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Abstract: Feed efficiency is one of the keystones that could help make animal production less costly 
and more environmentally friendly. Residual feed intake (RFI) is a widely used criterion to measure 
feed efficiency by regressing intake on the main energy sinks. We investigated rumen and plasma 
metabolomic data on Romane male lambs that had been genetically selected for either feed effi-
ciency (line rfi−) or inefficiency (line rfi+). These investigations were conducted both during the 
growth phase under a 100% concentrate diet and later on under a mixed diet to identify differential 
metabolite expression and to link it to biological phenomena that could explain differences in feed 
efficiency. Nuclear magnetic resonance (NMR) data were analyzed using partial least squares dis-
criminant analysis (PLS-DA), and correlations between metabolites’ relative concentrations were 
estimated to identify relationships between them. High levels of plasma citrate and malate were 
associated with genetically efficient animals, while high levels of amino acids such as L-threonine, 
L-serine, and L-leucine as well as beta-hydroxyisovalerate were associated with genetically ineffi-
cient animals under both diets. The two divergent lines could not be discriminated using rumen 
metabolites. Based on phenotypic residual feed intake (RFI), efficient and inefficient animals were 
discriminated using plasma metabolites determined under a 100% concentrate diet, but no discrim-
ination was observed with plasma metabolites under a mixed diet or with rumen metabolites re-
gardless of diet. Plasma amino acids, citrate, and malate were the most discriminant metabolites, 
suggesting that protein turnover and the mitochondrial production of energy could be the main 
phenomena that differ between efficient and inefficient Romane lambs. 
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1. Introduction 
Meeting society’s expectations in terms of environmental preservation, animal health 

and welfare, and meat quality while staying economically viable is a challenge breeders 
must overcome. Feeding costs are one of the most important production costs, especially 
in sheep meat production [1]. Increasing animal feed efficiency is a good way to reconcile 
economy and ecology, reducing both food inputs and environmental impacts [2–4]. The 
concept of feed efficiency consists of focusing on the relations between what animals eat 
and what they produce instead of focusing on production only. 

Feed efficiency is mainly studied through the feed conversion ratio (FCR) and resid-
ual feed intake (RFI). RFI has long been proven heritable in cattle [5] and, more recently, 
in sheep with estimates ranging from 0.11 to 0.46 [6–8]. In the Romane breed, heritability 
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of RFI is estimated to be 0.45 ± 0.08 [9,10]. RFI presents the advantages of being independ-
ent (at both the phenotypic and genetic levels) of average daily gain (ADG) [7] compared 
to FCR and being more suited to genetic selection [11]. 

The biological determinants of feed efficiency are widely studied in cattle [12], and 
some studies are emerging in lambs [13,14]. In sheep, feed efficiency has been recently 
linked to feeding behavior [9,15] and methane emissions [3]. In beef cattle, some studies 
tried to link RFI with infrared thermometry used as a proxy for radiated heat loss, with 
conflicting results [16,17]. Methane emissions and radiated heat loss are responsible for a 
diminution in energy efficiency. To this day, the main hypotheses explaining divergences 
in feed efficiency rely on differences in digestion and/or metabolism, including processes 
of protein renewal in skeletal muscle [18]. Indeed, protein synthesis and degradation have 
an energy cost and have been identified as important factors influencing feed efficiency 
in beef [19]. Several studies linked rumen metabolites or plasma metabolites with either 
greenhouse gases emissions [20] or production phenotypes, including RFI [21,22]. 

Metabolomics studies give an unbiased insight into metabolic phenomena that occur 
both in the rumen and in the organs and could explain differences in feed efficiency. For 
example, in the rumen, an orientation of carbohydrate metabolism towards acetate and 
butyrate production is associated with an increase in methane production by archaea, and 
hence an increase in methane release and energy loss [20]. Concerning host metabolism, 
the plasmatic concentrations of amino acids have been associated with differences in pro-
tein turnover both in sheep and beef cattle, highlighting the interest of studying those 
concentrations in divergent animals in terms of feed efficiency [21–23]. 

The above-mentioned studies only focused on the phenotypic RFI, which is the result 
of the genetic value and environmental factors that are not always well considered be-
cause of the limited sizes of experiments. In this paper, our objective was to identify ru-
minal and/or plasmatic metabolites associated with differences in RFI both at the genetic 
and phenotypic levels in the progeny of Romane rams divergently selected for RFI under 
a 100% concentrate diet and belonging to lines called rfi− (efficient animals) and rfi+ (in-
efficient animals). These differences were identified while lambs were receiving two dif-
ferent diets: a diet rich in concentrates and then a diet rich in forage. 

2. Results 
2.1. Zootechnical Parameters 

A total of 277 animals (135 from the divergent line rfi− and 142 from the divergent 
line rfi+) were phenotyped from 12 to 18 weeks of age under a 100% concentrate diet. Their 
phenotypes are presented in Table 1A. Average Daily Feed Intake (ADFIC) was recorded 
every day, body weight was measured at the beginning and end of the 6-week trial, and 
ADGC was calculated. Back fat thickness (BFTC) and muscle depth (MDC) of the longissimus 
dorsi were measured by ultrasound at the end of the trial. Out of the 277 animals, and after 
calculations of their genetic breeding values, 167 animals with extreme breeding values 
were kept for the MIX phase, and the same phenotypes were recorded (Table 1B). 

Table 1. Descriptive statistics of phenotypes during CONC (A) and MIX (B) phases, and estimation 
of the divergent line effect. 
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A Phase CONC (N = 277)  
Traits * Mean (SD) rfi− rfi+ p-Value 

ADFIC 1 (g/day) 2098 (273) 1991 2173 5 × 10−12 
E-MWC 2 (kg) 20.6 (1.9) 20.3 20.7 0.0014 

ADGC 3 (g/day) 327.6 (62.4) 326.5 326.5 0.93 
BFTC 4 (mm)  5.73 (0.87) 5.81 5.74 0.41 
MDC 5 (mm) 28.1 (2.4) 27.8 28.3 0.02 

RFIC 6 (g/day) 0 (151.4) −71.4 66.6 <2.2 × 10−16 
B Phase MIX (N = 167) 

Traits * Mean (SD) rfi− rfi+ rfi− rfi+ p-Value 
  Summer Fall Summer  Fall    

ADFIM 1 (g/day) 1857 (280) 1804 1856 1817 1869 1830 1843 0.80 
E-MWM 2 (kg) 22.8 (1.5) 22.7 22.6 22.9 22.8 22.7 22.8 0.38 

ADGM 3 (g/day) 124.4 (64.3) 147 113 137 104 130 121 0.40 
BFTM 4 (mm)  4.54 (0.78) 4.79 4.55 4.54 4.30 4.67 4.42 0.02 
MDM 5 (mm) 27.1 (2.4) 26.8 18.5 27.1 18.9 22.6 23.0 0.20 

RFIM 6 
(g/day) 

0 (183.1) −3.2 −3.8 4.1 3.5 −3.5 3.8 0.81 

  Phase MIX # (N = 109 #)      
ADForIM 7 (g/day) 1279 (224) 1276 1290 1268 1282 1283 1275 0.75 

RForIM 8 
(g/day) 

0 (175.7) −3.7 −3.0 3.3 4.0 −3.3 3.6 0.83 

* XC and XM are phenotypes from the CONC and the MIX phase, respectively: 1 ADFI, average daily 
feed intake; 2 E-MW, end-phase metabolic weight; 3 ADG, average daily gain; 4 BFT, back fat thick-
ness; 5 MD, back muscle depth; 6 RFI, residual feed intake; 7 ADForI, average daily forage intake; 8 
RForI, residual forage intake. # Only animals from 2019 and 2020 had a precisely registered forage 
consumption; in 2018, forage and concentrate were distributed as a total mixed ration. 

2.1.1. Growth Phase under a 100% Concentrate Diet 
Descriptions of traits recorded under a 100% concentrate diet (CONC phase) are pre-

sented in Table 1A. Animals from rfi+ and rfi– divergent lines ate 2173 and 1991 g/day of 
concentrate, respectively, these two quantities being significantly different (p < 0.001). 
While marginal, though significant, differences were observed in end-phase metabolic 
weight (E-MWC) and MDC between the two lines, no difference was observed either in 
ADGC or in BFTC. RFIC was obtained from a linear model regressing ADFIC on E-MWC, 
ADGC, MDC, and BFTC (R2 = 0.69, p < 2.2 × 10−16). E-MWC and ADGC were the most explan-
atory covariates and neither of the body composition parameters were significant. Mean 
RFI was found to be negative in line rfi− (−71.4 g/day) and positive in line rfi+ (66.6 g/day), 
the difference being significant (p < 0.001). Genetic and phenotypic RFIC were highly cor-
related (r = 0.72, p < 2.2 × 10−16), both being well correlated with ADFIC (r = 0.50, p < 2.2 × 
10−16 and r = 0.55, p < 2.2 × 10−16, respectively). In the CONC phase, 203 animals out of the 
277 (100 from line rfi− and 103 from line rfi+) had phenotypic RFIC matching their genetic 
line, while 35 lambs from line rfi− had a positive phenotypic RFIC and 39 lambs from line 
rfi+ had a negative phenotypic RFIC (Table 2). 

Table 2. Number of lambs in each phenotypic class in the CONC phase according to their genetic line. 

Phenotypic RFIC (g/Day) 1 

Genetic Line 
 ≤−75 ]−75,0] ]0,75] >75 

rfi− 62 38 17 18 
rfi+ 20 19 40 63 

1 The −75 and 75 thresholds were chosen because they were −0.5 SD and 0.5 SD of phenotypic RFIC, 
respectively. 
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E-MWC and ADGC were both significantly correlated with ADFIC (r = 0.81, p < 2.2 × 
10−16 and r = 0.49, p <2.2 × 10−16, respectively). By construction, RFIC was not correlated to 
any zootechnical parameters except ADFIC. 

2.1.2. Finishing Phase under a Mixed Diet 
Descriptions of traits recorded under a mixed diet (MIX phase) are presented in Table 

1B. Animals from lines rfi+ and rfi− tested in the summer period ate 1817 and 1804 g/day, 
respectively. Animals from line rfi+ and rfi− tested later in life (i.e., during the fall period) 
ate 1869 and 1856 g/day, respectively. In 2018, concentrate and forage were distributed as 
a total mixed ration; therefore, it was not possible to precisely measure consumption of 
one or the other. In 2019 and 2020, concentrate consumption was limited to 700 g/day, and 
except for one animal from 2019, all animals ate the whole 700 g daily. ADFIM and average 
daily forage intake (ADForIM) were not significantly different between the divergent lines 
(Table 1B). No difference was observed between the two lines in terms of E-MWM, ADGM, 
and MDM, and animals from line rfi− had a slightly higher BFTM than animals from line 
rfi+. In comparison with the model used to estimate RFIM under a concentrate diet, an 
additional effect of the period of control nested in the year was added as a fixed effect, 
and together with zootechnical parameters, it explained 46% of the variation in ADFIM (p 
= 3 × 10−16) in the MIX phase. There were no differences between the two lines when RFIM 
was calculated with total ADFIM. For the 2019 and 2020 animals, no difference was ob-
served between the lines when RFI was calculated considering forage intake only (RFo-
rIM). Out of the 83 animals from line rfi− kept in the MIX phase, only 45 turned out to have 
a negative phenotypic RFIM, and out of the 84 animals from line rfi+, 41 had positive phe-
notypic RFIM values (Table 3). ADFIM was significantly correlated with E-MWM (r = 0.40, 
p = 6.6 × 10−7) and ADGM (r = 0.20, p = 0.03). 

Table 3. Number of lambs in each phenotypic class in phase MIX according to their genetic line. 

Phenotypic RFIM 1 (g/Day) 

Genetic Line 
 ≤−90 ]90,0] ]0,90] >90 

rfi− 28 17 17 21 
rfi+ 25 18 13 28 

1 The −90 and 90 thresholds were chosen because they were −0.5 SD and 0.5 SD of RFIM, respectively. 

Since concentrate intake was limited to 700 g/day in 2019 and 2020, animals that ate 
less forage had a total ration that was denser in energy and crude protein. However, in 
the Wilcoxon signed-rank tests applied to the RFIM calculated from ADFIM, total energy 
intake or total crude protein intake led to the incapacity of rejecting the null hypothesis, 
meaning the distributions of the three traits were the same. 

2.2. Plasma Metabolites 
2.2.1. Growth Phase under a 100% Concentrate Diet 

Thirty-four metabolites were identified in the plasma of the animals in the CONC 
phase, the most abundant being D-glucose (Table S1). All metabolites were included in 
the PLS-DA model used to discriminate genetic lines rfi+ and rfi−. Based on the area under 
the receiving operator characteristic curve (AUROC), we retained eight components (AU-
ROC = 0.81) for the PLS-DA of plasma metabolites in the CONC phase (Figure 1A). Ac-
cording to the permutation test, the genetic lines were significantly discriminated by the 
PLS-DA (p = 9.9 × 10−5). Only citrate and malate had a variable importance in projection 
(VIP) value higher than 1.5 in the eight-dimension PLS-DA model and were therefore the 
two most discriminant metabolites, followed by L-leucine, beta-hydroxyisovalerate, and 
L-threonine with VIP values around 1.3 (Figure 1B). The loadings of the first component 
highlighted an association between line rfi− and higher levels of plasma citrate and malate 
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and between line rfi+ and higher levels of L-leucine, L-threonine, and beta-hydroxyisova-
lerate (Figure 1C). 

 
Figure 1. Results from the PLS-DA of the plasma metabolites measured during the CONC phase 
according to the rfi divergent genetic line of lambs (n = 133 rfi− and n =142 rfi+). (A) Accuracy of the 
PLS-DA models assessed using AUROC; red line marks the maximum AUROC value obtained with 
8 components. (B) Selection of the variables contributing the most to the discriminant analysis using 
a VIP approach. (C) Loading values of each metabolite on the first component of the PLS-DA model; 
in gold and blue, metabolites associated with line rfi− and line rfi+, respectively. 

When PLS-DA was applied to the two extreme phenotypic RFI groups comprising 
animals with a phenotypic RFIC higher than 0.5 standard deviations (SD) or lower than 
−0.5 SD independently from their genetic line, the results were similar. Eleven compo-
nents were retained based on the AUROC (AUROC = 0.84), and they significantly discrim-
inated the two phenotypic RFIC groups (p = 1.0 × 10−3). When the eleven components were 
taken into account in the PLS-DA model, only beta-hydroxyisovalerate had a VIP value 
higher than 1.5, followed by L-glutamate, L-serine, and citrate (VIP = 1.40, 1.29, and 1.25, 
respectively) (Figure S1). 

Pearson correlations were calculated between phenotypes recorded during the 
CONC phase and the relative concentrations of all metabolites. Only weak correlations 
were found between metabolites and phenotypes. The highest correlation with ADFIC was 
with beta-hydroxyisovalerate (r = 0.40, p = 8.4 × 10−11), which was also significantly corre-
lated with phenotypic RFIC (r = 0.30, 1.7 × 10−7). Amino acids were all positively correlated 
with each other, with the highest correlation being observed between L-leucine and L-
valine (r = 0.91, p < 2.2 × 10−16). Citrate was highly correlated with malate (r = 0.94, p < 2.2 × 
10−16) (Figure 2). 
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Figure 2. Correlation matrix of metabolites measured during the CONC phase in plasma (above the 
diagonal) and rumen (below the diagonal). Correlations of a metabolite between the two biological 
fluids are given on the diagonal. Gray squares correspond to non-existing correlations. White 
squares are non-significant correlations after Benjamini–Hochberg adjustment of p-values. 

2.2.2. Finishing Phase under A Mixed Diet 
Twenty-three metabolites were identified in plasma samples from the MIX phase, 21 

of them being present in all samples and D-glucose being once again the most abundant 
(Table S1). Based on the AUROC, nine components were retained for the PLS-DA (AU-
ROC = 0.87) (Figure 3A), which significantly discriminated the two divergent genetic lines (p 
= 3.0 × 10−4) according to the permutation test. When the nine components were taken into 
account in the PLS-DA model, only citrate, associated with line rfi−, had a VIP value above 
1.5, while L-threonine and L-leucine, associated with line rfi+, had VIP values higher than 1.4 
(Figure 3B). The loadings of the first component highlighted the association between line rfi− 
and citrate and between line rfi+ and L-threonine and L-leucine (Figure 3C). 
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Figure 3. Results of the PLS-DA of the plasma metabolites measured during the MIX phase accord-
ing to the rfi divergent genetic line of lambs (n = 133 rfi− and n = 142 rfi+). (A) Accuracy of the PLS-
DA models assessed using AUROC; the red line marks the maximum AUROC value obtained with 
nine components. (B) Selection of the variables contributing the most to the discriminant analysis 
using a VIP approach. (C) Loading values assigned to each metabolite on the first component of the 
PLS-DA model; in gold and blue, metabolites associated with line rfi− and line rfi+, respectively. 

When PLS-DA was applied to phenotypic RFI groups, the best model in terms of 
diagnosis had nine components (AUROC = 0.74) but did not significantly discriminate the 
two phenotypic groups according to the permutation test (p = 0.50). 

No correlation between either ADFIM or genetic or phenotypic RFIM and plasma me-
tabolites was higher than 0.5 in absolute values. The strongest correlations between phe-
notypes and metabolites were observed for ADFIM with either L-glycine or L-leucine (r = 
−0.23, p = 0.004 and r = 0.23, p = 0.008, respectively). L-leucine was strongly correlated with 
L-valine (r = 0.85, p < 2.2 × 10−16) (Figure 4). 
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Figure 4. Correlation matrix of metabolites measured during the MIX phase in plasma (above the 
diagonal) and rumen (below the diagonal). Correlations of a metabolite between the two biological 
fluids are given on the diagonal. Gray squares correspond to non-existing correlations. White 
squares are non-significant correlations after Benjamini–Hochberg adjustment of p-values. 

A summary of plasma metabolite correlations observed under both diets is presented 
in Figure 5. All correlations higher than 0.5 in absolute values and significant after Benja-
mini–Hochberg correction are shown. 



Metabolites 2022, 12, 304 9 of 21 
 

 

 
Figure 5. Summary of plasma metabolite correlations. Significant correlations higher than 0.5 in 
absolute values specifically in the CONC phase, the MIX phase, or under both diets are represented 
in orange, green, and purple, respectively. Negative correlations are marked by dashed lines and 
positive correlations are marked by solid lines. 

2.3. Rumen Metabolites 
2.3.1. Growth Phase with a 100% Concentrate Diet 

Forty-four metabolites were identified in rumen samples from the CONC phase. 
Thirty of them were quantified in every sample and fourteen were missing from one or 
several samples (Table S1). 

Based on the AUROC, ten components were retained for the PLS-DA (AUROC = 0.70) 
that best discriminated the two divergent genetic lines, but this model did not significantly 
discriminate them according to the permutation test (p = 0.79). 

The best PLS-DA model that aimed to discriminate extreme phenotypic groups re-
tained 10 components but failed to significantly discriminate efficient from inefficient an-
imals according to the permutation test (p = 0.22). 

No statistically significant correlation was found between any of the metabolites and 
ADFIC and RFIC. Correlations between rumen metabolites higher than 0.5 in absolute val-
ues were, on the other hand, quite numerous. Generally, correlations among amino acids 
and among volatile fatty acids (VFA) were positive, whereas correlations between amino 
acids and VFA were negative. As an example, L-alanine was strongly correlated with L-
glycine (r = 0.83, p < 2.2 × 10−16), L-serine (r = 0.73, p < 2.2 × 10−16), L-leucine (r = 0.81, p < 2.2 
× 10−16), L-isoleucine (r = 0.78, p < 2.2 × 10−16), L-methionine (r = 0.77, p < 2.2 × 10−16) and L-
phenylalanine (r = 0.73, p < 2.2 × 10−16) and was negatively correlated with acetate (r = −0.33, 
p = 5.2 × 10−7), propionate (r = −0.42, p = 2.8 × 10−11) and butyrate (r = −0.30, p = 2 × 10−6). 
Cadaverine was also highly positively correlated with the amino acids (Figure 2). 

2.3.2. Finishing Phase with a Mixed Diet 
Nineteen metabolites were identified in rumen samples from the MIX phase. Eight-

een of them were quantified in every sample. The last one, citraconate, was not detected 
in more than half the samples (88 samples out of 164) and was therefore removed from 
the metabolites considered for the PLS-DA (Table S1). Neither the PLS-DA on genetic di-
vergent lines (nine components, AUROC = 0.71) nor the PLS-DA on phenotypic groups 
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(five components, AUROC = 0.71) were found to significantly discriminate the groups (p 
= 0.21 and p = 0.77, respectively). 

No significant correlation was observed between phenotypes and metabolites. All corre-
lations higher than 0.5 in absolute values between metabolites were positive correlations. Ac-
etate and propionate were positively correlated (r = 0.7, p < 2.2 × 10−16), isovalerate was corre-
lated with ethylmalonate (r = 0.61, p = 1.2 × 10−16) and 3-methylxanthine (r = 0.90, p < 2.2 × 10−16), 
those two being also correlated (r = 0.63, p < 2.2 × 10−16). Amino acids were correlated with each 
other and with cadaverine and negatively correlated with VFA (Figure 4). 

2.4. Correlations between Rumen and Plasma Metabolites 
No correlation higher than 0.5 in absolute values was observed between rumen and 

plasma metabolites, except between rumen dimethylsulfone and plasma dimethylsulfone 
in both phases: r = 0.58 (p < 2.2 × 10−16) and r = 0.70 (p < 2.2 × 10−16) in the CONC (Figure 2) 
and MIX (Figure 4) phases, respectively. 

3. Discussion 
3.1. Phenotypes 

Genetic selection of the divergent lines on RFI was initiated in 2015 from 12 extreme 
sires phenotyped in 2013 and 2014 [10]. These lines rely on RFI phenotyped in young 
lambs fed a rich diet. In the first generation of selection [10], animals from the two lines 
essentially differed in ADFI and phenotypic RFI and showed no statistically significant 
differences in ADG, E-MW, BFT, or MD. Animals tested in this work were from the second 
(103 lambs from 2018) and third generations (101 lambs from 2019 and 73 from 2020) of 
selection. They exhibited a similar pattern, differing in ADFIC and RFIC, only marginally 
in E-MWC and MDC, and not at all in ADGC or BFTC under the same concentrate-based 
diet that was used for selection. One purpose of this study was to evaluate phenotypes in 
both divergent lines under a mixed diet, implying less competition with human food. The 
number of animals kept in the MIX phase was lower, but these animals were extreme 
males in terms of genetic RFIC. Despite this, under the MIX diet, no difference between 
lines was significant with any of the phenotypes considered, even though mean pheno-
typic RFIM in lines rfi− and rfi+ were still negative and still positive, respectively. This 
absence of significant differences during the MIX phase could be due to two parameters 
evolving concomitantly in our study: the diet and the animals’ age and growth status. 
Redden et al. found that Targhee ewes that were efficient in terms of RFI under a high-
energy diet while growing were not the same as the efficient ones when they were fed a 
forage-rich maintenance diet as yearlings [24]. Oliveira et al. reported similar results in 
Nellore cattle: animals from the low-RFI group, when fed a high-energy diet in the feedlot, 
had a 9.4% and 19.7% lower DMI than animals from the medium-RFI and high-RFI 
groups, respectively, but when animals were brought to the pasture, no significant differ-
ence was observed between the groups [25]. In their study, animals were older when 
switched to grass. The main difference between these studies and ours is that their RFI 
groups were made up based on single phenotypic assessments while our divergent lines 
stem from a multiple-generation genetic selection, making classification more reliable. 
Our selection seems to be appropriate for rapidly growing lamb breeding often based on 
high-concentrate diets and slaughtering between 3.5 and 6 months of age. Some of our 
lambs had null or negative mean ADGM during the second phase of measurements, indi-
cating that they were not growing anymore and that potential mechanisms associated 
with growth, such as preferential muscle deposition over fat [26], could not be applicable 
anymore on lambs older than 6 months. If this was the sole explanation, we would expect 
plasma metabolites to differ between efficient and inefficient animals in the CONC phase 
but not necessarily in the MIX phase, and no difference in rumen metabolites in either 
phase. The difference between our phases could also be linked with a better use of the 
concentrate diet in rfi− lambs than in the rfi+ lambs and no better use of the mixed diet. In 
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this scenario, we would expect both rumen and plasma metabolites to vary between lines 
during the CONC phase as being linked to one or the other line as a result of a different 
digestion and absorption of this diet in divergent animals [27]. 

3.2. Plasma Metabolites 
Few studies have been performed on sheep plasma metabolites, and even fewer have 

linked NMR-measured metabolites and feed efficiency. In a recent study, Goldansaz et al. 
used multiple platform analysis to identify potential biomarkers of RFI in sheep [21]. A 
few months later, Foroutan et al. tried to extensively describe the metabolome of beef cat-
tle with either high-RFI or low-RFI phenotypes using NMR, GC/MS, and LC/MS tech-
niques [28] and compared their results with pre-existing studies on cattle and with scarce 
studies that exist on sheep [23,29,30]. 

3.2.1. Amino Acids 
Repeatedly throughout the studies, amino acids were more abundant in the plasma 

or serum of less efficient animals than in the plasma or serum of the more efficient ones. 
In particular, L-threonine, identified as the most discriminant metabolite for the line rfi+ 
in our study, was also more represented in high-RFI animals compared to low-RFI ones 
in other studies [23,28]. This result can be nuanced by the comparison between the two 
PLS-DAs performed on the genetic lines or the extreme phenotypic RFI groups since, in 
the latter, plasma L-threonine was not identified as one of the most discriminant metabo-
lites in either of the phases. L-glycine is more controversial since it has been found to be 
higher in efficient animals in some studies [12,28] and in less efficient animals in others 
[12,22], and was associated with line rfi+ in the PLS-DA discriminating our divergent lines 
and associated with efficient animals when phenotypes were considered. L-glutamate, L-
serine, and even more beta-hydroxyisovalerate (which is a product of L-leucine metabo-
lism) were the most discriminant metabolites associated with inefficient animals in terms 
of phenotypic RFIC in the CONC phase. L-glutamate had also been associated with ineffi-
ciency in Foroutan et al. 2020 [28]. Beta-hydroxyisovalerate has not been reported yet in 
the literature either way. 

The overall increase in amino acids plasma concentrations could be linked to an in-
crease in crude protein consumption, proportional to the increase in ADFI. However, no 
correlation was found between any individual amino acid concentration and ADFI, re-
gardless of diet. This may be due to the fact that plasma amino acid concentrations are a 
reflection of both ingestion and metabolism and that ADFI is a reflection of feed intake 
during the whole period, not only during the few days or hours prior to sampling. Mech-
anisms other than simply ingestion must be at stake. Jorge-Smeding et al. suggested that 
efficient animals could have a slowed-down urea cycle, resulting in the accumulation of 
carbamoyl phosphate and fumarate and a decrease in plasma concentrations of L-orni-
thine, L-aspartate, L-valine, and L-lysine [29]. In our case, neither L-ornithine nor L-lysine 
were quantified in the plasma, but L-citrulline, which is part of the urea cycle, was not 
differentially expressed in the different genetic lines. However, L-valine had a VIP value 
higher than 1 in the MIX phase and was associated with line rfi+. Urea is not one of the 
191 metabolites in the ASICS library [31] and therefore was not identified in our study; 
thus, we cannot properly conclude on the acceleration or slow-down of the urea cycle. 

Another explanation for feed efficiency, particularly discussed in Cantalapiedra-Hi-
jar et al., is a modification of protein turnover [18]. Protein turnover is the continuous 
process of the synthesis and degradation of proteins in the organism allowing animals to 
adapt to their physiological status [32]. Its increase, resulting in a higher energy expense 
to deposit the same amount of muscle protein, could explain why some animals are poorly 
efficient. In our study, we found no difference in longissimus dorsi depth measured with 
ultrasounds between efficient and inefficient animals in either phase, suggesting that 
while eating less, efficient animals deposited the same amount of muscle. In some non-
ruminant species, protein turnover, which is known to be variable between individuals, 
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has been proven to be heritable and could therefore be one of the mechanisms involved 
in feed efficiency [33,34]. Protein turnover is an energy-consuming process that increases 
with protein concentration of the diet, and both synthesis and degradation are enhanced 
when supplementation of an amino acid-lacking diet is realized [35]. Our animals were 
fed in order to cover or overpass their protein needs in accordance with INRAE recom-
mendations and thus cannot be considered as lacking amino acids [36]. 

3.2.2. Organic Acids 
Citrate was the most discriminant metabolite between the two genetic lines in both 

our phases. It has been identified in most of the studies previously quoted, but its associ-
ation with efficiency was not commonly reported. Even in our study, when discrimination 
was made on the bases of phenotypic groups, citrate importance in the discrimination was 
far lower. Karisa et al. even linked citrate and less efficient animals [23]. 

Plasma citrate concentrations are mainly regulated by digestive absorption of feed 
citrate, bone metabolism, and renal filtration and resorption [37,38]. Thus, an increase in 
citrate plasma concentration in genetically efficient animals could stem from their better 
reabsorption of urine citrate, resulting in less waste of potentially valuable carbon or 
higher export from the cell when energy is in excess, resulting in a more efficient use of 
citrate [37]. Other hypotheses would have been a higher digestive citrate absorption, but 
this is not consistent with the fact that efficient animals eat less and that the ruminal me-
tabolites profile does not suggest a higher citrate production in the rumen. 

Finally, the increase in citrate plasma concentration could be caused by an increased 
citrate production in the cell or an increased export of citrate from the cell to the plasma. 
The concomitant augmentation of citrate and malate, also highly discriminant in the 
CONC phase of our experiment, suggests that when fed 100% concentrate, catabolic phe-
nomena and energy metabolism could be involved in the difference in feed efficiency be-
tween lambs (Figure 6). This was previously considered by Herd and Richardson in cattle 
[19]. Citrate is a key metabolite of both anabolism and catabolism, being the initial step of 
the citric cycle in the mitochondria and thus a very important element of ATP production 
in the cell. Citrate is also involved in fatty acid synthesis in the cytoplasm through acetyl-
CoA production [39,40] and in modulating glycolysis, lipogenesis, and neoglucogenesis. 

 
Figure 6. Summary of metabolites found to be associated with genetic lines or phenotypic RFI 
groups. Gold circles and blue circles indicate that metabolites were associated with line rfi− and line 
rfi+, respectively. Gray circles indicate that the metabolites were not identified in our study. Green 
circles indicate that the metabolites were identified but not significantly associated with either of 
the lines. Gold and blue backgrounds represent the association between a metabolite and rfi− or rfi+ 
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phenotypic groups, respectively. Dashed lines represent several reactions in a pathway. Dotted lines 
represent potentially reversible reactions. 

Kelly et al. reported an increase in 3-hydroxybutyrate in inefficient heifers [41]. In 
ruminants, 3-hydroxybutyrate has two potential origins. On one hand, absorbed butyrate 
can be converted to 3-hydroxybutyrate in the rumen epithelium, and thus, an increase in 
feed intake or an orientation towards butyrate production can be responsible for a plasma 
3-hydroxybutyrate increase [42]. On the other hand, it could result from an impaired en-
ergy valorization. When intermediates of the citric cycle are lacking, especially when ox-
aloacetate is oriented towards neoglucogenesis, citrate synthase is inhibited, resulting in 
a condensation of acetylCoA into ketone bodies in the liver (Figure 6). 

3.2.3. Integration 
Another hypothesis could explain both the increased citric cycle intermediates in ef-

ficient animals and increased amino acids in inefficient animals (Figure 6). Efficient ani-
mals could have a higher capacity to orient excess amino acids towards anaplerotic reactions, 
resulting in the augmentation of the citric cycle metabolites, including citrate and malate. 

Increased citrate and malate mitochondrial concentrations that could stem from an 
increased deamination of excess amino acids may be better exported from the mitochon-
dria in efficient animals, which would avoid impairing citric cycle reactions, as suggested 
in MacDonald et al. [43]. Even though plasma exports from the cell to the plasma are not 
well described for now, contrarily to exchanges between the mitochondria and the cyto-
plasm [44], Mycielska and coworkers postulated the existence of a transporter allowing 
citrate and potentially other citric cycle intermediates to leave the cell [45]. 

The link between mitochondrial metabolism and feed efficiency has been proposed 
in the literature. Sharifabadi and coworkers isolated mitochondria from lambs differing 
in ADFI and RFI and found that the activity of all five mitochondrial respiratory chain 
complexes were enhanced in feed-efficient animals [46]. Moreover, studies on isolated pig 
mitochondria have shown that pigs selected for efficiency tend to have a lower electron 
leakage from several complexes of the respiratory chain and a lower production of reac-
tive oxygen species (ROS), correlated with their phenotypic RFI [47]. Similarly, Bottje et 
al. reviewed links between electron leaks and feed efficiency, concluding that poorly effi-
cient animals had a less efficient electron transfer along the electron transfer chain, leading 
to an increase in ROS in broilers [48]. In Kolath et al., feed efficiency was associated with 
greater efficiency in respiratory control ratio, implying a higher degree of coupling be-
tween respiration and oxidative phosphorylation but no increase in production of ROS 
when expressed as a function of respiration rate [49]. 

A description of the main metabolic pathways highlighted in this study is proposed 
in Figure 6. 

3.3. Rumen Metabolites 
No significant correlation higher than 0.4 in absolute values was observed between 

rumen and plasma metabolites, with the notable exception of the correlation between ru-
men dimethylsulfone and plasma dimethylsulfone in both phases. Plasma dimethyl-
sulfone results from the absorption of rumen dimethylsulfone, presumably produced 
from the degradation of organic sulfur compounds such as L-methionine or from S-me-
thyl cysteine sulfoxide that would come from the rapeseed meal incorporated in the con-
centrates. An increase in plasma dimethylsulfone was previously described to be linked 
to reduced methane emissions in dairy cows, but this was not associated with a produc-
tion increase [50]. In our study, dimethylsulfone was not linked with any of the pheno-
types, nor with genetic RFI. 

Rumen metabolites could potentially be linked to feed efficiency in two ways. On one 
hand, metabolites produced by the rumen microbiota are subsequently released in the 
rumen and absorbed, and differences in metabolites in the rumen could indicate impaired 
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or enhanced digestion associated with better use of feed. On the other hand, metabolites 
absorbed in the rumen or in the intestine could influence host phenotype by orienting 
metabolism towards tissue deposition or by increasing protein turnover, for example. Me-
tabolites that we identified in the rumen are very close to those obtained in earlier studies 
led with NMR techniques [20]. In our study, rumen metabolites did not discriminate ge-
netic lines nor phenotypic groups, regardless of the diet. Indeed, discrimination by PLS-
DA was poor (as highlighted by the AUROC values being 0.7 at most, and p-values of the 
permutation tests being greater than 0.05). 

Succinate, which is a microbial intermediate towards propionate production in the 
rumen [51], was found to be linked to animals growing faster for the same feed intake in 
a study from Clemmons et al. [52]. 

Artegoitia and coworkers compared rumen metabolomics of steers with high ADG 
and steers with low ADG for the same amount of feed ingested [53]. They reported an 
increase in phenylpyruvate, pyroglutamate, cortisol, DHEA sulfate, lactate, imidazole, 
and malonyl-carnitine and a decrease in lactate, taurine, and both alpha-linolenic acid and 
linoleic acid in rapidly growing animals (p < 0.1), suggesting that ruminal metabolism may 
differ between efficient and inefficient animals [53]. Among these metabolites, only py-
roglutamate and lactate in the CONC phase and sebacate in the MIX phase were quanti-
fied in our study, and neither was associated with either lines or phenotypic RFI. 

Two recent studies compared VFA relative concentrations and total VFA concentra-
tions without finding any difference between efficient and inefficient animals [54,55]. Con-
sistently with these studies, no difference was found in the relative concentrations of VFA 
in our study. 

Ruminal digestion and lipid biohydrogenation in the rumen are mainly driven by the 
microbiota, and investigating ruminal microbiota could highlight differences that are dif-
ficult to determine using metabolomics. As an example, Artegoitia et al. also found higher 
bacterial and lower archaeal populations in efficient animals, and other studies have in-
vestigated links between ruminal microbiota and feed efficiency [56–58]. The analysis of 
microbial populations and long-chain fatty acids in our samples might unravel new ex-
planations. 

4. Materials and Methods 
4.1. Animals 

A total of 277 Romane male lambs belonging to the 2nd and 3rd generations of di-
vergent selection on RFI were bred at the INRAE experimental unit P3R in Bourges 
(https://doi.org/10.15454/1.5483259352597417E12) during the years 2018 (2nd generation), 
2019, and 2020 (3rd generation). The genetic selection of the lines has been presented in 
Tortereau et al. [10]. Briefly, every year since 2015, males were phenotyped for 6 weeks from 
week 12 to week 18 of age under a 100% concentrate diet, and their RFI values were calculated. 
Breeding values for RFI were then estimated, and males with the most extreme breeding val-
ues for RFI were selected as the sires of the next generation [10]. Lambs inherited their line 
(rfi− or rfi+ for the efficient or less efficient lines, respectively) from their sire. 

In 2018, 2019, and 2020, animals following this phenotyping protocol were bred in 6, 
5, and 4 different pens, respectively, each pen being equipped with one automatic concen-
trate feeder (CONC phase). Lambs were grouped based on their body weights recorded 
at the beginning of the adaptation period (i.e., when lambs were about 10 weeks of age). 
After the estimation of the RFI breeding values, the most extreme animals in terms of ge-
netic RFI values were fed a mixed ration distributed by automatic forage and concentrate 
feeders (MIX phase). This second phase was led between weeks 24 and 30 of age in the 
summer (29 animals in 2018, 36 in 2019) or between weeks 32 and 38 of age in the fall (29 
animals in 2018, 35 in 2019, 38 in 2020) due to the limited number of automatic forage 
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feeders available (Figure 7). In total, up to 30 animals were kept per period in 2018, result-
ing in keeping 57% of the animals, and up to 40 animals were kept per period in 2019 and 
2020, resulting in 69% and 52% of the animals being kept, respectively. 

 
Figure 7. Experimental design. Periods marked in red indicate that the feeders were not stopped 
prior to sampling. * Concentrate and forage distributed as a TMR through forage feeders only. 

During the MIX phase, animals were divided into two pens per period. In 2018, each 
pen was equipped with two forage feeders, each delivering the total mixed diet compris-
ing one-third concentrates and two-thirds hay. The total mixed ration was calculated to 
enable a growth of 125 g/day according to INRA standards [36]. In 2019 and 2020, each 
pen was equipped with two forage feeders delivering only forage ad libitum, and one con-
centrate feeder delivering at most 700 g of concentrate per day per animal. This amount was 
chosen to match the consumption of concentrates in the MIX phase in 2018 and represents 
approximately one-third of the ration. As a result, the mean proportions of concentrate in the 
MIX rations in 2019 and 2020 were 34% and 37%, respectively. Animals were housed on litter 
chips to avoid straw consumption that would distort the measured feed intake. 

4.2. Diets 
In the CONC phase, the diet consisted of a 100% concentrate meal made up of beet 

pulp, wheat bran, barley, corn, rapeseed meal, sunflower meal, and pelleted lucerne (880 
gDM/kg, 18.2% crude protein, 10.5% crude fiber, and 2.7% crude fat in 2018 and 0.3% 
crude fat in 2019, on a DM basis) fed through automatic feeders. During the MIX phase, 
the diet consisted of a mixed ration of approximately two-thirds orchard hay (915 
gDM/kg, 6.6% crude protein for 2018 and fall 2019 and 8.6% crude protein for 2019; 37% 
crude fiber in 2018 and 34% crude fiber in 2019) and one-third of a concentrate made of 
wheat, barley, wheat bran, and rapeseed meal (883 gDM/kg, 20% crude protein, 11% crude 
fiber, 4% crude fat on a DM basis). Chemical composition of feed was determined accord-
ing to the procedures of the Association of Official Analytical Chemists (Association of 
Official Analytical Chemists, 1998) [59]; neutral detergent fiber was determined according 
to the procedure of Van Soest et al. (1991) [60]. 

4.3. Traits 
Animals were weighed at the beginning (B-W) and the end (E-W) of each period of 

testing. End metabolic weight (E-MW) was calculated as E-W0.75. The difference between 
B-W and E-W was used to calculate the ADG of each animal during the period of testing. 
MD of longissimus dorsi and BFT were both measured by ultrasound at the end of each period 
of testing. ADFI was determined as the mean of daily cumulative feed intake during the six-
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week period. Phenotypes from the CONC phase are presented with a C subscript and pheno-
types from the MIX phase with an M subscript. Residual feed intake was estimated for each 
diet separately using the following multiple linear regression for phase CONC: 

ADFIC,i = µ + β1(E-WC,i)0.75 + β2ADGC,i + β3MDC,i + β4BFTC,i + RFIC,i 

The period of control effect nested in each year was added as a fixed effect in the MIX 
phase. In this model, metabolic weight is a proxy for maintenance requirements while the 
other parameters are linked to meat production. To deal with the issue of the energy den-
sity of the ration when animals were restricted to 700 g/day of concentrate and allowed 
ad libitum consumption of a less-energetically dense forage, Wilcoxon signed-rank tests 
were performed, comparing the residuals of the above-presented model when the pre-
dicted variable was ADFI, energy total intake, or crude protein total intake. 

4.4. Sampling 
The 277 animals were sampled during the CONC phase (103 in 2018, 101 in 2019, and 

73 in 2020), and 167 were then sampled during the MIX phase (58 in 2018, 70 in 2019, and 
37 in 2020). In practice, feeders were stopped the night before the sampling, resulting in a 
minimum of ten to eleven hours of fasting, and water was stopped 2 h prior to the sam-
pling to avoid an excessive dilution of ruminal content. However, in the CONC phase of 
2019 and the fall period of the MIX phase of 2018, the automatic feeders were not stopped 
(Figure 7). 

Rumen fluid was sampled using an esophageal probe and a pump, transferred to 2 
mL microtubes and immediately frozen into liquid nitrogen. Five microtubes containing 
rumen samples were broken during the freezing process and one did not have enough 
rumen fluid for the protocol. Therefore, three samples from the CONC phase and three 
from the MIX phase were not available for further analysis. 

Blood was sampled at the jugular vein using vacutainer needles and tubes containing 
lithium heparin and centrifuged at 2400× g for 10 min at 4 °C. Plasma was transferred to 2 
mL microtubes and immediately frozen in liquid nitrogen. All samples were transferred 
from liquid nitrogen to −80 °C freezers where they were stored. Two samples, one from 
the CONC phase and one from the MIX phase, were broken during the process and there-
fore not available for subsequent analysis. 

4.5. NMR Analysis 
4.5.1. Chemical Analysis 

Plasma samples both from 2018 and 2019 were prepared at the same time; similarly, 
rumen fluid samples of these two years were prepared at once. Plasma and rumen sam-
ples from 2020 were prepared at the same time. Plasma samples were centrifuged at 3000× 
g for 5 min at 4 °C. Then, 200 µL of the supernatant was transferred to a microtube con-
taining 500 µL of phosphate buffer (pH = 7.0) with 17.2 mg/mL of trimethylsilylpropanoic 
acid (TSP) used as a reference for chemical shift. This mix was then centrifuged for 15 min 
at 4190 g and 4 °C. Finally, 600 µL of the supernatant was transferred to NMR tubes. Ru-
men fluid samples followed the same protocol until the last centrifugation at 4190 g. In 
this step, the supernatant was transferred to another microtube and centrifuged again in 
the same conditions, and finally, 600 µL of the supernatant was transferred to NMR tubes. 
All NMR experiments were performed using the MetaToul-AXIOM platform, a partner 
of the National Infrastructure of Metabolomics and Fluxomics: MetaboHUB (Metab-
oHUB-ANR-11-INBS-0010, 2011). Samples were kept at 300 K while spectra were acquired 
using the cpmgpr1D Bruker pulse program on a Bruker AVANCE III HD 600 MHz NMR 
spectrometer (Bruker Biospin; Rheinstetten, Germany) operating at 600.13 MHz for 1H 
resonance frequency using an inverse detection 5 mm 1H-13C-15N-31P cryoprobe attached 
to a CryoPlatform (the preamplifier cooling unit) with the following parameters: 512 tran-
sient and 16 “dummy” scans using a relaxation time of 2.0 s and an acquisition time of 
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1.36 s, resulting in the acquisition of 32,000 data points. Plasma and rumen samples were 
analyzed in two separate batches. Pre-processing of the spectra (zero order phase correc-
tion, baseline correction, and shift referencing) was performed using the TopSpin® soft-
ware (version 4.0.9) from Bruker (Billerica, MA, United States of America). Shift referenc-
ing was calibrated on TSP in rumen spectra and on D-glucose doublet at 5.24 ppm for 
plasma samples because complexation between proteins and TSP made it unavailable for 
referencing. 

4.5.2. Bioinformatic Analysis 
Pre-processed spectra were finally analyzed with the ASICS (version 2.5.3) R pack-

age, which removed the solvent (water) signals (between 4.5 and 5.1 ppm), normalized 
areas under the spectra to constant sum, and then identified and quantified metabolites 
[61]. Each diet × biological fluid (plasma or rumen) combination was treated in a separate 
analysis. The parameters were the following: noise.thres was set to 0.015 in accordance 
with noise baseline observed in the spectra, max.shift was set to 0.01 in all spectra, and 
clean.thres was set to 50 to keep only the metabolites that were present in at least 50% of 
the samples in each diet × biological fluid combination. 

4.6. Statistical Analyses 
Production traits and metabolite quantifications were corrected using the following 

linear models: 

CONC phase: Y~µ + Year + Pen%in%Year + Fasting + ε (1)

MIX phase: Y~µ + Year + Period%in%Year + Pen%in%Period%in%Year + 
Fasting + ε 

(2)

The fasting fixed effect (2 levels) was introduced to take into account that in one of 
the three years of the CONC phase and one of the five periods of the MIX phase, feeders 
were not stopped prior to sampling (Figure 7). 

Principal component analysis was performed on each metabolomic dataset to iden-
tify potential outliers, resulting in the exclusion of an animal from the CONC phase that 
had atypical plasma and rumen profiles and had barely eaten the two days prior to the 
sampling. As a result, 274 and 273 samples were available for subsequent analyses on 
plasma and rumen metabolites, respectively, during the CONC phase, and 166 and 164 
samples were available for plasma and rumen analysis, respectively, during the MIX 
phase (Table S1). 

Partial least square discriminant analysis (PLS-DA) from the mixOmics R package 
was applied on residuals obtained from the linear models (1) and (2) to examine the links 
between genetic lines and metabolites in rumen or in plasma under each diet [62]. Area 
under the receiver operating characteristic curve (AUROC) was used to select the number 
of components to consider in the discriminant analyses. This method relies on the proba-
bility of correctly classifying a sample in a binary classification system compared to the 
probability of wrongly classifying the sample. A perfect classifier would always correctly 
classify and therefore have an AUROC of 1. An AUROC of 0.5 characterizes a random 
classifier. Validation of the discrimination performance was assessed by the MVA.test 
function from the RVAideMemoire R package, with 10,000 permutations [63]. Then, load-
ings on the first component, being the most discriminant, and variable importance in pro-
jection (VIP) with the optimal number of components according to AUROC taken into 
account were used to determine which variables were the most explanatory. 

Additional PLS-DAs were plotted using phenotypic RFI as groups. The groups were 
formed by excluding individuals whose phenotypic RFI was between mean −0.5 SD and 
mean +0.5 SD. Animals with phenotypic RFI higher than 0.5 SD were considered efficient 
at the phenotypic level and animals with phenotypic RFI lower than 0.5 SD were consid-
ered inefficient at the phenotypic level. These PLS-DAs allowed us to compare genetic RFI 
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and phenotypic RFI in both phases in order to determine if the differences potentially 
identified between the divergent lines were consistent with the phenotypic evaluation. 

Pearson correlation coefficients between metabolites and phenotypes were calcu-
lated within each diet × biological fluid combination, and the Benjamini–Hochberg cor-
rection was applied to the correlations [64]. Pearson correlations between plasma and ru-
men metabolites within each diet were also calculated and submitted to Benjamini–
Hochberg correction. 

Supplementary Materials: The following are available online at https://www.mdpi.com/arti-
cle/10.3390/metabo12040304/s1, Table S1. Metabolites identified and quantified in the four biologi-
cal fluid × diet combinations. For each metabolite, the number of samples in which it has been iden-
tified is expressed followed by the prevalence percentage between parentheses. Figure S1. Discri-
minant analysis of the plasma metabolites measured during the CONC phase according to pheno-
typic RFI groups. Efficient animals are the ones that had a phenotypic RFI between −328 and −75 
g/day, and inefficient animals are the ones that had a phenotypic RFI between 75 and 546 g/day. (A) 
Accuracy of the PLS-DA models assessed using AUROC; red line marks the maximum AUROC 
value obtained with 11 components. (B) Selection of the variables contributing the most to the dis-
criminant analysis using a VIP approach. (C) Loading values assigned to each metabolite on the first 
component of the PLS-DA model; gold and blue represent metabolites associated with efficient and 
inefficient animals, respectively. 
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