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Abstract: Mathematical modeling of metabolic networks is a powerful approach to investigate the
underlying principles of metabolism and growth. Such approaches include, among others, differential-
equation-based modeling of metabolic systems, constraint-based modeling and metabolic network
expansion of metabolic networks. Most of these methods are well established and are implemented
in numerous software packages, but these are scattered between different programming languages,
packages and syntaxes. This complicates establishing straight forward pipelines integrating model
construction and simulation. We present a Python package moped that serves as an integrative hub for
reproducible construction, modification, curation and analysis of metabolic models. moped supports
draft reconstruction of models directly from genome/proteome sequences and pathway/genome
databases utilizing GPR annotations, providing a completely reproducible model construction and
curation process within executable Python scripts. Alternatively, existing models published in SBML
format can be easily imported. Models are represented as Python objects, for which a wide spectrum
of easy-to-use modification and analysis methods exist. The model structure can be manually
altered by adding, removing or modifying reactions, and gap-filling reactions can be found and
inspected. This greatly supports the development of draft models, as well as the curation and
testing of models. Moreover, moped provides several analysis methods, in particular including the
calculation of biosynthetic capacities using metabolic network expansion. The integration with other
Python-based tools is facilitated through various model export options. For example, a model can be
directly converted into a CobraPy object for constraint-based analyses. moped is a fully documented
and expandable Python package. We demonstrate the capability to serve as a hub for integrating
reproducible model construction and curation, database import, metabolic network expansion and
export for constraint-based analyses.

Keywords: metabolic networks; modeling; topological networks; metabolic network expansion;
network reconstruction

1. Introduction

Theoretical analysis of metabolic pathways has a longstanding tradition. The early ap-
proaches to study glycolysis, for example, have considerably increased our understanding
of fundamental regulatory principles in metabolism [1]. In recent approaches, metabolic
modeling was employed to study metabolic interdependencies in microbial communities
and to identify putative drug targets for microbial pathogens [2,3].

Several theoretical techniques to study metabolism have been established. The most
classic technique is the analysis of metabolic networks by representing them as systems of
ordinary differential equations (ODEs). This representation heavily depends on detailed
knowledge of stoichiometries, parameters of enzyme kinetics and regulatory mechanisms
of reactions [4]. This approach is extremely useful for investigating relatively small systems.
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The upsurge of novel high-throughput experimental “omics” techniques led to the collec-
tion of immense amounts of data, resulting in an ever-increasing number of fully sequenced
genomes. The improved quality of annotated genes resulted in a tremendous increase in
information of enzymes and the respective metabolic reactions. This information has been
collected in biochemical databases such as MetaCyc, BioCyc, KEGG or BiGG [5–8]. Such
databases provide information for large-scale metabolic networks of many different organ-
isms. However, analyzing such large-scale metabolic networks using systems of ordinary
differential equations is difficult. This is, to a large extent, due to missing information on
kinetic parameters of the involved enzymatic reactions [9]. One convenient alternative is
constraint-based modeling and its mathematical method flux balance analysis (FBA) [10].
This commonly used approach uses the stoichiometric matrix of a reaction network and
finds a steady-state vector of reaction fluxes that maximizes or minimizes an objective
function that linearly depends on the reaction rates. Other structural analysis techniques
focus on the topology of metabolic networks [11]. One such technique is metabolic network
expansion and the related concept of metabolic scopes. The metabolic scope describes
the set of metabolites, which are topologically producible by a given network from an
initial set of compounds [12,13]. Thus, metabolic network expansion allows to functionally
characterize metabolic networks with respect to their biosynthetic capacities [14].

Topological techniques are extremely useful in the process of curating models, in par-
ticular to identify and add missing reactions [15]. This process, called gap filling, allows,
for example, to complement draft metabolic networks in order to guarantee that observed
compounds can be produced from the growth medium [16].

Many of the techniques described above have been implemented as Python packages.
However, most of these software packages are not directly compatible with each other.

In this work, we present moped, a compact but useful Python package that serves as a
hub, offering tools for analysis, development and extension or modification of metabolic
models. The integration of BLAST and pathway/genome databases such as MetaCyc
and BioCyc into moped allows reconstructing metabolic network models directly from
genome sequences [17] and ensures that the reconstruction process is fully transparent
and reproducible. In addition to the de novo construction of models, moped provides an
interface to import existing metabolic network models in SBML format.

To facilitate curation of metabolic models, moped provides an interface to Meneco,
a topological gap-filling tool based on answer set programming [18]. All models created
with moped can easily be exported as CobraPy objects, thus directly integrating constraint-
based with model construction and modification [19]. It is even possible to extract a
scaffold model of metabolic pathways for kinetic modeling via modelbase [20]. The Python
package moped presented here is a mathematical modeling hub, which allows constructing
reproducible metabolic models de novo, integrating existing models in SMBL format,
curating models by gap filling and performing topological or constraint-based analyses.

2. Implementation
2.1. Model Import, Extension and Modification

moped uses SBML files or PGDB flat files as input for constructing a metabolic network
model. PGDBs are organism-specific pathway/genome databases containing annotated
reactions and compounds of the metabolism of the organism [6]. These databases further
include detailed information about reactions and compounds, such as sum formulas,
charges, references to other database entries or subcellular localization. This information is
of great importance for a consistent analysis of metabolic networks. SBML files represent
metabolic networks in an XML-based format and can be considered as a standard for the
exchange of reconstructed and curated metabolic models between tools and platforms [21].
Such files can be, among others, obtained from databases such as BiGG, which provides
SBML files of curated metabolic models together with information about the corresponding
publications [7].
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Because of the wide range of import methods (FASTA, PGDBs and SBML), one par-
ticular strength of moped is the integration of several analysis tools. An overview of
mopeds functionalities is shown in Figure 1. Furthermore, moped provides an accessible
environment to extend or modify constructed or imported models. Therefore, adding
alternative or additional metabolic pathways to pre-existing models, as well as modifying
compound and reaction identifiers, is simple and straightforward. Naturally, all moped
objects can be exported as SBML. A UML diagram of moped can be found in Figure S1 in
the Supplementary Material.

Figure 1. The modeling hub moped. moped accepts SBML, FASTA files or MetaCyc and BioCyc
PGDBs as inputs. PGDBs and SBML files are directly converted into a moped object. By BLASTing
genome/proteome-sequences against MetaCyc, moped models can be constructed utilizing GPR
rules. Further reconstruction can be achieved using Meneco for gap filling. Topological model
analysis is implemented in moped. For constraint-based and kinetic analysis, moped offers export as
CobraPy and modelbase objects, respectively [19,20].
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2.2. Tools for Metabolic Network Expansion

A useful and valuable feature of moped is the fully implemented network expansion
algorithm to perform metabolic network expansions on moped objects. Metabolic network
expansion can be used to investigate structural properties of metabolic networks, such as
biosynthetic capacities and their robustness against structural perturbations [12]. The core
concept of metabolic network expansion is the metabolic scope, which contains all com-
pounds that are producible by a network from a given initial set of compounds, termed the
seed (see Figure 2). In the expansion process, the seed is used to find all reactions that can
proceed in their annotated direction. The respective products are then added to the seed,
forming the new seed for the next expansion step. This process continues until no new
compounds can be added to the seed. Thus, scopes characterize biosynthetic capacities of
metabolic networks, based exclusively on their topology.

Figure 2. Metabolic network expansion. Beginning with an initial set of compounds, the seed (here
panel 1), the expansion process detects all producible compounds in a network and adds them to the
seed for the next generation until no additional producible compounds are found.

Network expansion depends on a precise definition of reaction reversibilities and
involved cofactors. Network expansion uses the stoichiometry of reactions to identify
producible compounds. However, stoichiometric coefficients of reactions are annotated for
one particular direction. To include the opposite direction (for reversible reactions) into
the metabolic network expansion, moped provides a method for reversibility duplication.
As illustrated in Figure 3 for triose-phosphoisomerase as an example, this method finds
all reversible reactions in a moped object and adds the reversed reaction to the network.
The new reaction identifier is identical to the identifier of the original reaction concatenated
with the suffix ‘ rev ’. This model modification can be reverted if no longer needed.

Many reactions depend on specific cofactors. Cofactors usually appear in pairs. One of
the most prominent examples is the cofactor pair ATP and ADP. In the majority of reactions
with ATP as substrate, ATP serves as a donor of a phosphate group, thus producing ADP.
Only a few reactions actually modify the adenosine moiety (for example, in nucleotide
de novo synthesis). In network expansion, therefore, no reaction utilizing ATP or ADP
as cofactor could proceed, unless these compounds are either included in the seed or can
be produced from metabolites within the seed. If the purpose of network expansion is to
realistically calculate a set of producible compounds, this behavior is not desired because it
leads to a drastic underestimation of the scope. The most naive approach to directly include
cofactors in the seed yields misleading results, because in such a case, all compounds that
can be generated from digesting, e.g., ATP would be included in the scope.

A pragmatic approach to solve this problem is the duplication of cofactors as proposed
in [12]. Here, reactions with cofactor pairs are duplicated, where the copied reactions
contain “mock cofactors”. In contrast to the real cofactors, the mock cofactors only occur
in reactions, in which they act in their role as cofactors. For ATP, this is the transfer of
a phosphate group, for NADH or NADPH the transfer of protons and electrons and for
acetyl coenzyme-A, the transfer of the acetyl group. The cofactor duplication allows the
use of mock cofactors inside the initial seed. Reactions depending on cofactors might now
be able to occur in the expansion process. However, reactions using the cofactors as proper
substrates can only occur if the real cofactor can be produced from the seed.

moped provides a convenient method for finding and duplicating all reactions using
cofactor pairs. The cofactor pairs can either be automatically determined by moped for
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networks imported from BiGG or MetaCyc (see Table S1 and S2 in the Supplementary
Material) or they can be declared individually by the user. The identifiers of the duplicated
cofactors are replaced by mock identifiers, which contain the suffix ‘ cof ’. The same
modification is applied to the respective reaction identifiers. This model modification can
be reverted if no longer needed.

The implemented methods for cofactor and reversibility duplication are commonly
used to obtain biologically meaningful results for metabolic network expansion. How-
ever, they are also highly useful for topological gap-filling using Meneco, during model
reconstruction. This is further explained in the next section.

Figure 3. Topological network modifications moped offers functions for splitting reversible reactions
into forward and backward reactions in a network. Adding a copy of each cofactor dependent
reaction and replacing cofactors (here ATP and ADP) with mock identifiers allows unblocking
cofactor dependent reactions while avoiding degradation products of cofactors contained in the seed.
Such modifications enable biologically feasible metabolic network expansion.

2.3. Reconstruction of Draft Network Models

Construction of metabolic networks highly depends on reliable databases. In order
to enable user-friendly metabolic network reconstruction, moped includes methods for
importing data from the MetaCyc and BioCyc databases, identifying homologous sets of
genes with BLAST and gap-filling.

MetaCyc is a universal, highly curated reference database of metabolic pathways
and biochemical reactions from all domains of life. BioCyc is a database of organism-
specific PGDBs containing metabolic network information based on predictions by the
PathoLogic component of the Pathway Tools software [22,23]. The MetaCyc and BioCyc
databases provide many advantages. Both databases are freely available for academic
and nonprofit users. All PGDBs are available in useful flat file formats. Furthermore,
these databases include information on the reaction directions based on experimental
references and thermodynamics, extensive annotations and, therefore, information about
gene–protein–reaction (GPR) associations, as well as thermodynamic information about
metabolites and reactions such as the Gibbs energy of formation and the standard Gibbs
energy of reactions.

In order to use BioCyc and MetaCyc for metabolic network construction and analysis,
moped offers a parser for PGDBs, allowing direct construction of moped objects from
MetaCyc or BioCyc flat files. moped objects can directly be used for network analyses
including network expansion and constraint-based modeling. Especially for the latter, it
is extremely important that all reactions are mass- and charge-balanced to ensure that all
solutions obey mass conversation. Therefore, only reactions which are mass- and charge-
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balanced are parsed in moped. While this process has the danger of omitting annotated
genes, including reactions that are not mass- or charge-balanced would violate fundamental
physical principles and lead to unrealistic model properties. This pipeline provided by the
database import and parsing of moped makes it straightforward to construct prokaryotic
network models. For eukaryotic metabolic networks, however, intensive and careful
curation is required due to missing compartment information. More detailed information
about the parsing of PGDBs using moped can be found in the documentation.

There exist several pipelines to automatically extract a set of metabolic reactions from
a genome or proteome sequence. One popular pipeline is the above mentioned PathoLogic
software. moped integrates such a pipeline into the Python programming language, directly
converting a genome/proteome sequence into a moped object that can be immediately used
for modeling applications. This functionality is provided by an implemented wrapper for
local BLAST to find enzyme reactions in genome sequence fasta files or proteome fasta files
by similarity search against enzyme reference sequences from the MetaCyc database. This
method constructs a new moped object representing a metabolic network of all reactions
that are found in a genome sequence or proteome using enzyme monomer amino acid
sequences and protein–reaction annotations from MetaCyc to ensure fulfilled gene–protein–
reaction associations (GPRs) in all found reactions [24]. This process can be controlled by
user-defined thresholds. This integrated pipeline makes the model reconstruction perfectly
reproducible and illustrates the functionality of moped as a modeling hub.

The next curation step after the initial automatic network construction is usually
gap-filling. This describes a process in which reactions are added to the network in order
to ensure that the reconstructed model reflects experimentally observed behavior, such
as the production of experimentally measured compounds from the growth medium [25].
There are many available gap-filling methods such as GapFill or MIRAGE [26,27]. Most
of these methods are based on constraint-based approaches. A common problem is that
these approaches can predict gap-filling solutions that use thermodynamically infeasible
cycles. In this sense, these approaches are sensitive to self-producing or energy-generating
cycles [18]. Meneco, in contrast, is a topological gap-filling tool based on the network
expansion algorithm. Meneco calculates a minimal set of reactions that need to be added to
a draft network such that a specified list of target compounds can be produced from a given
set of seed compounds. This gap-filling approach offers the advantage that it is inherently
impossible for gap-filling solutions to depend on infeasible cycles. Meneco gap-filling can
be directly applied as a method to moped objects. One moped object represents the draft
network and a second the repair network, from which the added reactions are chosen.

The topological network modifications, i.e., reversibility and cofactor duplication,
harmonize ideally with the application of Meneco, resulting in networks with biologically
realistic behavior. This again illustrates the integrative nature of the modelling hub moped.
For an accurate manual curation, automatically determined gap-filling reactions should
always be manually inspected before adding them to the network model.

A major advantage and distinguished feature of moped is the complete reproducibility
of the construction of draft models, which is much needed in systems biology, and the
subsequent manual curation [28]. In moped, the user can add and remove reactions, or even
entire pathways, from draft networks. Furthermore, the user can inspect the reactions
found by Meneco to fill gaps and decide if these reactions are valid for specific models.
All user decisions become part of an executable Python script, making them perfectly
reproducible by others. This underlines that in moped, early curation can be integrated
closely into the draft model reconstruction process. The importance of such reproducibility
and traceability has recently been highlighted [29]. To our knowledge, this feature is
unique to is unique to moped and is not yet found in any other reconstruction software.
For constraint-based modeling, the user can define which exchange reactions are to be
included and, if desired, define their own specific objective functions. moped offers a
template biomass function which is based on the iJO1366 and iML1515 biomass functions
(see Table S3 in the Supplementary Material); however, users should be encouraged to



Metabolites 2022, 12, 275 7 of 12

design their own specific and precise biomass function for their models as a part of correct
manual curation. Reconstructing draft networks in moped lays the ground for model
curation without the need to change software environments. In all reconstruction and
curation steps, user decisions are documented as commands in an executable Python script,
thus making them fully reproducible and transparent.

3. Results
3.1. Displaying the Advantage of Cofactor Duplications in Topological Network Analysis

To display the benefits of including the moped cofactor duplication, three established
models of E. coli, B. subtilis and Synechocystis sp. PCC 6803 have been parsed into moped
for a comparative metabolic network expansion [30–32]. In this analysis, we calculated all
single metabolite scopes (i.e., the scopes for the seed consisting only of a single metabolite
and water) for the respective models. This has been done in three variations: (i) including
no cofactors to the seed, (ii) including the original cofactor compounds and (iii) including
on the mock cofactors resulting from cofactor duplication (see above). Figure 4 displays
the scope sizes (number of compounds contained in the scope) for each model and each
variant to calculate the scopes. Apparently, without cofactors, the scopes are small for most
compounds (blue lines). This can be explained by the missing connectivity for reactions
that require cofactors. The analysis including the actual cofactor compounds in the seed
(orange lines) displays an unrealistically large metabolic scope for every compound, even
for inorganic metabolites. This can be explained by the fact that cofactors are usually
rather complex metabolites, and now all degradation processes are included during the
network expansion. Therefore, the resulting metabolic scopes are no longer reflecting
the property of the compound of interest but rather the degradation products of the
metabolized cofactor compounds. The corresponding analysis of models using cofactor
duplication and mock cofactors duplicates in the seed (green lines) demonstrates that for
small or inorganic metabolites, the scope is still relatively small. For more complex organic
compounds, the metabolic scope is increasing without artificially increasing the scope
size with degradation products of cofactors. This demonstrates the perks of including
cofactor duplication and mock cofactors in seeds for biologically more realistic metabolic
network expansions.
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Figure 4. Metabolic scopes in established models of E. coli (iML1515), B. subtilis (iYO844) and
Synechocystis sp. PCC 6803 (iSynCJ816). The differently colored graphs represent the same analysis
but including no cofactors, actual cofactors and cofactor duplicates in the seed.

3.2. Applying Metabolic Network Expansion to a Model of E. coli Core Metabolism

We illustrate moped’s metabolic network expansion algorithm with a compact net-
work of E. coli core metabolism, which is freely available in SBML format from the BiGG
database [33]. After importing the SBML file into moped, we applied cofactor and re-
versibility duplications as described above.

For each metabolite in the network, we calculate the scope size, i.e., how many new
compounds are producible if only this metabolite, water and a set of mock cofactors are
available. The results of that analysis are displayed in Figure 5. In this relatively small
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metabolic network (72 metabolites and 95 reactions), eleven key compounds, which are
mostly part of central metabolism, exhibit a largest observed scope size of 47. Such detailed
metabolic network expansion is useful to provide insight about central metabolites, as well
as structural and functional characteristics of metabolic networks [14]. Whereas we here
only display the scope size, the methods implemented in moped allow a far wider
spectrum of analysis methods, including determination the set of producible metabolites,
as well as following each step of the expansion process. The code used to produce
the results and Figure 5 can be found on https://gitlab.com/marvin.vanaalst/moped-
publication-2021/-/tags/final-publication, accessed on 13 December 2021.

Figure 5. Metabolic scopes of all compounds in the E. coli core metabolic model calculated using
moped. The Y-axis indicates the total amount of compounds producible from every compound,
water and a set of acceptor mock cofactors.

3.3. Comparison of Draft Reconstructions with Established Models and Softwares

We demonstrate how moped provides a complete and easy-to-use pipeline to construct
genome scale models from genome and proteome sequences and how these models can be
directly applied for constraint-based analyses. For this, we download the freely available
proteome sequences of Escherichia coli str. K-12 substr. MG1655, Synechocystis sp. PCC
6803 and Bacillus subtilis strain 168 [34–36]. We import the MetaCyc PGDB to construct
a moped object of the MetaCyc database as a reference network. Applying the BLAST
wrapper, which was described above, to the FASTA files and the reference network, we
obtained three moped objects, representing the draft network reconstructions. Then, we
applied gap filling to ensure that the reconstructed models can produce all basic biomass
compounds (inspired by the E. coli biomass reaction from iJO1366 [37], including all nucleic
acids, amino acids and lipid precursors) from M9 minimal glucose medium. For this
analysis, we directly accepted all resulting gap-filling reactions. For a more accurate
reconstruction, the proposed gap-filling reactions should be manually inspected before
addition to the draft model. We added exchange reactions for all medium compounds
and tested if the draft models can exhibit a stationary flux distribution to produce biomass,
as determined by flux balance analysis. The construction of these models can be reproduced
using the notebooks provided on our accompanying git.

In order to test the quality of our draft models, we compared them with established
models for the respective organisms (iML1515, iYO844 and iSynCJ816) [34–36]. Further-
more, we used the same dataset and medium to construct draft models with the established
genome scale modeling reconstruction software CarveMe [38]. In order to quantitatively
compare all three versions of the organism network reconstructions, we used metabolic
model testing (MEMOTE) pipeline to establish a fair and reproducible comparison [39].

https://gitlab.com/marvin.vanaalst/moped-publication-2021/-/tags/final-publication
https://gitlab.com/marvin.vanaalst/moped-publication-2021/-/tags/final-publication
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MEMOTE calculates scores for genome scale metabolic models to evaluate the stoichiomet-
ric consistency, the GPR rules and the quality of annotations for reactions and metabolites
in the respective models. A summary of the MEMOTE evaluations for the three models
for the three organisms is presented in Figure 6. The MEMOTE evaluation shows that the
stoichiometric consistency of draft models produced by moped is always of high quality.
Figure 6 shows that draft models reconstructed by CarveMe and moped display generally
good overall scores and annotations. While CarveMe draft model reconstructions show
the tendency to provide better reaction annotations, moped draft model reconstructions
display a generally better annotation of genes and GPR rules.

Overall

Consistency

Met Annotation

Rxn Annotation

Gene Annotation

SBO Annotation
0.33

0.66

1

E. coli

iML1515
CarveMe
Moped

Overall

Consistency

Met Annotation

Rxn Annotation

Gene Annotation

SBO Annotation
0.33

0.66

1

B. subtilis

iYO844
CarveMe
Moped

Overall

Consistency

Met Annotation

Rxn Annotation

Gene Annotation

SBO Annotation
0.33

0.66

1

Synechocystis PCC 6803

iSynCJ816
CarveMe
Moped

Figure 6. MEMOTE evaluations for draft model reconstructions produced by CarveMe and moped,
as well as established models, for E. coli, Bacillus subtilis and Synechocystis sp. PCC 6803. MEMOTE
evaluations include the stoichiometric consistency and the annotation level of models.

The functionality and predictive power of draft models constructed by moped has
been compared for Escherichia coli str. K-12 substr. MG1655 with a similarly constructed
draft model using CarveMe, and the iML1515 model. For this analysis, the models auto-
matically constructed moped and CarveMe were analysed without further modification.
We calculated maximal growth rates, respective ATP production rates and exchange fluxes
for compounds in the medium. Furthermore, we calculated optimal production rates
for amino acids and nucleic acids. These model functionalities have been compared to
the predictions of iML1515. Figure 7A displays the predicted fluxes of the draft models
constructed by moped and by CarveMe relative to the predictions of iML1515. In the
radar plots, the relative distance is indicated. For two flux values v1 and v2, the distance
min(v1/v2, v2/v1) is plotted. The draft model constructed with moped shows a higher
similarity to the behaviour of iML1515 in almost all functionalities, especially in oxygen
uptake rate, ATP production rate and nucleic acid synthesis. Some discrepancies between
the model behaviours can be linked to slightly differing biomass compositions and lower
bounds for exchange fluxes. In order to reduce such bias, we performed the same analysis
but with such adjustments that biomass compositions and all lower and upper bounds are
identical. Extended MEMOTE evaluations can be found in Figure S2 in the Supplementary
Material. Figure 7B shows that now draft models produced with moped and CarveMe
exhibit very similar behaviour to iML1515 in all functionalities, except in nucleic acid
synthesis, in which moped draft models are more similar to iML1515. The overlap of GPR
annotations of the draft model constructed with moped and iML1515 is shown in Figure 7C.
The vast majority of genes in the draft model constructed with moped can be found in
iML1515 and therefore illustrates the quality of the automated reconstruction. This analysis
has only been performed with the draft model constructed with moped because the draft
model constructed with CarveMe and iML1515 do not share any common database links.
These results shows that draft model reconstructions made with moped exhibit a high
quality that is able to keep up with the quality of established models and software tools.
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(A)
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132 4441072

Moped iML1515

Figure 7. Functional comparison of the draft model reconstructions using moped and CarveMe with
iML1515. We calculated maximal growth rates, respective ATP production rates and exchange fluxes
for compounds in the medium, as well as optimal production rates for amino acids and nucleic
acids for completely unmodified draft models (A) and models with identical biomass functions and
reaction bounds (B). In the radar plots, the relative distance between the two values are reported.
Panel (C) shows the overlap of GPR annotations found in the draft model constructed with moped
and iML1515.

4. Conclusions

Here, we present moped, a Python package representing a hub connecting the con-
struction, modification and curation of genome scale metabolic networks with various
analysis methods, which support studies of metabolic networks. moped supports the de
novo construction of metabolic networks by importing databases, providing homology
searches, including GPR associations and integrating an established gap-filling routine
without the need to change software environments. Existing models from external sources
can be imported using the standardized format SBML. Metabolic network models are
represented as moped objects, which can be modified by easy-to-use and intuitive methods.
moped models can be exported into various formats, thus integrating a diverse set of
established analysis tools. Metabolic network expansion and constraint-based optimization
can be easily performed for any model represented as a moped object.

Examination of moped draft model reconstructions using MEMOTE demonstrated
that the resulting models are generally of a high quality. The strength of draft model
reconstructions with moped is the direct integration into the Python programming lan-
guage: Every decision in the automatic and manual reconstruction process is documented
in executable Python scripts. Therefore, the whole reconstruction process becomes fully
transparent and is easily reproducible by any interested user.

The modular architecture of the open source package moped is particularly designed
for allowing further extensions to enhance its functionality, such as the integration of
additional software tools. We provide an extensive documentation for moped, as well as
troubleshooting guides, unit-tests for all provided methods and example notebooks illustrat-
ing the usage of moped at https://gitlab.com/marvin.vanaalst/moped-publication-2021
(accessed on 13 December 2021).
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Table S2: Cofactor pairs of BiGG identifiers, Table S3: Default biomass composition
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