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Abstract: Tens of thousands of single-nucleotide polymorphisms (SNPs) have been identified to be
significantly associated with metabolite abundance in over 65 genome-wide association studies with
metabolomics (mGWAS) to date. Obtaining mechanistic or functional insights from these associations
for translational applications has become a key research area in the mGWAS community. Here, we
introduce mGWAS-Explorer, a user-friendly web-based platform to help connect SNPs, metabolites,
genes, and their known disease associations via powerful network visual analytics. The application
of the mGWAS-Explorer was demonstrated using a COVID-19 and a type 2 diabetes case studies.

Keywords: mGWAS; SNP; mQTL; metabolomics; pleiotropy; cross-phenotype association
analysis; network

1. Introduction

Genome-wide association studies (GWAS) have identified hundreds of thousands
of genetic loci associated with complex diseases. These associations have improved our
understanding of the genetic architecture of human diseases [1]. However, translations of
these associations into biomedical or pharmaceutical applications have been limited, as the
majority of the disease-associated loci reside in the non-coding regions of the genome with
no obvious gene targets [2]. Technology advancements in mass spectrometry (MS) and
nuclear magnetic resonance (NMR) spectroscopy have allowed GWAS to be carried out
with metabolomics (mGWAS) to study genetically influenced metabotypes (GIMs) [3,4].
mGWAS have been very successful in identifying metabolite quantitative trait loci (mQTLs).
An mQTL is a locus that is associated with variations in metabolite abundance [3]. In
addition to having larger effects compared to loci identified in GWAS of clinical phenotypes
in general, many mQTLs can map to genes encoding enzymes or transporters, providing
biochemical context for these variations [3,5]. Leveraging these mQTLs to improve our
knowledge of metabolism and metabolic disorders for translational applications has become
a key research area in the mGWAS community.

mQTLs are characterized by polygenicity and pleiotropy [6,7]. Polygenicity means a
single trait is influenced by multiple genes, whereas pleiotropy refers to the phenomenon
in which genetic variants affect multiple traits or diseases [8,9]. For instance, one single-
nucleotide polymorphism (SNP) can directly affect multiple traits, or different SNPs in
high linkage disequilibrium (LD) may exist for more than one trait. Pleiotropy may provide
insights into the cause of trait comorbidity and help determine the direction of causal
relationships by pointing to shared genetic mechanisms [8,10]. Various strategies have
been developed to examine genetic relationships between multiple phenotypes [11–18].
For example, LD score regression is a popular method to assess the genetic correlations
of pairwise traits using GWAS summary statistics [13]. Colocalization is another strategy
aiming to identify causal variants at two overlapping association signals [14]. These meth-
ods have successfully identified pleiotropic genomic regions and addressed fundamental
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research questions regarding the polygenicity of traits, but it is challenging to scale up these
methods to study hundreds of traits at once.

Comprehensive annotations are necessary in order to gain functional insights into SNP–
metabolite associations. Many resources are available to support SNP to gene annotation,
such as VEP and SNiPA [19,20]. For metabolite annotation, there is a wealth of biochemical
knowledge on enzymatic reactions as well as transporters and their substrates. In addition,
mapping GWAS results to the protein–protein interaction (PPI) network can potentially
augment the association signals [21].

Recently, cross-phenotype association analysis has gained increasing attention [22–26].
It takes a specific SNP and searches for associations across a range of molecular or disease
phenotypes, which allows for elucidations of complex networks between phenotypes and
their genetic loci. A variety of databases currently exist to store the genotype–phenotype
association datasets, including GWAS Catalog [27], PhenoScanner [28], OpenGWAS [29],
Open Targets Genetics [30], PheLiGe [31], DisGeNET [32], as well as specific tools for
mGWAS, such as the metabolomics GWAS server [33,34]. Valuable tools currently exist
to allow users to perform cross-phenotype analysis [35–40]. However, these tools do not
offer extra support beyond displaying and visualization, and none of them are dedicated
to mGWAS.

There is a clear demand for dedicated bioinformatics resources to support mGWAS
data analysis and interpretation. Our overall assumption is that by developing a centralized
place for mGWAS datasets and performing deep annotation of the underlying SNPs and
metabolites, users can gain valuable functional insights into the statistical associations
identified from mGWAS results.

A network is a valuable approach to depict mGWAS results and allows the dissection
of polygenicity and pleiotropy. Heterogeneous networks comprising various types of nodes
(e.g., SNPs, genes, metabolites, and diseases) and edges (e.g., statistical or biochemical asso-
ciations) have been remarkably useful in depicting the complex interplay across biological
entities [41]. These network-based approaches have the potential to identify and prioritize
therapeutic candidates to generate new hypotheses [42].

Here, we introduce mGWAS-Explorer (https://www.mgwas.ca (accessed on 1 May
2022), a user-friendly web-based platform for network-based integrative analysis and visual
exploration of SNPs, genes, metabolites, and diseases. Its key features include:

• Comprehensive collection and deep annotation of SNP–metabolite associations based
on data from the 65 mGWAS to date.

• Support for SNP-based, gene-based, and metabolite-based network generation to
facilitate interpreting results.

• Powerful network visual analytics system facilitating interactive exploration and
built-in topological and functional enrichment analysis.

mGWAS-Explorer also includes a comprehensive list of frequently asked questions
(FAQs) and detailed tutorials. Together, these features comprise a powerful platform for
functional interpretation and cross-phenotype association analysis of mGWAS datasets.

2. Results
2.1. Overview of the Curated mGWAS Datasets

Since the first study in 2008 [5], mGWAS with increasing sample sizes and various
populations have been conducted, resulting in a continued increase in SNP–metabolite
associations. We systematically curated the public mGWAS datasets to date. A summary
table of these mGWAS datasets can be found in Table 1. Please note the p-value cutoffs are
based on significance thresholds of the original studies, as the p-values and effect sizes of
SNP-metabolite associations may differ across different studies due to the differences in
sample sizes, population types, or the metabolomics platforms [4,7].

https://www.mgwas.ca
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Table 1. A summary of the mGWAS datasets in mGWAS-Explorer.

Sample Type Study # * Metabolite # ** Metabolite Ratio # SNP # SNP–Metabolite
Associations #

Blood 57 3992 1265 67,570 30,3090
Urine 5 271 1123 6877 9647
Saliva 1 14 0 1364 1454

Cerebrospinal fluid
(CSF) 1 15 0 1178 1182

Mitochondria 1 0 390 194 404

Sum (unique) 65 4147 2388 73,737 313,720

* Metabolite number includes both targeted (compound names) and untargeted measures (feature IDs, such as
‘391.2859_3.774′ based on mass to charge ratio and retention time. The total number of such feature IDs is 2464).
** Metabolite ratios (metabolite A/metabolite B) can be useful as they may reflect the biochemical conversion of
metabolites and thus enhance the association signals. The # sign indicates size or total number [43].

2.2. Overview of the mGWAS-Explorer

The main workflow of mGWAS-Explorer is summarized in Figure 1. There are three
major steps—data input, network creation, and network visual analytics. To begin, users
can enter through one of the five modules based on input type. The ‘SNP’ module allows
users to explore SNP–gene, SNP–metabolite, or SNP–disease networks. We provide support
for LD proxy search to maximize the search by looking for SNPs in LDs with the input
SNPs. After SNP to gene mapping, users can choose to include PPIs in the networks.
The ‘Gene’ module maps genes to SNPs that are significant in the mGWAS datasets, or
to metabolites (i.e., through encoding enzymes or transporters), or known associated
diseases. The ‘Metabolite’ module maps metabolites to associated SNPs, genes, or diseases.
The ‘Search’ module allows users to search known SNP–gene associations in mGWAS
datasets, while the ‘Browse’ module allows users to browse individual mGWAS data in
a 3D Manhattan plot or a network view. To start the analysis, users must click a circular
button from the mGWAS-Explorer homepage to enter the corresponding data upload page.
Various functions are available to allow users to refine the networks. In the last step, the
results are shown as interactive networks for visual exploration. Users can easily search,
explore, highlight, or perform functional enrichment analysis on the nodes of interest. For
instance, double-clicking an edge will display the evidence supporting the relationships.
The network results can be downloaded in PNG, SVG format, or as graph files.
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Figure 1. Overview of mGWAS-Explorer workflow. Users can upload different data types. The input
will be mapped to the underlying knowledgebases to create mapping tables and networks. The
visualization page allows users to intuitively explore the networks to identify important associations
as well as to perform topology or functional analysis.
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2.3. Analysis Workflow

There are five modules in mGWAS-Explorer corresponding to the five different types
of input. Users can upload a list of SNPs, metabolites, or genes (Figure 2a–c); browse
individual mGWAS dataset in a 3D Manhattan plot (Figure 2d); or search significant
SNP-metabolite associations across all mGWAS datasets (Figure 2e).
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Figure 2. Screenshots of upload pages for SNP (a), metabolite (b), and gene (c) modules. (d) A
screenshot of a 3D Manhattan plot from the ‘Browse’ module based on the data from Lotta et al. [7].
The x-axis is the position of the SNPs, and the y-axis represents different metabolites, while the z-axis
corresponds to the significance of the association; (e) a screenshot showing the table view in the
‘Browse’ module.

2.3.1. Search and Browse

The ‘Search’ module supports searching the association results of the curated 65 mGWAS
publications. Meanwhile, the ‘Browse’ module allows users to visually explore the data in
a 3D Manhattan plot or network view. The 3D Manhattan plot strengthens the exploration
of metabolome-wide pleiotropy at the genome-wide level [39]. Users can mouse-over
a dot to see the SNP annotation, including the rsID, CHR:BP, nearest gene, most severe
consequence, p-value, and metabolite name (Figure 2d).

2.3.2. From SNPs to Networks

Network-based approaches have become increasingly applied to identify shared
genetic underpinnings (i.e., pleiotropy) in GWAS, where nodes are SNPs or phenotypes
(e.g., metabolites or diseases) and edges represent significant associations [11]. The ‘SNPs’
module supports SNP–metabolite (or metabolite ratios), and SNP–disease network analysis.
Optionally, LD proxy search (i.e., population type and r2) could be performed to maximize
the results. Users also have the flexibility to include PPI networks, as well as to filter on
biofluid or population types (Figure 2a).
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2.3.3. From Metabolites to Networks

For many GIMs, metabolites can be functionally connected to enzymes, or trans-
porters [3]. The ‘Metabolites’ module allows users to perform either statistical-based or
knowledge-based metabolite-gene associations as well as metabolite-disease associations.
Users can upload a list of metabolites from the upload page (Figure 2b). mGWAS-Explorer
currently accepts either HMDB ID, KEGG ID or compound name. The uploaded list is then
mapped to genes, SNPs, or diseases for network creation and subsequent visualization.

2.3.4. From Genes to Networks

The nearest gene mapping approach is suggested to be an effective indicator of true
positive genes for mQTLs [44]. In mGWAS-Explorer, users can upload their gene lists in
the ‘Genes’ module, the reversed nearest-gene mapping will be automatically performed
and return SNPs that are significant in the mGWAS (Figure 2c). The network output will
include genes, SNPs, and metabolites. Alternatively, users can perform gene–metabolite
mapping via biochemical knowledge or to the associated diseases.

2.4. Case Studies
2.4.1. COVID-19 Case Study

The host genetic variation is known to influence the severity of SARS-CoV-2 infec-
tion [45–49] and the blood metabolomics can reveal biomarkers for disease diagnosis and
prognosis [50,51]. However, understanding mechanisms that link genetic variation to
metabolism and clinical endpoints remains an important challenge. Therefore, we applied
mGWAS-Explorer to a list of SNPs identified from a GWAS of severe COVID-19 [47] to
provide insights into the shared genetic architecture of diseases and intermediate metabolic
phenotypes. We used a suggestive significant association p-value threshold (1 × 10−5)
for mGWAS-Explorer, resulting in 19 SNPs after LD clumping. mGWAS-Explorer re-
vealed that the SNPs at the ABO (alpha 1-3-N-acetylgalactosaminyltransferase and alpha
1-3-galactosyltransferase) locus were in high LD (r2 > 0.8) with numerous other SNPs in
this region associated with multiple metabolites and other human diseases, such as leucy-
lalanine, citric acid [51], malaria [52], ischemic stroke [53], and venous thrombosis [54]. The
blood type locus ABO has been linked to the risk of COVID-19 in several studies [47,55].
Multiple hypotheses have been proposed to explain the mechanism, such as anti-A and/or
anti-B antibodies against corresponding antigens, or the glycosyltransferase activity [56].
mGWAS-Explorer provided insights into these possible mechanisms, which identified
associations of ABO variants with levels and the ratios of fibrinogen A-α peptides (e.g.,
ADpSGEGDFXAEGGGVR) and venous thromboembolism (Figure 3a). Fibrinogen plays
a role in blood clotting [57]. Therefore, the association between ABO variants with fib-
rinogen may suggest that ABO influences COVID-19 via regulating thrombosis, which
provided a functional explanation for the observed association of ABO with COVID-19
risk. Indeed, studies have reported that COVID-19 is associated with an increased risk
of thromboembolism [58]. Therefore, we sought to investigate whether the association
between fibrinogen A-α peptide-associated loci could provide additional insights into
the underlying pathophysiology of COVID-19. Interestingly, mGWAS-Explorer revealed
variants in ENPEP (glutamyl aminopeptidase) and FUT2 (fucosyltransferase 2) genes are
associated with levels and/or ratios of fibrinogen A-α peptides. Additionally, FUT2 gene
was also identified in the PPI network with the ABO gene (Figure 3a). In fact, ENPEP was
discovered to be a candidate co-receptor for the coronavirus SARS-CoV-2 [59] and individ-
uals with an inactivating FUT2 mutations were more likely to develop a less severe form
of the COVID-19 disease [60]. In summary, mGWAS-Explorer supports the evidence that
ABO, ENPEP, and FUT2 may be candidate genes and discovered fibrinogen A-α peptides
as potential biomarkers for COVID-19 disease.
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Figure 3. Screenshots of network results for the (a) COVID-19 case study and (b) type 2 diabetes
case study. Each node represents either a SNP (orange square), a metabolite (green circle), a gene
(blue diamond), a disease (dark blue circle), or a seed node (yellow square outline). Each edge is
either an association between one SNP and one metabolite, an association between one SNP and one
disease, a positional mapping of SNP to gene, or a protein–protein interaction. The size of a node is
proportional to the number of other nodes connected to it.

2.4.2. Type 2 Diabetes Case Study

Around 250 genomic regions have been associated with type 2 diabetes (T2D) sus-
ceptibility in genome-wide association studies, some studies have highlighted the link
to metabolomic profiles [7,61,62]. We applied mGWAS-Explorer to a list of SNPs from a
published GWAS of T2D [63] in an attempt to examine shared genetic signals with circulat-
ing metabolites. Notably, mGWAS-Explorer confirmed the associations between citrulline
metabolites, T2D, body mass index (Figure 3b), and identified the missense rs17681684
variant for citrulline in the GLP2R (glucagon like peptide 2 receptor) gene as reported by
Lotta et al. [7]. Additionally, it identified shared genetic signals between T2D, coronary
artery disease, and cholesterol levels at the ABO locus. Indeed, previous epidemiological
studies have reported that the associations of ABO group with coronary artery diseases
are mediated by cholesterol [64], although the evidence regarding associations between
ABO blood group with type 2 diabetes were not consistent [65–68]. Thus, further stud-
ies are required to identify the associations between ABO variants, T2D, and cholesterol
levels. Furthermore, mGWAS-Explorer also revealed metabolites levels and their ratios
identified in the previous COVID-19 case study shared associations with T2D loci. In
fact, multiple studies have reported the comorbidity of T2D and COVID-19 [69–71]. In
brief, analyzing the T2D cross-phenotype associations with metabolites and other diseases
highlighted comorbid conditions with shared genetic signals, illustrating the usefulness
of mGWAS-Explorer.

2.5. Comparison with Other Tools

Table 2 provides detailed comparisons of mGWAS-Explorer with several bioinformat-
ics resources that can be used for mGWAS, including Metabolomics GWAS Server [33,34],
PheWeb [35], NETMAGE [37], and GePhEx [72]. The metabolomics GWAS server sup-
ports searching the results of two genome-wide association studies on the blood and urine
metabolome in 7824 and 3861 individuals with European ancestry [33,34]. PheWeb is an
excellent tool for developers to build a website to explore and visualize large-scale genetic
associations [35]. NETMAGE focuses on visualizing disease–disease networks from sum-
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mary statistics [37], and GePhEx allows visualization and interpretation of relationships
across multiple traits with genetic associations evidence [72].

Table 2. Comparison of the main features of mGWAS-Explorer with other web-based tools. Symbols
used for feature evaluations with ‘

√
’ for present, ‘−’ for absent, and ‘+’ for a more quantitative

assessment (more ‘+’ symbols indicate better support).

Tool Name mGWAS-Explorer Metabolomics GWAS
Server PheWeb NETMAGE GePhEx

Data input and processing
SNP

√ √ √ √ √

LD proxy search
√ √

− −
√

Gene
√ √ √

−
√

Metabolite
√ √ √

−
√

Enrichment analysis
SNP-set

√
− − − −

Gene-set
√

− − −
√

Metabolite-set
√

− − − −
Cross-phenotype exploration

√ √ √ √ √

Visual analytics
Network visualization +++ − − + −
Network customization +++ − − + −
Integration with PPI network

√
− − − −

Subnetwork extraction
√

− −
√

−
Topology-based filtering

√
− − − −

3D Manhattan plot
√

− − − −

URL links:

• Metabolomics GWAS Server: http://metabolomics.helmholtz-muenchen.de/gwas/
(accessed on 1 May 2022).

• PheWeb: https://github.com/statgen/pheweb (accessed on 1 May 2022)
• NETMAGE: https://hdpm.biomedinfolab.com/netmage/ (accessed on 1 May 2022)

(accept PheWAS summary statistics)
• GePhEx: https://gephex.ega-archive.org/ (accessed on 1 May 2022).

3. Discussion

Establishing meaningful connections between diseases and deciphering molecular
mechanisms that underpin shared genetic architectures are among the key objectives of
GWAS. Our work shows that integrating mGWAS summary statistics, LD proxy search, and
visual analytics can rapidly reveal multiple associations across metabolites and diseases,
which can be utilized to better understand the ongoing global health crisis, such as the
COVID-19 pandemic and type 2 diabetes.

When looking at the cross-phenotype associations between metabolites and diseases,
it is important to investigate the shared SNPs identified in the mGWAS-Explorer output
to examine where the SNPs are located on the genome and the extent of overlapping
of the SNPs. In fact, we consider mGWAS-Explorer as the initial stage in a pipeline
for an in-depth mechanistic understanding of mGWAS before moving on to similarity
analysis [26], colocalization analysis [14] or Mendelian randomization studies [73] to further
investigate shared genetic signals in the same locus and to identify causal links. Ultimately,
experimental studies in model organisms and human clinical studies are required to test
the generated hypothesis to fully understand the mechanisms.

While our first case study highlighted shared genetic variants regulating metabolite
abundance (e.g., citric acid and fibrinogen A-α peptides) and COVID-19 at ABO, much
work needs to be done to fully understand the underlying mechanisms. Citric acid acts

http://metabolomics.helmholtz-muenchen.de/gwas/
https://github.com/statgen/pheweb
https://hdpm.biomedinfolab.com/netmage/
https://gephex.ega-archive.org/
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as a bridge between carbohydrate and fatty acid metabolism, promoting the growth and
development of immune cells [74]. Additionally, citric acid is an important component
in the TCA cycle. TCA cycle metabolites play key roles in signaling regulations of the
innate and adaptive immune systems [75], which may be involved in COVID-19 pathogen-
esis. mGWAS-Explorer was also able to identify ENPEP and FUT2 as potential candidate
genes for COVID-19, although the association signal of these two genes were below the
genome-wide significance threshold in the original study [47]. Many follow-up studies
have reported ABO and ENPEP as COVID-19 risk genes; however, the evidence for the
FUT2 gene is conflicting [60,76,77]. Indeed, a recent whole-genome sequencing study iden-
tified variants in FUT2 associated with critical COVID-19 diseases [45]. FUT2 is responsible
for the expression of histo-blood group antigens on the mucosal surface of gastrointestinal,
genitourinary, and respiratory tracts. Inactivating FUT2 mutations lead to a non-secretor
status, which confer resistance to norovirus and rotavirus gastrointestinal infections [78,79].
Furthermore, the minor allele frequency of the stop–gain variant rs601338 in the FUT2
gene is drastically different between the European population (0.441) and the East Asian
population (0.004) [80,81], which might explain the differences in host response to SARS-
CoV-2 among different populations. However, the mechanism by which secretor status
influencing COVID-19 pathogenesis is not fully understood. Therefore, it may be valuable
to perform colocalization analysis and Mendelian randomization studies to identify the
causal link between FUT2 variants, fibrinogen A-α peptides, and COVID-19.

Increases in throughput and decreases in cost will enable a growing number of mG-
WAS to be conducted in the near future. The web server will be regularly updated to
incorporate the most up-to-date mGWAS datasets, disease associations, and additional
SNP annotation data (e.g., eQTLs or chromatin interactions) to serve as a valuable bioinfor-
matics platform for mGWAS researchers. With this context, we also intend to add support
for peak annotations of untargeted metabolomics data obtained from high-resolution
mass spectrometry.

4. Materials and Methods
4.1. Knowledgebase Curation

(a) mGWAS papers were searched from PubMed, Web of Science, bioRxiv, and
medRxiv, resulting in 65 publications as of December 2021. The summary statistics were ei-
ther downloaded from public databases or supplementary data of the original publications.
Statistical associations between metabolites and SNPs were summarized and pre-filtered
using study-specific significance thresholds. In addition to p-values and effect sizes of
SNP–metabolite associations, we have included metadata from each publication, such as
the type of biofluid, sample size, population type, genotyping platform, metabolomics
platform, etc. (b) For SNP annotation, three options are provided, including HaploReg [82],
PhenoScanner [28], and VEP [20] by using the Application Programming Interface (API)
service of each database. For the first two options, users can also perform an LD proxy
search based on different populations and r2 values. With VEP, users can select either a
specific distance or the nearest number of genes for SNP annotation. (c) SNP–disease and
gene–disease associations were downloaded from the DisGeNET database [32]. HMDB
database was used to obtain metabolite–disease associations [83]. (d) KEGG, Recon3D, and
Transporter Classification Database (TCDB) were used to curate knowledge-based gene–
metabolite association information [84–86]. (e) The protein–protein interaction information
is based on several well-established PPI databases [87–89]. (f) The libraries for enrichment
analysis were curated from seven well-known databases, including GO, Reactome, KEGG,
Orphanet, DrugMatrix, DisGeNET and DSigDB. The detailed description of these databases
and their links can be found in the Supplementary Material.

4.2. Input Processing and Connection Identification

SNPs are identified by rsIDs, genes are identified by Entrez IDs, and metabolites
are identified by HMDB IDs, platform-specific IDs, or feature tags (m/z_retention_time).
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Additional identifiers have also been included, such as genomic coordinates for SNPs (after
lifting all SNPs to GRCh37 assembly using LiftOver [90]), Ensemble ID, and gene symbol
for genes, as well as KEGG ID and common name for metabolites.

There are two general types of relationships, including inter-omics and phenotype-
specific links. Inter-omics connections are based on statistical associations (based on
mGWAS), or knowledge-based associations (based on positional mapping for SNP–gene an-
notation or encoding enzymes/transporters for metabolite–gene connections). Phenotype-
specific links allow users to identify variants that are associated with disease phenotypes.
This information is obtained from DisGeNET [32] based on case-control genome-wide
association studies or via text mining from the literature.

4.3. Implementation

The backend analysis was implemented using the R programming language (version
4.1.3). The whole framework was built based on the PrimeFaces component library (version
11.0.0). The integrated data are stored in a relational database using SQLite. The interactive
visualization was developed based on the sigma.js and echarts.js JavaScript libraries for
network view and 3D Manhattan plot, respectively.

4.4. Data Collection for Case Studies

The datasets of COVID-19 and type 2 diabetes case studies were downloaded from
their respective original publications [47,63]. LD clumping were performed to identify the
independent signals by using the ieugwasr package with default parameters [29] prior to
the analysis. Specifically, the SNPs with the lowest p-value are retained, where SNPs in LD
within a certain window are removed in LD clumping [91]. In both case studies, European
population and r2 = 0.8 were set as input parameters for LD proxy search.

4.5. Network Visual Analytics
4.5.1. Network Creation and Customization

The default networks are built by querying for the direct mapping from the knowl-
edgebase. Optionally, users can choose to expand the network by including PPIs in the SNP
module. However, the result may suffer from the ‘hairball’ effect, which severely limits
the usefulness and interpretability. Therefore, mGWAS-Explorer offers support to refine
large networks based on node degree or betweenness values, batch filtering, or the shortest
paths, as well as by computing minimum subnetworks based on the prize-collecting Steiner
Forest (PCSF) algorithm [92]. The detailed instructions on how to navigate the network
visualization system can be found in our Supplementary Material.

4.5.2. Functional Enrichment Analysis

The combination of network visualization and functional enrichment analysis is a
valuable tool for gaining key biological insights. For SNP input, two types of enrichment
approaches have been implemented—(1) directly testing in SNP-set library, or (2) testing
on mapped genes for enrichment using hypergeometric tests. When the input is a gene or
metabolite, the associated gene-set or metabolite-set enrichment analysis can be performed.
The result tables will be displayed under the Function Explorer panel. Notably, clicking a
row of the table will highlight the nodes contained in the corresponding function/pathway
within the network. In addition, mGWAS-Explorer also permits enrichment analysis on the
selected nodes of interests, for instance, from the batch selection panel.

4.5.3. Other Advanced Features

The Network Viewer page contains multiple advanced features for network visual
exploration, including Network Layout, Global Node Styles, Module Explorer, Batch
Selection, and Path Finder. Ten different network layout algorithms are available, including
Force-Atlas, Fruchterman–Reingold, Circular, Graphopt, Large Graph, Random, Circular
Bipartite/Tripartite, Linear Bipartite/Tripartite, Concentric, and Backbone layout. Three
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module detection algorithms are offered in the Module Explorer, including the WalkTrap,
InfoMap, and the Label Propagation algorithms based on the igraph R package [93]. These
options can be combined to obtain a better visualization experience. Users can find details
of these algorithms on our FAQs page.

5. Conclusions

We have developed mGWAS-Explorer to allow users to easily explore the published
mGWAS datasets, and to provide contextualized analysis for a given list of SNPs, genes,
or metabolites. As demonstrated by our case studies of COVID-19 and type 2 diabetes,
mGWAS-Explorer can facilitate hypothesis generation and reveal functional insights into
the genetic basis of human metabolism to permit translational discoveries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060526/s1, File S1: mGWAS-Explorer Program Descrip-
tion and Methods [20,28,32,82,84–89,94–99].
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