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Abstract: Background: Metabolic Syndrome (MetS) is a clinical diagnosis where patients exhibit
three out of the five risk factors: hypertriglyceridemia, low high-density lipoprotein (HDL) choles-
terol, hyperglycemia, elevated blood pressure, or increased abdominal obesity. MetS arises due to
dysregulated metabolic pathways that culminate with insulin resistance and put individuals at risk
to develop various comorbidities with far-reaching medical consequences such as non-alcoholic
fatty liver disease (NAFLD) and cardiovascular disease. As it stands, the exact pathogenesis of MetS
as well as the involvement of the gastrointestinal tract in MetS is not fully understood. Our study
aimed to evaluate intestinal health in human subjects with MetS. Methods: We examined MetS risk
factors in individuals through body measurements and clinical and biochemical blood analysis. To
evaluate intestinal health, gut inflammation was measured by fecal calprotectin, intestinal permea-
bility through the lactulose-mannitol test, and utilized fecal metabolomics to examine alterations in
the host-microbiota gut metabolism. Results: No signs of intestinal inflammation or increased in-
testinal permeability were observed in the MetS group compared to our control group. However,
we found a significant increase in 417 lipid features of the gut lipidome in our MetS cohort. An
identified fecal lipid, diacyl-glycerophosphocholine, showed a strong correlation with several MetS
risk factors. Although our MetS cohort showed no signs of intestinal inflammation, they presented
with increased levels of serum TNFa that also correlated with increasing triglyceride and fecal di-
acyl-glycerophosphocholine levels and decreasing HDL cholesterol levels. Conclusion: Taken to-
gether, our main results show that MetS subjects showed major alterations in fecal lipid profiles
suggesting alterations in the intestinal host-microbiota metabolism that may arise before concrete
signs of gut inflammation or intestinal permeability become apparent. Lastly, we posit that fecal
metabolomics could serve as a non-invasive, accurate screening method for both MetS and NAFLD.
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1. Introduction

The global incidence of Metabolic Syndrome (MetS), affecting over 25% of the global
population (~1.97 billion) and 33% of those living in the United States, has severe health
and economic consequences [1-3]. MetS is comprised of multiple dysregulated metabolic
pathways that can cause or result in insulin resistance [4]. Current diagnostic criteria for
MetS must include three out of the five risk factors: hypertriglyceridemia, low high-den-
sity lipoprotein (HDL) cholesterol, hyperglycemia, elevated blood pressure, or increased
abdominal obesity [5]. MetS is useful in detecting patients at high risk for other metabolic
diseases including cardiovascular disease (CVD) [6,7], type 2 diabetes (T2D) [8,9], and
even hepatocellular carcinoma (HCC) [10,11].

The liver plays a central role in the pathogenesis of MetS. Glucose and triglycerides
(TG) are produced in the liver. When the liver is insulin resistant, the “brakes” on glucose
and TG production are lost [12,13]. Hypertriglyceridemia, high levels of TG, causes he-
patic fat accumulation and organ dysfunction, further contributing to hepatic insulin re-
sistance [14-16]. Excessive fat in the liver unrelated to alcohol use, viral infections, or
drugs has been termed Non-Alcoholic Fatty Liver Disease (NAFLD) [17-19]. Similar to
MetS, over a billion people worldwide are affected by NAFLD [20]. NAFLD is also in-
creasingly diagnosed in children [21]. This is alarming given that the trajectory of the dis-
ease burden in children can be decades longer than patients who develop NAFLD later in
life. In the United States, health care costs directly related to NAFLD are estimated to be
USD 100 billion annually [21]. NAFLD provides a pathophysiological “timeline” of he-
patic pathology. This begins with fat accumulation (steatosis), fat accumulation with in-
flammation (non-alcoholic steatohepatitis, NASH) and the possibility of subsequent pro-
gression to liver cirrhosis and HCC [10,22]. However, unlike MetS, NAFLD has specific
histopathologic markers. Steatosis is defined as 5-10% of fatty hepatocytes, and steato-
hepatitis often exhibits ballooning necrosis, inflammation, and fibrosis [23]. Although
NAFLD is clinically less ambiguous to diagnose than metabolic syndrome, a biopsy is
currently required to diagnose NAFLD and NASH. MetS is defined in many ways by var-
ious organizations, making it somewhat amorphous. Nevertheless, due to their closely
overlapping mechanisms, NAFLD and MetS can initiate each other and predict the same
disease likelihood in high-risk patients [24-27]. While not all patients inevitably acquire
comorbid metabolic derangements, cirrhosis, or malignancy, many do, warranting early
intervention and clear diagnostic criteria.

Evidence suggests the gastrointestinal (GI) tract may play a significant role in meta-
bolic diseases [28-32]. There is a tripartite interaction in the GI tract in which the gut mi-
crobiota, the immune system, and the intestinal epithelium maintain the balance between
intestinal homeostasis and inflammation [33,34]. Dysfunction in one of these components
can have profound effects on the other two systems and contributes to metabolic dysfunc-
tion [28,35]. Interestingly, gut dysbiosis and increased intestinal permeability have been
observed in individuals with NAFLD and in animal models of NAFLD, suggesting a role
for the GI tract in the etiology of NAFLD [36-56]. Dysbiosis is also associated with obesity
and T2D morbidity and disease course, influencing inflammation, gut permeability, im-
mune function, insulin resistance, and lipid metabolism [57-62]. Given the reciprocal gut—
liver interaction, examining the GI tract in MetS patients could prove beneficial in both
interventional strategies and preventative diagnostics.

The goal of our pilot study was to determine if human subjects with MetS have in-
testinal inflammation and increased intestinal permeability similar to other metabolic dis-
eases. Additionally, we sought to examine fecal metabolites associated with our clinical
phenotype and to further understand metabolic variation as well as interactions between
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the gut microbiota—host. Our data indicated there was a noticeable difference in fecal lip-
idomics and some had a strong correlation with both increasing triglyceride and fasting
insulin levels. However, there was not a significant difference in intestinal permeability
or inflammation between MetS subjects and controls, suggesting metabolic perturbations
may arise before gut inflammation and intestinal permeability.

2. Results
2.1. Goal of the Study

In this pilot study, we sought to understand differences in gut health in individuals
with metabolic syndrome (MetS) compared to non-metabolic syndrome (control) partici-
pants. Specifically, examining differences in intestinal inflammation, intestinal permeabil-
ity, and fecal metabolites as an insight between diet-microbiota—host interactions. This
pilot study was approved by UNM HSC HRRC (see Section 6) and participants were re-
cruited from and seen at the UNM CTSC clinic in a two-week period. Participants were
classified as having MetS or normal based on the established criteria described in the Sec-
tion 6.

2.2. Clinical and Biochemical Analysis of Study Cohort

The study population consisted of 18 individuals who were seen under fasting con-
ditions. The demographics of the study cohort are shown in Table 1. After body measure-
ments, vital signs, and blood sample analyses were taken, 10 participants were classified
as controls and 8 participants as MetS. Assessment of the MetS risk factors revealed the
MetS group had increased abdominal obesity (Figure 1A) and showed signs of
dyslipidemia as the triglycerides were significantly higher (Figure 1B and Table S1) and
HDL cholesterol was significantly lower (Figure 1C and Table S1). Body measurements
revealed a significant increase in body weight as well as body mass index (BMI) in our
MetS cohort with no difference in the waist-to-hip ratio or height (Figure S1A-D). Bioe-
lectrical impedance analysis further revealed the MetS group had a significant increase in
the percent of body fat as well as a higher fat mass with no difference in lean mass (Figure
S1E-G). Examination of fasting glucose levels revealed no difference between both groups
(Figure 1D); however, both fasting insulin levels (Figure 1E) and Hemoglobin A1C
(HbA1C) levels (Figure 1F) were significantly higher in the MetS group. Calculation of
Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), an indicator of insulin
resistance, revealed the MetS group had a higher HOMA-IR score (Figure S1H). The cal-
culation of insulin sensitivity via quantitative insulin sensitivity check index (QUICKI)
revealed the MetS group had a lower insulin sensitivity score (Figure S1I) [63-65]. To-
gether the HOMA-IR and QUICKI scores suggested the MetS group showed signs of in-
sulin resistance. Blood pressure and mean arterial pressure (MAP) trended higher in the
MetS group but were not significantly different to that of controls (Figure 1G-I). Lastly,
we found no significant differences in the comprehensive metabolic panel (CMP) between
groups including aspartate transaminase (AST), alanine aminotransferase (ALT), or
AST/ALT ratios (Table S2). Collectively, our MetS cohort showed significant differences
in abdominal obesity, dyslipidemia, and insulin resistance.

Table 1. Demographics of study cohort.

Demographics Controls Metabolic Syndrome
Male 4 3
d
Gender Female 6 5
Median 42.50 50.50
Age Minimum 31 45
Maximum 56 58
Non-Hispanic White 4 2
Hi i 6 4
Race/Ethnicity . 1spamc'
Native American 1
Black 1
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Figure 1. Metabolic Syndrome risk factors. Clinical and biochemical analysis of healthy controls
(HC) and metabolic syndrome (MetS) participants. Graph showing (A) abdominal obesity (i.e.,
waist circumference); (B) triglyceride levels; (C) HDL Cholesterol; (D) fasting glucose levels; (E)
fasting insulin levels; (F) hemoglobin Alc (HbAlc) levels; (G) systolic blood pressure; (H) diastolic
blood pressure; and (I) mean Arterial Pressure (MAP). Graphs indicate median (+minimum and
maximum). * p <0.05, ** p <0.01, **** p <0.0005 and ns, not significant. Two-tailed unpaired Student’s
t-tests (A-C,G-I) or two-tailed Mann-Whitney U (D-F).

2.3. Metabolic Syndrome Participants Showed Systemic Inflammation That Correlated with
Dyslipidemia

Metabolic disorders are frequently associated with low-grade inflammation [66]. The
term metabolic inflammation characterizes a low-level of systemic inflammation. As such,
several studies have associated these conditions with increased circulating levels of acute
phase proteins and cytokines such as C-reactive protein (CRP) and TNFa, respectively.
To determine the level of metabolic inflammation occurring in our two groups, we exam-
ined the serum levels of both TNFa and high-sensitivity C-reactive protein (hsCRP) as
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proxies for metabolic inflammation [67,68]. Serum TNFa levels were found to be signifi-
cantly higher in the MetS group (Figure 2A). HsCRP levels were slightly higher in the
MetS group; however, this difference was not significant (Figure 2B). Intriguingly, there
was a strong positive correlation between increasing TNF« levels and increasing triglyc-
eride levels (r = 0.7978; p = 0.0177) (Figure 2D). Rising TNFa« levels also had a strong neg-
ative correlation with decreasing HDL cholesterol levels (r = —0.7094; p = 0.0488) (Figure
2E). These results are consistent with the previously reported correlation between TNFa
levels and dyslipidemia [69,70].
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Figure 2. Assessment of systemic and intestinal inflammatory markers. Serum and fecal levels of
inflammatory markers were measured in HC and MetS participants. Plot showing (A) serum TNFa
levels; (B) serum hsCRP levels; (C) fecal calprotectin levels. (D,E) Pearson’s correlation coefficients
between (D) TNFa and triglycerides and (E) TNFa and HDL cholesterol. Plot showing (F) lactu-
lose/mannitol ratio; (G) total lactulose levels recovered in the urine; and (H) total mannitol levels
recovered in the urine. Plots indicate median (+xminimum and maximum) or mean (+SE). * p < 0.05,
and ns, not significant. Two-tailed unpaired Student’s t-tests (A,H) or two-tailed Mann-Whitney U
(B,CE,G).

More recently, attention has been drawn to the GI tract as a possible etiological factor
driving metabolic disorders [29-32,35,59,62,66,71]. In fact, MetS and NAFLD are fre-
quently reported in patients with inflammatory bowel disease (IBD) [72-76]. Therefore,
we examined the level of intestinal inflammation through a fecal calprotectin test. This
noninvasive test provides a functional quantitative measure of intestinal inflammation
[77-79]. Interestingly, we saw no difference in fecal calprotectin levels between the control
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and MetS groups (Figure 2C). Further analysis of the GI tract revealed no significant dif-
ference in intestinal barrier permeability as the lactulose to mannitol ratio was similar be-
tween both groups (Figure 2F), as were the overall levels of recovered urine lactulose (Fig-
ure 2G) and mannitol (Figure 2H). This test allows for the quantification of two non-me-
tabolized sugar molecules (i.e., lactulose and mannitol) to permeate the intestinal barrier
[80]. Taken together, our data suggest the MetS group had a low-level of systemic inflam-
mation but no observable signs of intestinal inflammation or barrier dysfunction.

2.4. Metabolomics Revealed Altered Fecal Metabolites in Metabolic Syndrome Participants

Utilizing untargeted lipidomic analyses [81,82], we sought to identify the lipids as-
sociated with our clinical phenotype. Specifically, we analyzed fecal samples from our
control and MetS groups to further characterize the GI tract. Figure 3A shows a volcano
plot of all 7453 lipid features detected. The red dots on the right represent lipids with
higher levels in MetS participants, while the red dots on the left are lipids with lower
levels in MetS participants. The MetS group had 417 lipid features that were significantly
different from control participants (Figure 3A). The putative identification derived from
LIPID MAPS® Structure Database (LMSD) [83] utilizing observed m/z was determined for
the top 20 lipid features that showed the highest fold change in MetS fecal samples (Table
2). Out of these 20 lipids, LMSD predicted they were glycerolipids, glycerophospholipids,
sphingolipids, fatty acyls, and polyketides (Figure 3B). For brevity, we also show the 30
with the lowest p-values in Table S3 and Figure S2A. Among these 30 lipids, LMSD pre-
dicted that all were still glycerolipids (n = 9), glycerophospholipids (1 = 18), and sphin-
golipids (n = 3) (Table S3 and Figure S2A). The lipid feature that was most significantly
decreased in MetS fecal samples could not be identified by LMSD. Fecal samples were
also assessed for approximately 150 polar metabolites that cover much of the central car-
bon metabolism pathways. The principal components analysis (PCA) plot and heatmap
of metabolites revealed no overall clustering of control or MetS group-derived fecal me-
tabolites (Figure S2B,C). However, the volcano plot revealed two metabolites which were
significantly different between groups using the a priori cutoffs of [log2FC] > 2, p < 0.05
(Figure 4A). Orotic acid was significantly higher in MetS participants, while the left side
shows that Carnosine was significantly lower in MetS participants (Figure 4A) in MetS
fecal samples (Figure 4B,C). Interestingly, carnosine is a dipeptide of falanine and histi-
dine, and is a normal product of the liver, while orotic acid is a key intermediate in de
novo pyrimidine nucleotide synthesis (HMDB 5.0) [84]. Intriguingly, five fecal lipids that
belong to the glycerolipid, glycerophospholipids, and sphingolipids categories showed a
strong positive correlation with triglyceride and fasting insulin levels (Figure S3; statistics
shown in Table S4). PC 12:0_20:4 (Diacyl-glycerophosphocholine, PCaa), a glycerophos-
phocholine, showed a strong positive correlation with increasing triglycerides (r = 0.66; p
=0.0041), serum TNFa (r = 0.50; p = 0.0424), and fasting insulin levels (r = 0.71; p = 0.0015)
as well as strong negative correlation with decreasing HDL cholesterol levels (1= -0.54; p
= 0.0267) (Figure S3). Given fecal metabolites can provide insight into host-microbiota—
diet interactions, our data suggest major alterations in the intestinal metabolism, in the
absence of localized intestinal inflammation, in MetS subjects. Lastly, our data reveal that
fecal lipids could provide an insight into clinical phenotypes and could serve as an alter-
native noninvasive method to diagnose MetS and possibly NAFLD.
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Figure 3. Untargeted lipidomics show major fecal lipid variations. (A) Volcano plot from UPLC-
MS/MS-based untargeted lipidomics of stool from MetS and HC subjects (n =7-10/group) depicting
the 7453 lipids features obtained following MS data processing. Metabolite peak intensities were
extracted according to a library of m/z values and retention times developed with authentic stand-
ards. Intensities were extracted with an in-house script with a 10-ppm tolerance for the theoretical
m/z of each metabolite, and a maximum 30 s retention time window. Each dot represents one lipid,
dashed lines indicate default thresholds for significance (p < 0.05) and fold change up- or down-
regulation by 2-fold (Log2FC = 1). The red dots on the right represent the lipids with higher levels
in MetS participants, while the dots on the left are the lipids with lower levels in MetS with respect
to HCs. (B) Plot showing the top 20 LMSD identified lipids with highest fold change (mean; p <
0.05). GPL, glycerophosholipids; SP, sphingolipids; FA, fatty acyls.
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Figure 4. Hybrid metabolomics of stool samples. (A) Volcano plot from hybrid LCMS assays of
stools from MetS and HC subjects (n = 7-10/group) depicting a standard panel of approx. 150 polar
metabolites. Each dot represents one metabolite, dashed lines indicate default thresholds for signif-
icance (p < 0.05) and fold change up- or down-regulation by 2-fold ([Log2FC] = 1). The red dot on
the right represents a metabolite with higher levels in MetS participants, while the dot on the left is
a metabolite with lower levels in MetS in respect to HCs. Plot showing the intensity values of fecal
(B) orotic acid and (C) carnosine in MetS and HC participants. Plots indicate median (+minimum
and maximum). * p <0.05. Two-tailed unpaired Student’s t-tests.
Table 2. Putative LMSD ID of lipids with the highest fold change in the MetS group.
Feat Ob d Log2 Fold Putative ID * . .
eaure served Log= To p-Value whative Main Class (Abbrev. Chains)
ID mlz Change (Category)
5617 7715399  4.076 0.016 Glycerolipids Triradylglycerols (TG 12:0_12:0_22:3)
Gl hospholipi
1432 5584388 3477 0033 o ooP d:Sp OMP1 Oxid. glycerophospholipids (LPC 0:0/20:4;0)
4631  665.7446  3.367 0.025 Glycerolipids Diradylglycerols (DG 19:0_20:0)
4799  680.7542  3.333 0.032 Sphingolipids Ceramides (Cer 18:1;03/24:0,0)
6916  989.5998  3.326 0.030 Glycerolipids Triradylglycerols (TG 19:1_22:6_22:6)
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1 hospholipi
4688 6726672 3326 0042 CWYCCTOP d;”p OP1 " Glycerophosphoethanolamines (PE P-16:0/16:1)
3675 5713263 3.261 0.039 Fatty Acyls Diradylglycerols (DG 13:0_20:5)

Gl hospholipi

5044 7006979 3252 0022 OO dSOSp otPt Glycerophosphocholines (PC P-16:0/15:1)
5270  724.7805  3.244 0.025 Sphingolipids Ceramides (Cer 18:1;03/26:0;02)

1 hospholipi
5266 7244458 3231 0007 CYOTOP d:S PROupt Glycerophosphocholines (PC 12:0_20:4)
6454  905.5635  3.216 0.035 Glycerolipids Triradylglycerols (TG 18:3_18:3_20:0)
5128  709.7706  3.201 0.029 Glycerolipids Diradylglycerols (DG 21:0_22:6)
5129  710.1051 3.158 0.034 Polyketides Flavonoids
7315 1371.8158  3.127 0.007 Sphingolipids T cuT! glyCOSphmgOh; Es.égl)ex(g))-HeXNAC-FuC_Cer
4442  651.0691  3.104 0.033 Polyketides Flavonoids
1490  531.4196  3.103 0.015 Fatty Acyls Fatty esters (FA 36:2)
5383  739.1213 3.094 0.026 Polyketides Flavonoids
4961  695.0953  3.077 0.032 Polyketides Flavonoids
4980  695.7639 3.059 0.033 Fatty Acyls Fatty amides
4982  696.0981  3.045 0.033 Polyketides Flavonoids

* Putative ID derived from LIPID MAPS® Structure Database (LMSD) utilizing observed m/z.

3. Discussion

In this present study, we evaluated intestinal homeostasis in individuals with or
without MetS. Interestingly, MetS participants showed no signs of intestinal inflammation
or increased intestinal permeability when compared to our control group. Nonetheless,
we found major differences in the gut lipidome, specifically, an increase in various types
of glycerolipids, glycerophospholipids, sphingolipids, fatty acyls, and polyketides, in our
MetS cohort. One fecal lipid that was identified, a diacyl-glycerophosphocholine, was in-
creased in our MetS cohort and showed a strong correlation with several MetS risk factors.
Furthermore, we found our MetS cohort had a low-level of circulating TNFa that also
correlated with increasing triglyceride and fecal diacyl-glycerophosphocholine levels as
well as decreasing “good” HDL cholesterol levels. Taken together, our main results show
that MetS subjects showed major alterations in intestinal lipid profiles suggesting altera-
tions in the intestinal host and microbiota metabolism which may precede intestinal dys-
function.

MetS and NAFLD can both predict similar diseases including T2D, CVD, and NASH
[9,26,27,85,86]. In addition, the liver is a shared focal point for both metabolic disorders as
glucose and triglycerides are overproduced in the liver. The increase in triglycerides can
lead to fat accumulation and is often associated with hepatic insulin resistance [13-16].
Unfortunately, both metabolic disorders can go undiagnosed as the individual can appear
asymptomatic. Given the role of the liver in these two metabolic diseases, liver enzymes
(e.g., ALT, AST, ALT:AST) could provide clues in relation to disease progression. How-
ever, we observed no differences in these liver enzymes between our study groups (Table
S2). Liver enzymes are also often normal in NAFLD patients and therefore are not con-
sistent diagnostic markers [14]. The gold standard of NAFLD diagnosis relies on a liver
biopsy. Liver biopsy is an invasive procedure with many absolute contraindications (co-
agulopathies, recent NSAID use, inability to identify an appropriate biopsy site) and rel-
ative contraindications (morbid obesity, infection, ascites). A liver biopsy is also handi-
capped by only being able to capture pathology in a specific moment in time. NAFLD is
a chronic inflammatory disease. Like many chronic inflammatory disorders, NAFLD can
have a dynamic relapsing-remitting pattern [66]. Over a short period of time NAFLD can
oscillate between steatosis and steatohepatitis [66]. Fibrosis can flare and spontaneously
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regress [66]. Additionally, a liver biopsy cannot accurately assess a fluctuating disease
process. It is therefore not appropriate to perform liver biopsies on all patients with sus-
pected NAFLD or MetS, even if a biopsy is medically feasible [87]. Safer, faster, and more
accessible testing is needed. Metabolomics may offer a non-invasive, accurate method of
screening for both MetS and NAFLD. Metabolomics can analyze and quantify metabolites
and lipids linked to metabolic pathways and changes could offer insight into clinical phe-
notypes [88-93].

Mining biofluids such as plasma, serum, urine, and even stool scan help identify bi-
omarkers for diseases. Recently, metabolomic signatures were identified for individuals
with MetS using plasma [93] and urine [91] biofluids which ultimately provided insight
into MetS occurrence and progression. Unlike other biofluids, a stool can also give a com-
prehensive look into the GI tract as it contains microorganisms, microbial by-products,
nutrients such as fibers and lipids, and inflammatory molecules. Thus, stool samples can
provide molecular clues into Gl health. For instance, bacterial fermentation of dietary fiber
can generate metabolites such as short chain fatty acids (SCFAs) such as butyrate, propi-
onate, and acetate that in turn modulate microbiota composition, intestinal epithelial and
immune cell function, and lipid metabolism [94-101]. When the production of SCFAs is
decreased from dysbiosis, it can subsequently derail the barrier and immune functions as
well as the lipid metabolic pathways. Our metabolomic analyses of stool samples revealed
major alterations in the gut lipidome in individuals with MetS. We observed increases in
glycerophospholipids such as glycerophosphocholines as well as ceramides, a type of
sphingolipids. Both glycerophosphocholines and ceramides are increased in the serum of
NAFLD and NASH patients [102-104]. They are also strongly associated with CVD and
T2D [105-109]. A reduction in ceramides can improve hepatic steatosis and insulin sensi-
tivity [110,111]. Interestingly, gut microbiota-produced sphingolipids can be taken up by
the intestine [112] and can enter into host metabolic pathways increasing hepatic ceramide
levels [113]. In addition to changes in fecal lipids, our MetS cohort also showed an increase
in orotic acid, an intermediate of pyrimidine nucleotide biosynthesis, in stool samples.
Similar to the lipids described above, orotic acid has also been linked to metabolic risk
factors such as hypertension [114] and can induce NAFLD in a various rodent models
[115,116]. Carnosine, which was decreased in our MetS group, has proven beneficial in
reducing abdominal obesity, blood pressure, and glucose in humans and animal models
[117-121]. Overall, our observation of differential lipids and metabolites that are associ-
ated with clinical phenotypes suggest stool samples could prove beneficial as a diagnostic
or preventative biofluid for metabolic disorders.

4. Conclusions

Our goal in this pilot study was to examine GI health in individuals with MetS. This
cohort showed no signs of intestinal inflammation or increase in intestinal permeability.
Animal models utilizing high-fat diets (plus glucose) to induce obesity, metabolic endo-
toxemia, and insulin resistances show alterations in the gut microbiota [28,35]. In addition,
these models have been instrumental in showing that high-fat diets also cause an increase
in intestinal permeability and inflammation [30,59,122-124]. In human subjects, intestinal
inflammation has been observed in more advanced liver diseases such as cirrhosis and
HCC [125,126]. IBD patients also can develop MetS and NAFLD while NAFLD and NASH
patients have an increased risk of developing CRC [72-76,127-129]. Targeting the GI tract
with probiotics in NAFLD and NASH patients has proved beneficial in reducing liver
enzymes, hepatic inflammation, hepatic steatosis, and hepatic fibrosis, further supporting
a role for the GI tract [130-139]. Nevertheless, these studies still do not completely explain
the cause of gut dysbiosis and decreased barrier function, the increased risk of IBD and
CRC in NAFLD patients, or how the probiotics are working. Thus, there is a critical gap
in knowledge regarding how the GI tract, possibly through host-microbiota metabolic
interaction, is involved in metabolic diseases. We posit that our MetS cohort showed no
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signs of intestinal dysfunction because changes in the host-microbiota metabolism pre-
cede inflammation [140]. Future endeavors to characterize gut metabolism could provide
an insight into the etiology of metabolic disorders such as MetS and NAFLD.

5. Limitation of the Study

A major strength of this study was the examination and comparison of human sub-
jects with or without MetS. We were able to identify changes in fecal lipidomics in our
MetS cohort that had a strong correlation with several MetS risk factors. Further and con-
trary to animal studies, we found that individuals with MetS showed no signs of intestinal
inflammation or increased permeability. Finally, our study cohort was both gender and
ethnically diverse. Nevertheless, we recognize our pilot study had several limitations.
These included our relatively small sample size for both populations (r = 10 controls and
n =8 MetS) that may not be truly representative of the U.S. population. Second, our vol-
unteered “healthy” cohort in our pilot study had a few subjects with elevated blood pres-
sure (2/10 of subjects) and high triglyceride levels (1/10; but did not have elevated blood
pressure or low HDL levels). However, our control cohort did not meet the guidelines
required to be diagnosed with MetS. Lastly, we believe our study could benefit from the
examination of colonic biopsies from both cohorts to compare metabolic and inflamma-
tory pathways in the colonic epithelium. This could provide us with a better understand-
ing of the host-microbiota interactions occurring in the colon of MetS subjects and how
these pathways can contribute to metabolic dysfunction.

6. Methods
6.1. Participants

Inclusion criteria for MetS participants consisted of individuals between the ages of
30-60 years with at least three of the five risk factors of MetS. The risk factors included (i)
abdominal obesity: waist circumference > 102 cm in men or 288 cm in women; (ii) elevated
triglycerides: 2150 mg/dL, or drug treatment for high triglycerides; (iii) low HDL-Choles-
terol: <40 mg/dL in men or <50 mg/dL in women, or drug treatment for low HDL-Choles-
terol; (iv) elevated blood pressure: systolic > 130 mm Hg and/or diastolic > 85 mm Hg, or
drug treatment for hypertension; and (v) elevated fasting plasma glucose: 2100 mg/dL, or
drug treatment for elevated glucose. Inclusion criteria for the control group consisted of
individuals aged 30-60 years that did not have MetS. Exclusion criteria for both groups
included individuals who had been previously diagnosed with inflammatory bowel dis-
ease, diabetes, severe hepatic dysfunction, pregnant females, lactating/breastfeeding indi-
viduals, currently on nonsteroidal anti-inflammatory drugs (NSAIDs), protein pump in-
hibitors, ongoing alcohol or substance abuse via AUDIT [141] questionnaire screening to
determine whether the participant’s behaviors were suggestive of alcohol abuse. Widely
used in clinical settings, AUDIT screens an individual based on alcohol intake, alcohol
dependence, and alcohol-related harm by formulating an overall score, with each question
providing a score from 0 to 4. Lastly, individuals with the inability to render informed
consent were also excluded from the study.

6.2. Clinical Visit

Consented participants were instructed to visit the Clinical and Translational Science
Center (CTSC) clinic after an overnight fast or a minimum of 8 h of fasting. Blood was
drawn to determine fasting glucose and insulin levels, high-sensitivity C-reactive protein
(hs-CRP) levels, comprehensive metabolic panel (CMP), and lipid (triglycerides, total cho-
lesterol, HDL, and LDL cholesterol) profiles (TriCore Reference Laboratories, Albuquer-
que, NM, USA). Additionally, Hemoglobin A1C (HbA1C) (Siemens DCA System, Singa-
pore, Singapore) and tumor necrosis factor-alpha (TNFa) (R&D Systems, Minneapolis,
MN, USA) were also analyzed (CTSC). Participants’ height, weight, waist, waist-to-hip
ratio, and body composition via bioelectrical impedance were recorded. Participants were
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instructed to collect 10 g of stool for metabolomics (PRECISION™ Stool Collection Sys-
tem, Covidien, Dublin, Ireland) and fecal calprotectin. For the calprotectin assay, the stool
was collected in a Calprotectin ELISA Stool Sample Collection Kit and was run on the
corresponding ELISA kit (Eagle BioSciences, Inc., Amherst, NH, USA).

6.3. Intestinal Permeability Assay

Within two weeks after the initial visit, participants visited the CTSC clinic after fast-
ing overnight and provided a pre-test urine sample. Participants then ingested 50 mL of
solution containing 5 g of lactulose and 2 g of D-mannitol followed immediately by 200
mL of water. After 3 h, participants provided a post-test urine sample. The levels of lactu-
lose, D-mannitol, and lactulose-mannitol ratios were assessed in the urine via ELISA
(Megazyme F-FRUGL, Megazyme E-MNHPF) [142-144].

6.4. Fecal Metabolomics

The collected 10 g of stool (PRECISION™ Stool Collection System, Covidien, Dublin,
Ireland) were sent to NYU Langone Metabolomics Core Resource Laboratory to examine
fecal metabolites and lipids. Hybrid metabolomics was performed examining a standard
panel of ~150 polar metabolites covering much of the central carbon metabolism, and
other common metabolites of interest. Separation and identification were carried out with
HILIC chromatography and a library of m/z and retention times adapted from the White-
head Institute [145], and verified with authentic standards and/or high resolution MS/MS
spectral manually curated against the NIST14MS/MS and METLIN (2017) tandem mass
spectral libraries [145,146].

Global lipidomics analyses were performed to profile changes in polar lipids in a
data-dependent fashion. Samples were subjected to an LCMS analysis to detect and iden-
tify phospholipid molecules and quantify the relative levels of identified lipids. A lipid
extraction was carried out on each sample based on published methods [81,82]. The dried
samples were resolubilized in 10 uL of a 4:3:1 mixture (isopropanol:acetonitrile:water) and
analyzed by UPLC-MS/MS with a modified polarity switching method [81,82]. The LC
column was a Waters™ CSH-C18 (2.1 x 100 mm, 1.7 pm) coupled to a Dionex Ultimate
3000™ system (Dionex, Sunnyvale, CA, USA) and the column oven temperature was set
to 55 °C for the gradient elution. The flow rate of 0.3 mL/min was used with the following
buffers; (A) 60:40 acetonitrile:water, 10 mM ammonium formate, 0.1% formic acid and (B)
90:10 isopropanol:acetonitrile, 10 mM ammonium formate, 0.1% formic acid. The gradient
profile was as follows: 40-43% B (0-1.25 min), 43-50% B (1.25-2 min), 50-54% B (2-11
min), 54-70% B (11-12 min), 70-99% B (12-18 min), 70-99% B (18-32min), 99-40% B (23—
24 min), hold 40% B (1 min). Injection volume was set to 1 pL for all analyses (25 min total
run time per injection). MS analyses were carried out by coupling the LC system to a
Thermo Q Exactive HF™ mass spectrometer operating in heated electrospray ionization
mode (HESI). Method duration was 20 min with a polarity switching data-dependent Top
10 method for both positive and negative modes. Spray voltage for both positive and neg-
ative modes was 3.5 kV, and the capillary temperature was set to 320 °C with a sheath gas
rate of 35, aux gas of 10, and max spray current of 100 pA. The full MS scan for both
polarities utilized a 120,000 resolution with an AGC target of 3 x 10° and a maximum IT
of 100 ms, and the scan range was from 350 to 2000 m/z. Tandem MS spectra for both the
positive and negative modes used a resolution of 15,000, an AGC target of 1 x 105, a max-
imum IT of 50 ms, an isolation window of 0.4 m/z, an isolation offset of 0.1 m/z, a fixed
first mass of 50 m/z, and 3-way multiplexed normalized collision energies (nCE) of 10, 35,
and 80. The minimum AGC target was 5 x 10* with an intensity threshold of 1 x 10¢. All
data were acquired in profile mode. The top scoring structure match for each data-de-
pendent spectrum was returned using an in-house script for MSPepSearch_x64 against
the LipidBlast tandem mass spectral library of lipids [147]. Putative lipids were sorted
from high to low by their reverse dot scores, and duplicate structures were discarded,
retaining only the top-scoring MS2 spectrum and the neutral chemical formula, detected
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m/z, and detected polarity (+ or -) of the putative lipid was recorded. The resulting lipids
were further identified manually by searching the accurate mass data against the LIPID
MAPS® Structure Database (LMSD) utilizing the observed m/z [83].

6.5. Statistical Analysis

Statistical analysis was performed as described in figure legends and the plots gen-
erated were obtained using the Prism software. Shapiro-Wilk tests were performed to
determine whether the outcome variables were normally distributed. Two-tailed un-
paired Student’s t-tests were used for variables that passed the Shapiro-Wilk test for nor-
mality (i.e., p > 0.05), and two-tailed Mann-Whitney U tests were used for variables that
were not normally distributed (i.e., Shapiro-Wilk p < 0.05) was performed. Plots display
the median (tminimum and maximum) or mean (+SE). Pearson’s Correlation Coefficients
were acquired using Prism software. Fecal metabolomics data were processed as de-
scribed above and analyzed by NYU Langone Metabolomics Core Resource Laboratory
using their in-house analysis pipeline. Cluster analysis was performed using heatmap3
[148] package in R. Raw p-values < 0.05 were used as a significance threshold for priori-
tizing hits of interest. Principle component analysis was conducted in Python using the
Scikit-learn, matplotlib, Numpy, and Scipy [149-152]. All other data were analyzed using
the two-tailed unpaired Student’s t-test (Prism).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo12050431/s1, Figure S1: Graph showing (A) weight
(kg); (B) body mass index (BMI); (C) Waist-to-Hip Ratio; (D) Height (cm); (E) percent of body fat;
(F) Fat mass (kg); (G) Lean mass (kg); (H) HOMA-IR; and (I) QUICKI. Graphs indicate median
(#minimum and maximum). * p < 0.05, ** p < 0.01, ** p < 0.001 and ns, not significant. Two-tailed
unpaired Student’s ¢-tests (A,C,D,G,I) or two-tailed Mann—-Whitney U (B,E,F,H); Figure S2: (A) Plot
showing the top 30 LMSD identified fecal lipids found to be the most significantly different (mean;
p-value range: 0.008-0.003). SP, sphingolipids. (B) Three component Principal components analysis
(PCA) model of hybrid metabolites. Color represents sample group, please see figure legend. (C)
Heatmap showing unsupervised clustering analysis of samples (HC vs. MetS) using the significant
metabolites (p < 0.05) from the comparison, samples were clustered with the Complete method and
Euclidian distance function; Figure S3: Heatmap showing Pearson’s r between triglyceride, HDL
cholesterol, TNFaq, fasting insulin, and fecal metabolites that included the top 10 lipids identified in
figure 3B, carnosine, and orotic acid. Pearson’s r, 0.5-1 and (-0.5)-(-1) were found to be significant,
p <0.05 (Table S4); Table S1: Lipid panel showing Total cholesterol; HDL cholesterol; LDL choles-
terol; and Triglycerides. Table shows median and interquartile range. Student’s t-test; Table S2:
Comprehensive Metabolic Panel. Table shows median and interquartile range. Student’s t-test; Ta-
ble S3: Putative LMSD ID of the top 30 lipids with the lowest p-value. Putative ID derived from
LIPID MAPS® Structure Database (LMSD) utilizing observed m/z; Table S4: Pearson’s coefficient
correlation p-value corresponding to MetS risk factors, lipids and metabolites shown in Figure S3.
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