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Abstract: The analysis of high-throughput metabolomics mass spectrometry data across multiple
biological sample types (biospecimens) poses challenges due to missing data. During differential
abundance analysis, dropping samples with missing values can lead to severe loss of data as well as
biased results in group comparisons and effect size estimates. However, the imputation of missing
data (the process of replacing missing data with estimated values such as a mean) may compromise the
inherent intra-subject correlation of a metabolite across multiple biospecimens from the same subject,
which in turn may compromise the efficacy of the statistical analysis of differential metabolites in
biomarker discovery. We investigated imputation strategies when considering multiple biospecimens
from the same subject. We compared a novel, but simple, approach that consists of combining
the two biospecimen data matrices (rows and columns of subjects and metabolites) and imputes
the two biospecimen data matrices together to an approach that imputes each biospecimen data
matrix separately. We then compared the bias in the estimation of the intra-subject multi-specimen
correlation and its effects on the validity of statistical significance tests between two approaches. The
combined approach to multi-biospecimen studies has not been evaluated previously even though it
is intuitive and easy to implement. We examine these two approaches for five imputation methods:
random forest, k nearest neighbor, expectation-maximization with bootstrap, quantile regression,
and half the minimum observed value. Combining the biospecimen data matrices for imputation
did not greatly increase efficacy in conserving the correlation structure or improving accuracy in the
statistical conclusions for most of the methods examined. Random forest tended to outperform the
other methods in all performance metrics, except specificity.

Keywords: multi-biospecimen; multivariate analysis; metabolomics; mass spectrometry; missing
data; imputation

1. Introduction

The identification of biomarkers for disease [1-4] and environmental exposure [5-9]
using high dimensional metabolomics data is a rapidly developing field showing a high
degree of promise for identifying risk factors and for developing therapeutic targets and
clinical diagnostic tests. Within the last decade, the application of high-throughput mass
spectroscopy (MS) to analyze hundreds or thousands of compounds from multiple types of
biospecimens (e.g., serum, plasma, blood, and urine) from the same subject has increased
as a method for enhancing the identification of small molecule metabolic biomarkers
and understanding of physiological processes and down-stream effects in organs and
pathways [10-14].

Commonly, -omics data from multiple biospecimens from the same subject are ana-
lyzed separately and the results compared [10,13-15]. However, a multivariate analysis
for correlated samples that incorporates the inherent intra-subject correlation structure
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of a metabolite with itself across the multiple biospecimens from the same subject could
enhance power and increase the information available for statistical tests of differential
abundance analysis [16,17]. During statistical analysis of metabolomics data, observations
with missing values are commonly dropped. This can lead to severe loss of data as well
as biased results in group comparisons and effect size estimates. However, the process
of replacing missing data with calculated values (imputation) may obscure the nature of
inherent correlation of a metabolite across correlated biospecimens from the same sub-
ject, which in turn may compromise the efficacy of the statistical analysis in identifying
abundant metabolites in relation to experimental conditions. Hence, we hypothesize that
imputation methods that maintain an accurate correlation structure should provide better
precision of results than those that do not.

MS data usually contain a relatively high proportion of missing values attributed to
various sources [18-20], creating challenges that need to be addressed before statistical
analysis can proceed to avoid bias in estimation of effects and statistical validity [21,22].
The missing data process for MS-based -omics data tends to be predominately non-random,
e.g., censoring below the detection limit, with some portion missing-at-random due to pro-
cessing errors [18]. Non-random missing (NRM) data pose additional challenges because
most imputation methods assume a missing-at-random (MAR) missing data mechanism,
and so may not be appropriate for MS-based -omics data. For the same reason, analyses
using only observed data will not only lead to drastic loss of data with reduced sample sizes
but will produce systematic bias due to left truncation or censoring by mostly discarding
samples with low concentrations below detection limit. These issues may be exacerbated
for multivariate analyses, where a missing value of a metabolite in one biospecimen leads
to deletion of its pair in the other biospecimen in analysis of complete data (only those
metabolites observed in both biospecimens), and where bias in estimation of the metabolite
concentrations will affect estimates of correlation of the metabolite with its biospecimen
pair and with other metabolites. Hence, accurate imputation is essential in metabolomics
studies where multiple biospecimens are collected and analyzed together.

There exists very sparse examination of the effects of missing data imputation on
estimating biospecimen correlation in multivariate analysis in the literature. Taylor et al.
showed that many imputation methods do not preserve the correlation structure between
biospecimen data matrices and that this has biasing effects on the subsequent multivariate
analyses [17]. Do et al. [23] investigated patterns of missingness in MS-based metabolomics
data and found that limit-of-detection (LOD) censored data accounted for most of the miss-
ing values. As part of this study, they examined the ability of each of 31 imputation methods
to reconstruct biochemical pathways in metabolic networks based on samples measured
on 53 different run days, and the ability of the method to increase statistical power and
preserving metabolite-gene associations. These investigations evaluated the preservation
of the between-metabolite correlation structure within a biospecimen. They found that the
expectation/maximization with bootstrap algorithm (EMB) [24,25] performed well, but
questioned its utility given the computational challenges, and that the k-nearest neighbor
(kNN) [18,26] method showed robust performance and was computationally more tractable.
Imputation by quantile regression (QR) shows promise for metabolomics data [27-29] be-
cause this method estimates the lower quantiles of the distribution and hence should be
efficacious for LOD missingness. Finally, random forest [30-32] has shown great potential
as a non-parametric method for high-dimension data sets. If a multi-biospecimen approach
is desired for assessing group differences or biomarker identification, the missing data
imputation method that best preserves the inter-biospecimen correlation structure within
subject should produce more reliable statistical validity.

In this study, we used two previously published real data sets that are representative
of data with properties commonly seen in metabolomics studies, one with high correlation
between biospecimens and one with low, to evaluate two approaches to imputation for
multiple biospecimens: (1) imputing each biospecimen data matrix (rows and columns
corresponding to metabolites and subjects, respectively) separately or (2) combining the
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biospecimen data matrices before imputation. For each approach, we consider five different
imputation methods that have either shown promise in terms of accuracy of imputation for
metabolomics data or are commonly used by investigators: random forest (RF), k-nearest
neighbor (kNN), expectation/maximization with bootstrap algorithm (EMB), quantile
regression (QR), and half-minimum (HM).

We used two previously published real data sets: (1) a human lung cancer data set
with 178 plasma and serum metabolites (hereafter referred to as GCTOF), described in [33];
and (2) a second human lung cancer study, with 351 metabolites from lung tissue and
serum (hereafter referred to as HILIC), described in [34]. Metabolites with complete data
were chosen from each data set (176 from GCTOF and 327 from HILIC), which we used
for our simulation studies and considered as the true complete data set for performance
evaluation.

We evaluated the two approaches (combined and separate data matrices) for each
of the five methods with respect to their abilities to preserve the between-biospecimen
correlation structure at different levels of missingness. Further, we assessed the influence
of biased between-biospecimen correlation estimates on significance of statistical tests (sen-
sitivity, specificity, and accuracy) by comparing the results of bivariate analysis of variance
(MANOVA) of group differences (cancer versus healthy controls) using the imputed data
compared to the true complete data. Here sensitivity and specificity were defined using the
statistical results from the complete data: that is, true positives were defined as statistically
significant results (raw p < 0.05) in the true data that were also significant in the imputed
data. Similarly, true negatives were defined as results that were not significant in the true
data that were also non-significant in the imputed data.

2. Results
2.1. Data Sets

The true GCTOF data set had 41 (23%) significantly different compounds between
cancer and control groups out of 176. The true HILIC data set had 69 (21%) significantly
different compounds out of 327. The GCTOF data had relatively high between-biospecimen
correlations, ranging between —0.2 to 0.98, with a mode at around 0.5; whereas the HILIC
data set had relatively low biospecimen correlations, ranging between —0.3 and 0.3, with a
mode near 0. See Figure 1. Due to the random sampling approach to simulating missing-
ness, some metabolites in the simulated data sets will have zero or very low percentages of
missingness. These metabolites are obvious in the scatterplots that follow as they appear as
perfectly or nearly perfectly imputed (i.e., they lie on or very close to the diagonal lines in
Figure 2a,b).
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Figure 1. Histograms of the distribution of between-biospecimen correlations of all metabolites in
the true HILIC and GCTOF data sets.
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Figure 2. (a,b): Scatterplots of between-biospecimen correlations of the true complete data against
those of the imputed data (at 5%, 20%, 30%, 40%, 60% missing values imputed) for GCTOF data
set. Each dot represents an individual metabolite. EMB = Estimation/Maximization with Bootstrap
imputation. Half Min = Half the Minimum observed value imputation. KNN = k Nearest Neighbors
imputation. QRILC = Quantile Regression Imputation Left Censored data. RF = Random Forest
imputation. (b) Scatterplots of between-biospecimen correlations of the true data against those of
imputed data (at 5%, 20%, 30%, 40%, 60% missing values imputed) for the HILIC data set. Each dot
represents an individual metabolite. EMB = Estimation/Maximization with Bootstrap imputation.
Half Min = Half the Minimum observed value imputation. KNN = k Nearest Neighbors imputation.
QRILC = Quantile Regression Imputation Left Censored data. RF = Random Forest imputation.

2.2. Comparison of the True vs. Imputed Between-Biospecimen Correlations

We examined the validity of each imputation method and approach by assessing
the degree of concordance between the imputed and true intra-biospecimen correlations.
Specifically, we estimated the between-biospecimen correlation for each metabolite for the
true and imputed data.

Combined Versus Separate Imputation Approaches

We examined how the between-biospecimen correlation of the imputed data is similar
to that of the true data, at 5%, 20%, 30%, 40%, and 60% missingness. There were no obvious
differences in the results between the separate versus combined data matrix imputation
approaches in either data set for any of the five methods. Regardless of the imputation
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method used, both approaches showed a trend of the imputed between-biospecimen
correlation estimates approaching zero as percent missingness increased. Figure 2a,b show
scatterplots of the between-biospecimen correlations for individual metabolites estimated
from imputed and complete data, with an overlay of the two approaches.

2.3. Performance of the Imputation Methods
2.3.1. GCTOF Data Set

All imputation methods performed well between 1% and 10% missingness, with no
flattening of the scatter plots of between-biospecimen correlations of imputed data by those
of the true data; and minimally increasing spread in the scatter with increasing missingness
for both the combined and separate imputation approaches (see Figure 2a and Table S1).
At 30% missingness, the methods begin to be distinguishable with most having rapidly
increasing spread with increasing missingness, mostly in a downward direction, with the
imputed between-biospecimen correlations estimates decreasing towards zero for those
metabolites with larger number of missing. This trend was somewhat slower for EMB,
kNN and RF, whose spreads were still mostly random (rather than downward trending),
with EMB having the largest spread of the three. By 40% missingness, all methods show a
clear trend of estimated correlations tending towards zero for the imputed data as percent
missingness increases, with RF showing the least amount of bias.

2.3.2. HILIC Data Set

Because this data set had relatively low correlations ranging from —0.3 to 0.3 and
estimated between-biospecimen correlations after imputation trend towards zero with
increasing missingness, the bias in this data set was lower than in the GCTOF data set at
higher levels of missingness, for both approaches and all methods (see Figures 2a,b and 3).
However, the trends were still mostly as described for GCTOF, with increasing spread
and absolute bias with increasing percent missingness, with RF performing the best as
missingness increased. See Figures 2a,b and 3. These results are summarized in Table S2.
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Figure 3. Box and whisker plots of bias in the estimated between-biospecimen correlations from
imputed data for HILIC and GCTOF data sets for the separate and combined approaches.
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2.4. Bias in the Between-Biospecimen Correlation

We also assessed the efficacy in maintaining the between-biospecimen correlation
structure by plotting the bias (i.e., difference of between-biospecimen correlations between
the true complete and imputed data) by approach and method, and percent missingness
(Figure 3). Consistent with what we described above, absolute bias increases with increasing
missingness more strikingly for the more highly correlated GCTOF data set than for the
lower correlations seen in the HILIC data set, due to the correlations already being near
zero in the HILIC data set. The increase in absolute bias with missingness is noticeably
lower for RF than for the other methods for the GCTOF data set, with EMB coming in
second, for both the separate and combined approaches.

2.5. Effects on Statistical Significance Tests

We assessed the effects of missingness and the resulting bias in between-biospecimen
correlation estimates on significance of statistical tests (sensitivity, specificity, and accuracy)
by conducting multivariate analysis of variance (MANOVA) for two-group comparisons
(cancer versus healthy controls) using the imputed and true complete data. Here, sensitivity
(true positive rate) and specificity (true negative rate) are defined using the significant
results from the complete data: that is, true positives are defined as statistically significant
results (raw p < 0.05) in the complete data that are also significant in the imputed data.
Similarly, true negatives are defined as results that are not significant in the complete data
that were also non-significant in the imputed data.

2.5.1. Sensitivity

The performance of all methods and approaches degraded with increased missingness.
Figures 4 and 5 show boxplots of sensitivity and specificity for each method at each level of
missingness. See Supplementary Table S1 for means and standard deviations.
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Figure 4. Box and whisker plots for sensitivity for the HILIC and GCTOF data sets.



Metabolites 2022, 12,

671

8 of 15

Separate Combined

1.0

0.9

0.8

o
~
1

mmmmme

P

ITIH

Method

ES ems
B HM

Specificity
°

0.91

0.84

0.7

Mmm'fm * | ﬁ WWMM%% ﬁ é

40109

10

T T T T T T T T T T T T

20 30 40 50 60 1 5 10 20 30 40 50 60
Missingness (%)

Figure 5. Box and whisker plots of specificity HILIC and GCTOF data sets.

* HILIC data set: There were no marked advantages or disadvantages to the combined
matrix imputation approach over the separate matrix imputation approach for most of the
methods, with results for sensitivity varying unremarkably between the two approaches for
most imputation methods, though the combined approach had slightly lower sensitivities.
However, random forest performs notably better for the low correlation HILIC data set in
the separate imputation approach, maintaining sensitivity of 75% even at 60% missingness.
For all other methods, performance decreases rapidly with increasing missingness in both
the separate and combined approaches.

For both approaches, all imputation methods performed reasonably and approxi-
mately equally well at 1% through 10% missingness, except for QR, which consistently
performed the worst of the methods examined here. The methods become more distin-
guishable at 20% missingness where QR and HM perform quite poorly, RF consistently
out-performs the other methods, and kNN and EMB perform similarly in between.

* GCTOF data set: For this high correlation data set, we do not see the markedly supe-
rior performance of RF with increasing missingness for the separate imputation approach,
though it does out-perform the others overall. Other than for random forest, there were no
notable differences between the separate and combined approaches for this data set.

2.5.2. Specificity

* HILIC data set: As with sensitivity, all methods performed well and similarly for
specificity at 1% to 10%. However, contrary to the results for sensitivity, HM and QR
out-perform the other methods at all levels of missingness (Figure 5). With increasing
missingness, however, for this data set, one interesting difference between the separate
and combined imputation approaches was that combining the matrices before imputation
improved the specificity of RF, making it comparable to QR and HM. Additionally, the
variability in the RF results is greatly reduced in the combined approach. Otherwise, HM
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and QR have superior performance in terms of specificity across all levels of missingness
compared to EMB and RF (in the separate imputation), with kNN performing in the middle
of the pack.

* GCTOEF: There were no obvious differences between separate and combined matrix
imputation, except for improvements in specificity and the reduced variability for RF in
the combined approach, similarly as seen for the HILIC data set, though not as markedly.

As with sensitivity, all methods performed well and similarly at 1% to 10%. However,
as with the HILIC data and contrary to the results for sensitivity, HM and QR out-perform
the other methods at all levels of missingness, with kNN being slightly lower and RF being
similarly poor compared to MCM for the separate imputation and in the middle of the pack
for the combined.

2.5.3. Accuracy

* HILIC: Overall RF outperformed the other methods in both the separate and com-
bined approaches for accuracy, with the remaining methods clustering together below
it. The performance of RF was improved somewhat in the combined approach, remain-
ing above 80% accuracy even at 60% missingness, with reduced variability as seen for
specificity.

* GCTOF: Similar patterns are seen for this data set as for the HILIC, with RF remaining
the best performer across levels of missingness and some reduction in the variability. See
Figure 6.
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Figure 6. Box and whisker plots for accuracy for HILIC and GCTOF data sets.
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2.6. Effects of Bias in the Between-Biospecimen Correlation Estimates on Statistical
Significance Tests

RF had the least amount of bias and the least variability in the estimates of the between-
biospecimen correlation after imputation. For the separate matrix approach, RF also had
the highest sensitivity and overall accuracy. However, RF had the worst specificity using
the separate approach, a result that was ameliorated when using the combined approach.
QR and HM had similarly high bias and variability in the correlation estimates and had the
lowest sensitivity and accuracy for both the separate and combined approaches. The other
methods lay somewhere between these two methods. Those methods that performed well
in terms of sensitivity tended to perform poorly in terms of specificity, except for RF where
combining the matrices improved specificity.

Both approaches and all five methods performed similarly across the two data sets in
terms of statistical significance tests of differential analysis. This result could be because
while the degree of absolute bias in the correlation estimate in the imputed data set is
higher for highly correlated data, the direction of the bias is the same for both highly and
lowly correlated data—that is, the imputed data tend to produce correlation estimates that
are lower than the true correlation no matter which approach or method is being used.

3. Discussion

While little exists in the literature that addresses the issues of correlation structure
in multi-biospecimen metabolomics studies, here we corroborated and expanded on re-
sults in Taylor et al. for separate imputation and further showed that combining data
matrices for imputation did not result in a marked improvement in the maintenance of the
inter-biospecimen correlation. We investigated the performance of multivariate analysis of
metabolomics data with missing values and the impact of imputation bias and effects on
statistical tests. Taylor et al. [16] found that conducting multivariate analysis on metabolites
from multiple biospecimens achieved greater detection of differentially-regulated com-
pounds and that separate imputation substantially affected the within-subject correlation
of compounds across biospecimens, leading to an increased rate of false positives [17]. We
investigated the simple approach of combining the multiple biospecimen matrices prior to
imputation to see if this approach could better maintain the between-biospecimen correla-
tion structure after imputation; and whether improvement in performance of significance
tests—sensitivity, specificity, and accuracy—could be achieved. We additionally examined
the relatively new imputation method based on quantile regression that has the potential
to reduce bias in the imputation by specifically accounting for the non-random aspects of
missing data from mass spectrometry due to below-detection-limit censoring.

In general, we did not find a large degree of improvement with the combined matrix
approach in terms of any of the performance metrics evaluated here, for most methods
examined, nor did we find that QR had superior performance. However, some improve-
ment in specificity, accuracy, and reducing variability was seen for RF when using the
combined approach. Random forest outperformed the other methods in all metrics except
specificity, with some degree of improvement with the combined approach for both data
sets. Other than for specificity, QR and HM did not perform well, except at percentages of
missingness 10% or lower. While it is surprising that QR did not out-perform HM, both HM
and QR are aimed at accounting for lower limit censoring in the missing data process. As
our simulation of missing data increases the percent missingness, we may be increasingly
simulating other random processes, and this may contribute to the poor performance of
HM and QR at higher levels of missingness. EMB performed poorly, while kNN performed
somewhat in the middle of the pack overall.

For very low levels of missingness (10% or less), and where the missing data process
is thought to be predominantly below detection limit censoring, we recommend using HM
as this method performs well and is easy to implement. For levels of missingness greater
than about 10%, we recommend using RF with the separate imputation approach if the
goal focuses on higher sensitivity. For studies desiring higher specificity or accuracy, such
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as prescreening metabolites for downstream analyses, we recommend using RF with the
combined approach.

We also found that the bias in the between-biospecimen correlation estimate was
determined to some extent by the degree of true correlation in the data set. Simply put, if
the degree of correlation is already low, the loss of correlation that results from imputation
does not greatly affect estimation. However, in the case where true correlation is high, the
greater the level of missingness the more striking is the loss of the correlation structure.
Random forest had the least amount of bias in its correlation estimates, the least increase
in absolute bias as missingness increased, tended to have the lowest variability across
simulations, and achieved the highest or comparably high sensitivity, specificity, and
accuracy.

Further research and development of methods to improve the efficacy of maintaining
the intra-subject correlation structure of correlated samples are needed, as investigators
increasingly use multiple biospecimens for biomarker identification and other applications
to understand the complexities of disease and individual variability and to identify less-
invasively or non-invasively collected biospecimens for clinical applications.

4. Materials and Methods
4.1. Data Sets
4.1.1. GCTOF

This metabolomics data set was originally generated for diagnostic biomarker dis-
covery in lung cancer. Plasma and serum samples were obtained from 48 lung cancer
and 31 normal (control) patients. Non-targeted metabolomic analyses were conducted to
identify and quantify 178 metabolites. For this present study, we selected 176 metabolites
with complete data (no missing values). For a full description, see Fahrmann et al. [33].

4.1.2. HILIC

This metabolomics data set was obtained from lung tissue and serum samples from
human volunteers with either lung cancer (38 patients) or benign nodules (40 patients).
The investigators obtained samples from lung and blood. Mass spectrometry analysis and
data acquisition was performed to identify and quantify 351 metabolites found in both
biospecimens. We selected 327 metabolites with complete data. For a full description, see
Fahrmann et al. [34].

4.2. Simulating Missingness

To simulate a missing data pattern that incorporates both missing-at-random and
non-random (below detection limit) missingness, we induced random missingness among
lower quantiles at higher probability than for higher quantiles, for each metabolite, and
holding the total missingness at the desired percent. We used restricted random sampling
in an approach used by Taylor et al. [35], and similar to that described in Scheel [36] to
mimic the missingness pattern of real data. To generate p% missingness, we randomly
selected values below the gth quantile such that p% of the values in the entire data set
were missing. For 1%, 5%, 10%, 20%, 30%, 40%, 50%, and 60% missing, the gth quantiles
used were the 2nd, 10th, 20th, 40th, 50th, 60th, 70th, and 80th resulting in more missing
values at low concentrations consistent with the existence of a detection limit but with
no strict threshold, allowing higher concentrations to additionally be missing at random,
representing random technical errors. Data sets created in this manner approximated real
data sets, with some metabolites having no missing values and other metabolites with a
range of missingness. Using each of the 4 complete data sets (2 experimental data sets
each with 2 biospecimens), we simulated the above missing data process to create 100 data
sets for each of the 4 real data sets at each of several levels of missingness. Each of the
simulated data sets was then log-transformed and subjected to the imputation methods
using both separate and combined approaches, and the true complete data compared to
the imputed data.
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4.3. Metrics

To assess the effects of the imputation on statistical significance tests, MANOVA was
conducted on the complete and imputed data. The complete data were used to establish
the “true” significantly differentially abundant compounds. The results from the complete
data and imputed data were used to calculate the sensitivity, specificity, and accuracy.

4.3.1. Sensitivity (True Positive Rate)

Sensitivity was calculated as the proportion of compounds correctly identified as
significantly different between the groups following imputation among those that were
significantly different in the complete data.

4.3.2. Specificity (True Negative Rate)

Specificity was calculated as the proportion of compounds correctly identified as not
significantly different between the groups following imputation among those that were not
significantly different in the complete data.

4.3.3. Accuracy (True Discovery)

Accuracy was calculated as the proportion of compounds correctly identified as either
significantly or not significantly different between the groups after imputation.

4.4. Combined vs. Separate Imputation

We compare two approaches (combined vs. separate) to missing data imputation for
multi-biospecimen studies. The first approach is to impute missing values for each biospec-
imen metabolite data matrix in separate procedures for each imputation method (also
known as separate imputation approach hereafter). The second approach is to combine the
two biospecimen matrices and then run each imputation method on the combined matrix
(also known as combined imputation approach). That is, if each separate biospecimen data
matrix is M metabolites by N patients, the combined matrix is 2M by N. By combining both
biospecimen matrices for the imputation, the between-biospecimen correlation may be
better retained. For each approach, imputation was performed using each of five different
imputation methods: expectation-maximization with bootstrap, random forest, k nearest
neighbor, quantile regression, and half the minimum observed value.

4.5. Imputation Methods
4.5.1. Expectation-Maximization with Bootstrap Method

The expectation-maximization with bootstrap imputation method draws imputations
of the missing values using a bootstrapping approach. The algorithm uses the familiar EM
algorithm on multiple bootstrapped samples of the original incomplete data to draw values
of the complete-data parameters. The algorithm then draws imputed values from each set
of bootstrapped parameters, replacing the missing values with these draws [24,25,37].

4.5.2. Random Forest Method

Stekhoven and Bithlmann [30] developed a missing value imputation method based on
the random forest algorithm [31]. In an iterative approach, a forest is trained using observed
data which is then used to predict missing values. Random forest imputation is a machine
learning technique which can accommodate nonlinear associations and interactions and
does not require a particular regression model to be specified. It draws on information
from all observed compounds to estimate the missing values.

4.5.3. K-Nearest Neighbor Method

The base assumption of kNN is that a missing value can be approximated by the values
of the points that are closest to it in RP, where p is the number of metabolites observed on
the neighbors. KNN imputation was initially used for microarray data [7] but has since
been evaluated extensively for use in metabolomic studies [18,23,26,37]. This method finds
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the average of the k observed values for a given metabolite that are closest to the subject
with the missing metabolite based on Euclidean distance in RP, where p is the number of
observed metabolites. Missing values of the target compounds are imputed as the average
of the k neighbors weighted by their distance. The optimal value for k can be found through
cross-validation but values in the range of 5-10 are usually sufficient. By using the values
of the compounds observed for the nearest neighbors closest to the individual with the
missing value, kNN assesses information available across all compounds but then relies on
a small set of subjects that are most like the target subject in the non-missing metabolites to
impute the missing value. That is, an individual’s missing value for a given metabolite is
based on the k subjects’ values that are closest to that subject in terms of the other observed
metabolites.

4.5.4. Quantile Regression Method

Quantile regression was recently proposed for imputing missing values in metabolomics
studies [27,28]. This method assumes that compounds within a biological sample are
log-normally distributed and that missing values result from detection limit censoring.
Observed values are used to estimate the mean and standard deviation of an assumed
log-normal distribution. Quantile regression imputes the left-censored data by randomly
drawing values from a truncated normal distribution where the parameters were estimated
using quantile regression.

4.5.5. Half-Minimum Method

The half-minimum approach is widely used by investigators because of its simplic-
ity [20]. The missing value of a given metabolite is imputed as half the smallest observed
value for that metabolite.

4.5.6. Software

All analyses were performed using the open-source programming language, R, ver-
sion 4.0.5.

For the EMB method, we used the Amelia package version 1.7.6 [38] with the empirical
prior setting set to the lowest value such that the algorithm converged. Following the
guidance in the Amelia documentation, we set out to test empirical priors at 0.5%, 1%,
3%, 5%, 7%, and 10% of the rows to find the lowest value that converged. The HILIC data
converged with the empirical prior set to 0.5% of the rows and the GCTOF data converged
with the empirical prior set to 1% of the rows.

For random forest, we used the missForest package version 1.4 to conduct random
forest imputation with default values of 10 iterations and 100 trees [30].

For K-nearest neighbors, we used 10 nearest neighbors. We set the maximum percent-
age of missing values for compounds at 80% above which the overall sample mean was
used for imputation. We used the impute function in the R impute package version 1.64 [39].

For quantile regression, we used the impute. QRILC function in the R imputeLCMD
package version 2.0 [29].

For half-minimum, we took half the minimum observed value for each metabolite as
the imputed value for each missing value for that metabolite.

5. Conclusions

There is no consistent benefit to combining the data matrices of two biospecimens from
the same subject prior to imputation for multivariate analysis, though the combined ap-
proach with RF achieved superior specificity and accuracy than the other approaches. HM
does well at low levels (10% or less) of missingness, so that more complicated approaches
are likely not necessary for most metabolomics data with very low percent missingness.
Data sets where the true correlations between biospecimens are predominantly high will
suffer greater levels of bias in the estimation of the between-biospecimen correlations after
imputation than data where the true correlations are lower. For levels of missingness
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greater than about 10%, RF with the separate imputation approach is most powerful if the
goal focuses on higher sensitivity and RF with the combined approach if the goal is higher
specificity or accuracy.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/metabo12070671/s1, Table S1: Mean Correlation (std) between
between-biospecimen Correlations of Real and Imputed Data for GCTOF data set by imputation
method and approach (separate or combined matrices for imputation) based on 1000 simulated
data sets; Table S2: Mean Correlation (std) between between-biospecimen Correlations of Real and
Imputed Data for HILIC data set by imputation method and approach (separate or combined matrices
for imputation) based on 1000 simulated data sets.

Author Contributions: Conceptualization, M.D.W., K.K., S.L.T. and M.D.P,; methodology, M.D.W.,
KK, SL.T. and M.D.P; software, M.D.P.; writing—original draft preparation, M.D.W.; writing—
review and editing, M.D.W., K.K,, S.L.T. and M.D.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Institute of Aging [P01AG062817]; the National
Institute of Child Health and Human Development [P50 HD103526]; the National Center for Ad-
vancing Translational Sciences [UL1 TR001860]; and the National Institute of Environmental Health
Sciences [P30ES023513].

Institutional Review Board Statement: This study did not produce any new data; hence IRB ap-
proval was not required.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained
from Suzanne Miyamoto and Karen Kelly of the UC Davis Cancer Center and are available from the
authors with the permission of Suzanne Miyamoto and Karen Kelly.

Acknowledgments: We thank Suzanne Miyamoto and Karen Kelly (University of California Davis)
for providing the GCTOF and HILIC data respectively for this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

Kim, K.; Mall, C.; Taylor, S.L.; Hitchcock, S.; Zhang, C.; Wettersten, H.I.; Jones, A.D.; Chapman, A.; Weiss, R.H. Mealtime,
temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. PLoS ONE
2014, 9, 86223. [CrossRef] [PubMed]

Kim, K.; Taylor, S.L.; Ganti, S.; Guo, L.; Osier, M.V.; Weiss, R.H. Urine metabolomic analysis identifies potential biomarkers and
pathogenic pathways in kidney cancer. Omics A J. Integr. Biol. 2011, 15, 293-303. [CrossRef] [PubMed]

Kim, K.; Trott, ].E; Gao, G.; Chapman, A.; Weiss, R.H. Plasma metabolites and lipids associate with kidney function and kidney
volume in hypertensive ADPKD patients early in the disease course. BMIC Nephrol. 2019, 20, 66. [CrossRef] [PubMed]

Clough, T.; Key, M.; Ott, I.; Ragg, S.; Schadow, G.; Vitek, O. Protein quantification in label-free LC-MS experiments. . Proteome
Res. 2009, 8, 5275-5287. [CrossRef]

Betts, K.; Sawyer, K. Use of Metabolomics to Advance Research on Environmental Exposures and the Human Exposome: Workshop in
Brief; Board on Life Sciences; Division on Earth and Life Studies; National Academies of Science, Engineering, and Medicine:
Washington, DC, USA, 2016.

Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol.
2016, 17, 451-459. [CrossRef]

Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing value estimation
methods for DNA microarrays. Bioinformatics 2001, 17, 520-525. [CrossRef]

Lankadurai, B.P; Nagato, E.G.; Simpson, M.J. Environmental metabolomics: An emerging approach to study organism responses
to environmental stressors. Environ. Rev. 2013, 21, 180-205. [CrossRef]

Dai, Y;; Huo, X.; Chen, S.; Faas, M.M.; Xu, X. Early-life exposure to widespread environmental toxicants and maternal-fetal health
risk: A focus on metabolomic biomarkers. Sci. Total Environ. 2020, 739, 139626. [CrossRef]

Ganti, S.; Taylor, S.L.; Abu Aboud, O.; Yang, J.; Evans, C.; Osier, M.V.; Alexander, D.C.; Kim, K.; Weiss, R.H. Kidney Tumor
Biomarkers Revealed by Simultaneous Multiple Matrix Metabolomics Analysis. Cancer Res. 2012, 72, 3471-3479. [CrossRef]
Chen, Y.-].; Wang, X.-H.; Huang, Z.-Z.; Lin, L.; Gao, Y.; Zhu, E.-Y,; Xing, ].-C.; Zheng, J.-X.; Hang, W. A study of human bladder
cancer by serum and urine metabonomics. Chin. J. Anal. Chem. 2012, 40, 1322-1328. [CrossRef]


https://www.mdpi.com/article/10.3390/metabo12070671/s1
https://www.mdpi.com/article/10.3390/metabo12070671/s1
http://doi.org/10.1371/journal.pone.0086223
http://www.ncbi.nlm.nih.gov/pubmed/24475090
http://doi.org/10.1089/omi.2010.0094
http://www.ncbi.nlm.nih.gov/pubmed/21348635
http://doi.org/10.1186/s12882-019-1249-6
http://www.ncbi.nlm.nih.gov/pubmed/30803434
http://doi.org/10.1021/pr900610q
http://doi.org/10.1038/nrm.2016.25
http://doi.org/10.1093/bioinformatics/17.6.520
http://doi.org/10.1139/er-2013-0011
http://doi.org/10.1016/j.scitotenv.2020.139626
http://doi.org/10.1158/0008-5472.CAN-11-3105
http://doi.org/10.1016/S1872-2040(11)60570-7

Metabolites 2022, 12, 671 15 of 15

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.
39.

De Paepe, E.; Van Meulebroek, L.; Rombouts, C.; Huysman, S.; Verplanken, K.; Lapauw, B.; Wauters, J.; Hemeryck, L.Y,;
Vanhaecke, L. A validated multi-matrix platform for metabolomic fingerprinting of human urine, feces and plasma using
ultra-high performance liquid chromatography coupled to hybrid orbitrap high-resolution mass spectrometry. Anal. Chim. Acta
2018, 1033, 108-118. [CrossRef] [PubMed]

Yonezawa, K.; Nishiumi, S.; Kitamoto-Matsuda, J.; Fujita, T.; Morimoto, K.; Yamashita, D.; Saito, M.; Otsuki, N.; Irino, Y,;
Shinohara, M.; et al. Serum and tissue metabolomics of head and neck cancer. Cancer Genom. Proteom. 2013, 11, 233-238.
Jordan, KW.; Adkins, C.B.; Su, L.; Halpern, E.F,; Mark, E.J.; Christiani, D.C.; Cheng, L.L. Comparison of squamous cell carcinoma
and adenocarcinoma of the lung by metabolomic analysis of tissue-serum pairs. Lung Cancer 2010, 68, 44-50. [CrossRef]
Austdal, M.; Skrastad, R.B.; Gundersen, A.S.; Austgulen, R.; Iversen, A.-C.; Bathen, T.F. Metabolomic Biomarkers in Serum and
Urine in Women with Preeclampsia. PLoS ONE 2014, 9, €91923. [CrossRef] [PubMed]

Taylor, S.L.; Ruhaak, L.R.; Kelly, K.; Weiss, R.H.; Kim, K. Effects of imputation on correlation: Implications for analysis of mass
spectrometry data from multiple biological matrices. Brief. Bioinform. 2017, 18, 312-320. [CrossRef] [PubMed]

Taylor, S.L.; Ruhaak, L.R.; Weiss, R.H.; Kelly, K.; Kim, K. Multivariate two-part statistics for analysis of correlated mass
spectrometry data from multiple biological specimens. Bioinformatics 2017, 33, 17-25. [CrossRef] [PubMed]

Hrydziuszko, O.; Viant, M.R. Missing values in mass spectrometry based metabolomics: An undervalued step in the data
processing pipeline. Metabolomics 2012, 8, S161-S174. [CrossRef]

Wang, X.; Anderson, G.A.; Smith, R.D.; Dabney, A.R. A hybrid approach to protein differential expression in mass spectrometry-
based proteomics. Bioinformatics 2012, 28, 1586-1591. [CrossRef]

Webb-Robertson, B.J.; Wiberg, H.K.; Matzke, M.M.; Brown, ].N.; Wang, J.; McDermott, ].E.; Smith, R.D.; Rodland, K.D.; Metz, T.O,;
Pounds, ].G.; et al. Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based
label-free global proteomics. J. Proteome Res. 2015, 14, 1993-2001. [CrossRef]

Ruben, D. Inference and missing data. Biometrika 1976, 63, 581-592. [CrossRef]

Greenlees, ].S.; Reece, W.S.; Zieschang, K.D. Imputation of Missing Values When the Probability of Response Depends on the
Variable Being Imputed. J. Am. Stat. Assoc. 1982, 77, 251-261. [CrossRef]

Do, K.T.; Wahl, S.; Raffler, J.; Molnos, S.; Laimighofer, M.; Adamski, J.; Suhre, K.; Strauch, K.; Peters, A.; Gieger, C.; et al.
Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies.
Metabolomics 2018, 14, 128. [CrossRef] [PubMed]

Efron, B. Missing Data, Imputation, and the Bootstrap. J. Am. Stat. Assoc. 1994, 89, 463—475. [CrossRef]

Dempster, A.; Laird, N.; Rubin, D. Maximum Likelihood Estimation from Incomplete Data via the EM Algorithm. J. R. Stat. Soc.
B 1977, 39, 1-22.

Lazar, C.; Gatto, L.; Ferro, M.; Bruley, C.; Burger, T. Accounting for the Multiple Natures of Missing Values in Label-Free
Quantitative Proteomics Data Sets to Compare Imputation Strategies. J. Proteome Res. 2016, 15, 1116-1125. [CrossRef]

Mufioz, ].F,; Rueda, M. New imputation methods for missing data using quantiles. J. Comput. Appl. Math. 2009, 232, 305-317.
[CrossRef]

Lee, M.; Rahbar, M.H.; Brown, M.; Gensler, L.; Weisman, M.; Diekman, L.; Reveille, ].D. A multiple imputation method based on
weighted quantile regression models for longitudinal censored biomarker data with missing values at early visits. BMC Med. Res.
Methodol. 2018, 18, 8. [CrossRef]

Lazar, C. QRILC: A Quantile Regression Approach for the Imputation of Left-Censored Missing Data in Quantitative Proteomics; R
Package: Madison, WI, USA, 2021.

Stekhoven, D.J.; Buhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28,
112-118. [CrossRef]

Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Ampong, I; Zimmerman, K.D.; Nathanielsz, PW.; Cox, L.A.; Olivier, M. Optimization of Imputation Strategies for High-
Resolution Gas Chromatography-Mass Spectrometry (HR GC-MS) Metabolomics Data. Metabolites 2022, 12, 429. [CrossRef]
Fahrmann, J.E; Kim, K.; DeFelice, B.C.; Taylor, S.L.; Gandara, D.R.; Yoneda, K.Y.; Cooke, D.T.; Fiehn, O.; Kelly, K.; Miyamoto, S.
Investigation of metabolomic blood biomarkers for detection of adenocarcinoma lung cancer. Cancer Epidemiol. Biomark. Prev.
2015, 24, 1716-1723. [CrossRef] [PubMed]

Fahrmann, J.F,; Grapov, D.; DeFelice, B.C.; Taylor, S.L.; Kim, K,; Kelly, K.; Wikoff, W.R.; Pass, H.I.; Rom, W.N.; Fiehn, O.; et al.
Serum phosphatidylethanolamine levels distinguish benign from malignant solitary pulmonary nodules and represent a potential
diagnostic biomarker for lung cancer. Cancer Biomark. 2016, 16, 609—-617. [CrossRef] [PubMed]

Taylor, S.L.; Ponzini, M.; Wilson, M.; Kim, K. Comparison of imputation and imputation-free methods for statistical analysis of
mass spectrometry data with missing data. Brief. Bioinform. 2021, 23, bbab353. [CrossRef] [PubMed]

Scheel, I.; Aldrin, M.; Glad, I.K.; Sorum, R.; Lyng, H.; Frigessi, A. The influence of missing value imputation on detection of
differentially expressed genes from microarray data. Bioinformatics 2005, 21, 4272-4279. [CrossRef] [PubMed]

Kokla, M.; Virtanen, J.; Kolehmainen, M.; Paananen, J.; Hanhineva, K. Random forest-based imputation outperforms other
methods for imputing LC-MS metabolomics data: A comparative study. BMC Bioinform. 2019, 20, 492. [CrossRef] [PubMed]
Honaker, J.; King, G.; Blackwell, M. Amelia II: A Program for Missing Data. J. Stat. Softw. 2011, 45, 1-47. [CrossRef]

Hastie, T.T.R.; Narasimhan, B.; Chu, G. Impute: Impute: Imputation for Microarray Data; R package: Madison, WI, USA, 2022.


http://doi.org/10.1016/j.aca.2018.06.065
http://www.ncbi.nlm.nih.gov/pubmed/30172316
http://doi.org/10.1016/j.lungcan.2009.05.012
http://doi.org/10.1371/journal.pone.0091923
http://www.ncbi.nlm.nih.gov/pubmed/24637620
http://doi.org/10.1093/bib/bbw010
http://www.ncbi.nlm.nih.gov/pubmed/26896791
http://doi.org/10.1093/bioinformatics/btw578
http://www.ncbi.nlm.nih.gov/pubmed/27592710
http://doi.org/10.1007/s11306-011-0366-4
http://doi.org/10.1093/bioinformatics/bts193
http://doi.org/10.1021/pr501138h
http://doi.org/10.1093/biomet/63.3.581
http://doi.org/10.1080/01621459.1982.10477793
http://doi.org/10.1007/s11306-018-1420-2
http://www.ncbi.nlm.nih.gov/pubmed/30830398
http://doi.org/10.1080/01621459.1994.10476768
http://doi.org/10.1021/acs.jproteome.5b00981
http://doi.org/10.1016/j.cam.2009.06.011
http://doi.org/10.1186/s12874-017-0463-9
http://doi.org/10.1093/bioinformatics/btr597
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.3390/metabo12050429
http://doi.org/10.1158/1055-9965.EPI-15-0427
http://www.ncbi.nlm.nih.gov/pubmed/26282632
http://doi.org/10.3233/CBM-160602
http://www.ncbi.nlm.nih.gov/pubmed/27002763
http://doi.org/10.1093/bib/bbab353
http://www.ncbi.nlm.nih.gov/pubmed/34472591
http://doi.org/10.1093/bioinformatics/bti708
http://www.ncbi.nlm.nih.gov/pubmed/16216830
http://doi.org/10.1186/s12859-019-3110-0
http://www.ncbi.nlm.nih.gov/pubmed/31601178
http://doi.org/10.18637/jss.v045.i07

	Introduction 
	Results 
	Data Sets 
	Comparison of the True vs. Imputed Between-Biospecimen Correlations 
	Performance of the Imputation Methods 
	GCTOF Data Set 
	HILIC Data Set 

	Bias in the Between-Biospecimen Correlation 
	Effects on Statistical Significance Tests 
	Sensitivity 
	Specificity 
	Accuracy 

	Effects of Bias in the Between-Biospecimen Correlation Estimates on Statistical Significance Tests 

	Discussion 
	Materials and Methods 
	Data Sets 
	GCTOF 
	HILIC 

	Simulating Missingness 
	Metrics 
	Sensitivity (True Positive Rate) 
	Specificity (True Negative Rate) 
	Accuracy (True Discovery) 

	Combined vs. Separate Imputation 
	Imputation Methods 
	Expectation-Maximization with Bootstrap Method 
	Random Forest Method 
	K-Nearest Neighbor Method 
	Quantile Regression Method 
	Half-Minimum Method 
	Software 


	Conclusions 
	References

