostic Biomarkers to Predict Outcomes in Trauma. In Biomarkers in Trauma,
Injury and Critical Care; Rajendram, R., Preedy, V.R., Patel, V.B., Eds.; Springer International Publishing: Cham, Switzerland, 2022;
pp. 1–25. [CrossRef]

9. Sperry, J.L.; Guyette, F.X.; Brown, J.B.; Yazer, M.H.; Triulzi, D.J.; Early-Young, B.J.; Adams, P.W.; Daley, B.J.; Miller, R.S.; Harbrecht,
B.G.; et al. Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock. N. Engl. J. Med.
2018, 379, 315–326. [CrossRef]

10. Wu, J.; Vodovotz, Y.; Abdelhamid, S.; Guyette, F.X.; Yaffe, M.B.; Gruen, D.S.; Cyr, A.; Okonkwo, D.O.; Kar, U.K.; Krishnamoorthi,
N.; et al. Multi-omic analysis in injured humans: Patterns align with outcomes and treatment responses. Cell Rep. Med. 2021,
2, 100478. [CrossRef]

11. Wu, J.; Cyr, A.; Gruen, D.; Lovelace, T.; Benos, P.; Chen, T.; Guyette, F.X.; Yazer, M.H.; Daley, B.J.; Miller, R.S.; et al. Lipidomic
Signatures Align with Inflammatory Patterns and Outcomes in Critical Illness. Res. Sq. 2021, preprint. [CrossRef]

12. Cyr, A.; Zhong, Y.; Reis, S.E.; Namas, R.A.; Amoscato, A.; Zuckerbraun, B.; Sperry, J.; Zamora, R.; Vodovotz, Y.; Billiar, T.R.
Analysis of the Plasma Metabolome after Trauma, Novel Circulating Sphingolipid Signatures, and In-Hospital Outcomes. J. Am.
Coll. Surg. 2021, 232, 276–287.e1. [CrossRef]

13. Guyette, F.X.; Brown, J.B.; Zenati, M.S.; Early-Young, B.J.; Adams, P.W.; Eastridge, B.J.; Nirula, R.; Vercruysse, G.A.; O’Keeffe, T.;
Joseph, B.; et al. Tranexamic Acid During Prehospital Transport in Patients at Risk for Hemorrhage After Injury: A Double-blind,
Placebo-Controlled, Randomized Clinical Trial. JAMA Surg. 2020, 156, 11–20. [CrossRef] [PubMed]

https://data.mendeley.com/datasets/vt8nhp2y2t/1
https://data.mendeley.com/datasets/vt8nhp2y2t/1
https://wonder.cdc.gov/controller/datarequest/D76;jsessionid=2F705A64B38A54BD2E3C93BE1C4F
https://wonder.cdc.gov/controller/datarequest/D76;jsessionid=2F705A64B38A54BD2E3C93BE1C4F
http://doi.org/10.1189/jlb.0212072
http://www.ncbi.nlm.nih.gov/pubmed/22654121
http://doi.org/10.1097/ALN.0b013e31825f018d
http://www.ncbi.nlm.nih.gov/pubmed/22728780
http://doi.org/10.1155/2014/473419
http://www.ncbi.nlm.nih.gov/pubmed/24995300
http://doi.org/10.1097/SLA.0b013e31824f1ebc
http://doi.org/10.1001/archsurg.2012.1138
http://www.ncbi.nlm.nih.gov/pubmed/22911068
http://doi.org/10.4103/JETS.JETS_74_17
http://doi.org/10.1007/978-3-030-87302-8_8-1
http://doi.org/10.1056/NEJMoa1802345
http://doi.org/10.1016/j.xcrm.2021.100478
http://doi.org/10.21203/rs.3.rs-106579/v1
http://doi.org/10.1016/j.jamcollsurg.2020.12.022
http://doi.org/10.1001/jamasurg.2020.4350
http://www.ncbi.nlm.nih.gov/pubmed/33016996


Metabolites 2022, 12, 774 15 of 16

14. Gruen, D.S.; Brown, J.B.; Guyette, F.X.; Vodovotz, Y.; Johansson, P.I.; Stensballe, J.; Barclay, D.A.; Yin, J.; Daley, B.J.; Miller, R.S.;
et al. Prehospital plasma is associated with distinct biomarker expression following injury. JCI Insight 2020, 5, e135350. [CrossRef]
[PubMed]

15. Wu, J.; Moheimani, H.; Li, S.; Kar, U.K.; Bonaroti, J.; Miller, R.S.; Daley, B.J.; Harbrecht, B.G.; Claridge, J.A.; Gruen, D.S.; et al.
High Dimensional Multiomics Reveals Unique Characteristics of Early Plasma Administration in Polytrauma Patients with TBI.
Ann. Surg. 2022, Publish Ahead of Print. [CrossRef]

16. Wu, J. Metabolomic and Proteomic Dataset of Trauma Patients in PAMPer Trial. Mendeley 2021. Available online: https:
//doi.org/10.17632/vt8nhp2y2t.1 (accessed on 1 June 2022).

17. Ackerman, M.E.; Das, J.; Pittala, S.; Broge, T.; Linde, C.; Suscovich, T.J.; Brown, E.P.; Bradley, T.; Natarajan, H.; Lin, S.; et al.
Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV. Nat. Med. 2018, 24, 1590–1598.
[CrossRef] [PubMed]

18. Das, J.; Devadhasan, A.; Linde, C.; Broge, T.; Sassic, J.; Mangano, M.; O′Keefe, S.; Suscovich, T.; Streeck, H.; Irrinki, A.; et al.
Mining for humoral correlates of HIV control and latent reservoir size. PLoS Pathog. 2020, 16, e1008868. [CrossRef]

19. Suscovich, T.J.; Fallon, J.K.; Das, J.; Demas, A.R.; Crain, J.; Linde, C.H.; Michell, A.; Natarajan, H.; Arevalo, C.; Broge, T.; et al.
Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Sci. Transl.
Med. 2020, 12, eabb4757. [CrossRef] [PubMed]

20. Serfass, J.M.; Takahashi, Y.; Zhou, Z.; Kawasawa, Y.I.; Liu, Y.; Tsotakos, N.; Young, M.; Tang, Z.; Yang, L.; Atkinson, J.M.; et al.
Endophilin B2 facilitates endosome maturation in response to growth factor stimulation, autophagy induction, and influenza A
virus infection. J. Biol. Chem. 2017, 292, 10097–10111. [CrossRef]

21. Wang, Y.-H.; Wang, J.-Q.; Wang, Q.; Wang, Y.; Guo, C.; Chen, Q.; Chai, T.; Tang, T.-S. Endophilin B2 promotes inner mitochondrial
membrane degradation by forming heterodimers with Endophilin B1 during mitophagy. Sci. Rep. 2016, 6, 25153. [CrossRef]

22. Neyrinck, A.P.; Liu, K.D.; Howard, J.P.; Matthay, M.A. Protective mechanisms of activated protein C in severe inflammatory
disorders. Br. J. Pharmacol. 2009, 158, 1034–1047. [CrossRef]

23. The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489.
[CrossRef]

24. Yang, H.; Zeng, Q.; Silverman, H.A.; Gunasekaran, M.; George, S.J.; Devarajan, A.; Addorisio, M.E.; Li, J.; Tsaava, T.; Shah, V.;
et al. HMGB1 released from nociceptors mediates inflammation. Proc. Natl. Acad. Sci. USA 2021, 118, e2102034118. [CrossRef]
[PubMed]

25. Levy, R.M.; Mollen, K.; Prince, J.M.; Kaczorowski, D.J.; Vallabhaneni, R.; Liu, S.; Tracey, K.J.; Lotze, M.T.; Hackam, D.J.; Fink, M.P.;
et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am. J. Physiol. Regul. Integr. Comp.
Physiol. 2007, 293, R1538–R1544. [CrossRef] [PubMed]

26. Devosse, T.; Dutoit, R.; Migeotte, I.; De Nadai, P.; Imbault, V.; Communi, D.; Salmon, I.; Parmentier, M. Processing of HEBP1 by
Cathepsin D Gives Rise to F2L, the Agonist of Formyl Peptide Receptor 3. J. Immunol. 2011, 187, 1475–1485. [CrossRef]

27. Yagensky, O.; Kohansal-Nodehi, M.; Gunaseelan, S.; Rabe, T.; Zafar, S.; Zerr, I.; Härtig, W.; Urlaub, H.; Chua, J.J. Increased
expression of heme-binding protein 1 early in Alzheimer’s disease is linked to neurotoxicity. eLife 2019, 8, e47498. [CrossRef]

28. Gene Cards. HEBP1 Gene—GeneCards|HEBP1 Protein|HEBP1 Antibody 2022. Available online: https://www.genecards.org/
cgi-bin/carddisp.pl?gene=HEBP1 (accessed on 16 April 2022).

29. Safran, M.; Rosen, N.; Twik, M.; BarShir, R.; Stein, T.I.; Dahary, D.; Fishilevich, S.; Lancet, D. The GeneCards Suite. In Practical
Guide to Life Science Databases; Abugessaisa, I., Kasukawa, T., Eds.; Springer: Singapore, 2021; pp. 27–56. [CrossRef]

30. GSEA. HALLMARK_COAGULATION 2022. Available online: https://www.gsea-msigdb.org/gsea/msigdb/cards/
HALLMARK_COAGULATION (accessed on 17 March 2022).

31. GSEA. HALLMARK_INTERFERON_ALPHA_RESPONSE 2022. Available online: https://www.gsea-msigdb.org/gsea/msigdb/
cards/HALLMARK_INTERFERON_ALPHA_RESPONSE (accessed on 18 March 2022).

32. Gwinnutt, C.L.; Driscoll, P.A. Advanced trauma life support. Eur. J. Anaesthesiol. 1996, 13, 95–101. [CrossRef] [PubMed]
33. WHO. Guidelines for Essential Trauma Care; World Health Organization: Geneva, Switzerland, 2004.
34. Kieffer, W.K.M.; Michalik, D.V.; Gallagher, K.; McFadyen, I.; Bernard, J.; Rogers, B.A. Temporal variation in major trauma

admissions. Ann. R. Coll. Surg. Engl. 2016, 98, 128–137. [CrossRef]
35. Moran, C.G.; Lecky, F.; Bouamra, O.; Lawrence, T.; Edwards, A.; Woodford, M.; Willett, K.; Coats, T.J. Changing the System—Major

Trauma Patients and Their Outcomes in the NHS (England) 2008–2017. eClinicalMedicine 2018, 2–3, 13–21. [CrossRef]
36. Bayissa, B.B.; Alemu, S. Pattern of trauma admission and outcome among patients presented to Jimma University Specialized

Hospital, south-western Ethiopia. Trauma Surg. Acute Care Open 2021, 6, e000609. [CrossRef] [PubMed]
37. Chen, T.; Delano, M.J.; Chen, K.; Sperry, J.L.; Namas, R.A.; Lamparello, A.J.; Deng, M.; Conroy, J.; Moldawer, L.L.; Efron, P.A.;

et al. A road map from single-cell transcriptome to patient classification for the immune response to trauma. JCI Insight 2021, 6,
e145108. [CrossRef]

38. Raymond, S.L.; Hawkins, R.B.; Wang, Z.; Mira, J.C.; Stortz, J.A.; Han, F.; Lanz, J.D.; Hennessy, L.V.; Brumback, B.A.; Baker, H.V.;
et al. Prospective Validation of a Transcriptomic Metric in Severe Trauma. Ann. Surg. 2020, 271, 802–810. [CrossRef]

39. Salvo, F.; Luppi, F.; Lucchesi, D.M.; Canovi, S.; Franchini, S.; Polese, A.; Santi, F.; Trabucco, L.; Fasano, T.; Ferrari, A.M. Serum
Copeptin levels in the emergency department predict major clinical outcomes in adult trauma patients. BMC Emerg. Med. 2020,
20, 14. [CrossRef]

http://doi.org/10.1172/jci.insight.135350
http://www.ncbi.nlm.nih.gov/pubmed/32229722
http://doi.org/10.1097/SLA.0000000000005610
https://doi.org/10.17632/vt8nhp2y2t.1
https://doi.org/10.17632/vt8nhp2y2t.1
http://doi.org/10.1038/s41591-018-0161-0
http://www.ncbi.nlm.nih.gov/pubmed/30177821
http://doi.org/10.1371/journal.ppat.1008868
http://doi.org/10.1126/scitranslmed.abb4757
http://www.ncbi.nlm.nih.gov/pubmed/32718991
http://doi.org/10.1074/jbc.M117.792747
http://doi.org/10.1038/srep25153
http://doi.org/10.1111/j.1476-5381.2009.00251.x
http://doi.org/10.1093/nar/gkaa1100
http://doi.org/10.1073/pnas.2102034118
http://www.ncbi.nlm.nih.gov/pubmed/34385304
http://doi.org/10.1152/ajpregu.00272.2007
http://www.ncbi.nlm.nih.gov/pubmed/17652366
http://doi.org/10.4049/jimmunol.1003545
http://doi.org/10.7554/eLife.47498
https://www.genecards.org/cgi-bin/carddisp.pl?gene=HEBP1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=HEBP1
http://doi.org/10.1007/978-981-16-5812-9_2
https://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_COAGULATION
https://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_COAGULATION
https://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_INTERFERON_ALPHA_RESPONSE
https://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_INTERFERON_ALPHA_RESPONSE
http://doi.org/10.1097/00003643-199603000-00002
http://www.ncbi.nlm.nih.gov/pubmed/8829950
http://doi.org/10.1308/rcsann.2016.0040
http://doi.org/10.1016/j.eclinm.2018.07.001
http://doi.org/10.1136/tsaco-2020-000609
http://www.ncbi.nlm.nih.gov/pubmed/34151026
http://doi.org/10.1172/jci.insight.145108
http://doi.org/10.1097/SLA.0000000000003204
http://doi.org/10.1186/s12873-020-00310-5


Metabolites 2022, 12, 774 16 of 16

40. Paladino, L.; Sinert, R.; Wallace, D.; Anderson, T.; Yadav, K.; Zehtabchi, S. The utility of base deficit and arterial lactate in
differentiating major from minor injury in trauma patients with normal vital signs. Resuscitation 2008, 77, 363–368. [CrossRef]
[PubMed]

41. Régnier, M.-A.; Raux, M.; Le Manach, Y.; Asencio, Y.; Gaillard, J.; Devilliers, C.; Langeron, O.; Riou, B. Prognostic Significance of
Blood Lactate and Lactate Clearance in Trauma Patients. Anesthesiology 2012, 117, 1276–1288. [CrossRef] [PubMed]

42. Yakulov, T.A.; Todkar, A.P.; Slanchev, K.; Wiegel, J.; Bona, A.; Groß, M.; Scholz, A.; Hess, I.; Wurditsch, A.; Grahammer, F.; et al.
CXCL12 and MYC control energy metabolism to support adaptive responses after kidney injury. Nat. Commun. 2018, 9, 3660.
[CrossRef] [PubMed]

43. Nagy, C.; Haschemi, A. Sedoheptulose kinase regulates cellular carbohydrate metabolism by sedoheptulose 7-phosphate supply.
Biochem. Soc. Trans. 2013, 41, 674–680. [CrossRef] [PubMed]

44. Chang, E.F.; Claus, C.P.; Vreman, H.J.; Wong, R.J.; Noble-Haeusslein, L.J. Heme Regulation in Traumatic Brain Injury: Relevance
to the Adult and Developing Brain. J. Cereb. Blood Flow Metab. 2005, 25, 1401–1417. [CrossRef] [PubMed]

45. Shinotsuka, C.; Bozza, F. Analysis of cytokine profile and heme metabolism byproducts after hemorrhagic stroke. Crit. Care 2013,
17 (Suppl. 3), P31. [CrossRef]

46. Kourula, S.; Wong, R.J.; Jang, K.Y.; Kalish, F.; Chisholm, K.; Zhao, H.; Vreman, H.J.; Sylvester, K.G.; Stevenson, D.K. Heme
oxygenase-1 deficiency promotes the development of necrotizing enterocolitis-like intestinal injury in a newborn mouse model.
Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G991–G1001. [CrossRef]

47. West, S.D.; Mold, C. Monocyte Deactivation Correlates with Injury Severity Score, But Not with Heme Oxygenase-1 Levels in
Trauma Patients. J. Surg. Res. 2012, 172, 5–10. [CrossRef]

48. Barrett, J.P.; Henry, R.; Shirey, K.A.; Doran, S.J.; Makarevich, O.D.; Ritzel, R.; Meadows, V.A.; Vogel, S.N.; Faden, A.I.; Stoica,
B.A.; et al. Interferon-β Plays a Detrimental Role in Experimental Traumatic Brain Injury by Enhancing Neuroinflammation That
Drives Chronic Neurodegeneration. J. Neurosci. 2020, 40, 2357–2370. [CrossRef]

49. Roselli, F.; Chandrasekar, A.; Morganti-Kossmann, M.C. Interferons in Traumatic Brain and Spinal Cord Injury: Current Evidence
for Translational Application. Front. Neurol. 2018, 9, 458. [CrossRef] [PubMed]

http://doi.org/10.1016/j.resuscitation.2008.01.022
http://www.ncbi.nlm.nih.gov/pubmed/18367305
http://doi.org/10.1097/ALN.0b013e318273349d
http://www.ncbi.nlm.nih.gov/pubmed/23168430
http://doi.org/10.1038/s41467-018-06094-4
http://www.ncbi.nlm.nih.gov/pubmed/30202007
http://doi.org/10.1042/BST20120354
http://www.ncbi.nlm.nih.gov/pubmed/23514175
http://doi.org/10.1038/sj.jcbfm.9600147
http://www.ncbi.nlm.nih.gov/pubmed/15917748
http://doi.org/10.1186/cc12647
http://doi.org/10.1152/ajpgi.00363.2012
http://doi.org/10.1016/j.jss.2011.04.016
http://doi.org/10.1523/JNEUROSCI.2516-19.2020
http://doi.org/10.3389/fneur.2018.00458
http://www.ncbi.nlm.nih.gov/pubmed/29971040

	Introduction 
	Methods 
	Patient Enrollment 
	IRB Approval 
	Untargeted Metabolomic and Lipidomic Assays 
	Multiplexed Proteomics Assay 
	Data Normalization, Noise Reduction, and Scaling 
	Feature Selection and Regression Analysis 
	Gene Set Enrichment Analysis 
	Predictive Modeling at Admission 
	Cross-Prediction Validation across Two Trials 

	Results 
	Overview of Study Design, Details, and Multi-Omic Layers 
	Proteomics Predicts Resolution from Critical Illness 
	Multi-Omic Markers from Three Omic Data Layers Predict 30-Day Survival 
	Unique Admission Multi-Omic Markers Predict 30-Day Survival in Patients with Traumatic Brain Injury 
	Gene Set Enrichment Analysis 

	Discussion 
	References

