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Abstract: Cell cultured-based influenza virus production is a viable option for vaccine manufacturing.
In order to achieve a high concentration of viable cells, is requirement to have not only optimal process
conditions, but also an active metabolism capable of intracellular synthesis of viral components.
Experimental metabolic data collected in such processes are complex and difficult to interpret, for
which mathematical models are an appropriate way to simulate and analyze the complex and dynamic
interaction between the virus and its host cell. A dynamic model with 35 states was developed in this
study to describe growth, metabolism, and influenza A virus production in shake flask cultivations
of suspension Madin-Darby Canine Kidney (MDCK) cells. It considers cell growth (concentration
of viable cells, mean cell diameters, volume of viable cells), concentrations of key metabolites
both at the intracellular and extracellular level and virus titers. Using one set of parameters, the
model accurately simulates the dynamics of mock-infected cells and correctly predicts the overall
dynamics of virus-infected cells for up to 60 h post infection (hpi). The model clearly suggests that
most changes observed after infection are related to cessation of cell growth and the subsequent
transition to apoptosis and cell death. However, predictions do not cover late phases of infection,
particularly for the extracellular concentrations of glutamate and ammonium after about 12 hpi.
Results obtained from additional in silico studies performed indicated that amino acid degradation
by extracellular enzymes resulting from cell lysis during late infection stages may contribute to this
observed discrepancy.

Keywords: dynamic model; metabolism; glycolysis; tricarboxylic acid cycle (TCA); metabolomics;
influenza A virus; MDCK cells; virus replication; modeling

1. Introduction

Seasonal influenza epidemics and global pandemics can have a significant economic
impact on societies and result in a very high death toll. It is only due to the availability of
vaccines and antivirals that more severe consequences can be averted, as seen in the current
COVID-19 outbreak. The majority of influenza vaccines are still produced in embryonated
hens’ eggs. However, to overcome certain disadvantages of this production system and
to meet rising demands, various cell culture-derived vaccine manufacturing processes
have been established [1] and key aspects regarding the pros and cons of both production
systems have been studied [2–5]. Madin-Darby canine kidney (MDCK) cells are one of the
substrates used for production of influenza A virus (IAV) [6–8]. Typically, this continuous
cell line is cultivated and infected with IAV near the end of the exponential cell growth
phase with a low multiplicity of infection (moi). The virus replicates intracellularly after
entering the cells, and the first virions are released approximately 4–6 h post infection
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(hpi). The virus yield in cell cultures is influenced by a variety of factors including the cell
substrate used, the cell concentration at time of infection, moi, medium composition and
pH value [1]. In comparison to other cell culture-based processes, most notably large-scale
recombinant protein production with bioreactor harvests in the gram per liter range, typical
virus yields are rather low. Due to the complexity of virus–host cell interaction, numerous
explanations and hypotheses exist regarding these low cell-specific virus yields (CSVY).
These include the interferon-mediated antiviral response, a high rate of cell death as a
result of virus-induced apoptosis and rapid cell degradation [9–17] as well as numerous
host cell factors [18,19]. Recently, it was demonstrated that by combining model-based
analysis with experimental data collected on genetically engineered cells, it is possible to
investigate the effect of selected host cell factors on individual virus replication steps and
to predict measures to increase virus yields [20]. So far, the majority of studies performed
to improve virus production processes focused on cell metabolism since the synthesis of
viral components requires precursors and energy from the host cell. Quantitative changes
in extracellular metabolite concentrations observed during the progression of infection for
several viruses, including IAV, included changes in glucose consumption, lactate production
and ammonium release, among other effects [21–25]. These changes have been primarily
attributed to cell growth arrest, virus-induced apoptosis, breakdown of intracellular carbon
and energy metabolism, and cell damage [21,25]. While some viruses appear to induce
changes in aerobic glycolysis, many viruses also seem to stimulate fatty acid synthesis
or influence amino acid metabolism, i.e., glutaminolysis—most likely to meet specific
virus replication requirements [26]. Nevertheless, the cumulative effect of these changes
on virus yields is still poorly understood. Additionally, it is largely unclear whether the
metabolic changes observed during virus production in cell culture are caused directly by
virus-specific mechanisms or are influenced indirectly by the transition of infected cells
to apoptosis and cell lysis. Even for cultivations infected with low moi of IAV, changes
are observed as early as 6–8 hpi. These changes include a rapid decrease in viable cell
concentration and a decrease in the average cell-specific volume, as well as changes in
substrate consumption, metabolic by-product release, and in cell death rate.

Quantitative studies on the impact of virus infections on cell growth and metabolism
require comprehensive sets of experimental data, ideally collected for both infected and
mock-infected cells. This includes viable cell counts, cell size and viability, extracellular
substrates and metabolic by-products, and, ideally, intracellular metabolite concentrations
and enzyme activity measurements. The establishment of dynamic mechanistic models
is crucial for evaluating such complex and high-dimensional data [27]. Typically, these
models are composed of a set of ordinary differential equations (ODEs) with defined initial
conditions that make biologically plausible assumptions about cell growth, metabolism
and infection kinetics [28,29]. In particular, the formulated mathematical relationships
should establish a direct link between experimental data and cellular behavior [30–32]. This
enables the identification of complex mechanisms underlying the metabolic network [33].
Additionally, such models can be used for simulation, prediction and optimization studies
for process design and optimization [34]. In this instance, the developed models should
enable a detailed analysis of cell growth and changes in the central carbon and energy
metabolism of both mock-infected and infected cells. Based on this, a deeper understanding
of the direct and indirect impact of virus replication on its host cells can be obtained.
Furthermore, possible bottlenecks can be identified to take measures to increase cell-specific
or overall virus yields. Despite their usefulness, such modeling approaches frequently face
limited data availability and computational constraints [35–37] and should be combined
with other omics measurements [38] and hybrid approaches that complement what is
mechanistically known [39] in order to confirm identified hypotheses. Nevertheless, various
complex models describing cellular metabolism have been implemented for E. coli and
yeasts [40–42]. For animal cells, fewer dynamic large-scale models have been established
that describe not only cell growth but also the central carbon and energy metabolism. Often,
the latter are limited to either glycolysis [43–45] or tricarboxylic acid cycle (TCA) [46,47] and
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only few attempts have been made to incorporate aspects of virus replication. Regarding
the latter, the majority of modeling approaches have focused on estimation of cellular
resources required for virus production [48] or on metabolic flux analysis [49–51].

In this study, a dynamic mathematical model was established for IAV production in
suspension MDCK cells, which combines a segregated cell growth model with a structured
model of intracellular metabolism. The model structure is based on a previous approach es-
tablished for a human designer cell line (AGE1.HN) [52], and takes into account additional
aspects related to IAV propagation. Only few aspects of the intracellular metabolic network
relating to lactate and ammonium accumulation as well as some enzyme kinetics were
modified. The model is composed of 35 ODEs that account for cell growth (concentration
of viable cells, mean cell diameter, volume of viable cells), virus production (virus titer) and
concentrations of key metabolites both at the intracellular and extracellular level. The ma-
jority of model parameters were estimated using experimental data from a mock-infected
culture. Using the identified set of parameters and specific initial conditions for each exper-
iment, model simulations accurately captured the overall dynamics of the mock-infected
culture and largely predicted the dynamics of the cultivation where cells were infected.
For the first 24 hpi, IAV infection seemed to have a negligible effect on the intracellular
metabolism, with the majority of changes in metabolic rates occurring as a direct result of
cell growth arrest, virus-induced apoptosis, cell damage and cell lysis. A few notable excep-
tions were the dynamics of glutamate and ammonium release at later infection time points
(12 hpi). In essence, findings based on model simulations indicate that IAV infection has
only a minor impact on central carbon metabolism and energy metabolism of suspension
MDCK cells. The majority of metabolic changes seem to be directly related to cessation of
cell growth and the subsequent transition to apoptosis and cell death. Additional in silico
studies were conducted to investigate reasons for the discrepancy between experimental
data and model simulations for glutamate and ammonium during late infection phases.

2. Results and Discussion

The model used was based on a dynamic model for suspension AGE1.HN cells
used for recombinant protein production established by Ramos et al. [52]. It combines a
segregated cell growth model with a structured model of the central carbon metabolism
taking into consideration the viable cell concentration, mean cell diameter, viable cell
volume, concentration of extracellular substrates and intracellular concentrations of key
metabolites from the central carbon and energy metabolism. This model describes the
dynamic of several metabolites, which requires the kinetic descriptions of various enzymes,
increasing its biological relevance and also its overall complexity. The robustness of this
modeling approach is demonstrated by using the same set of parameters to describe stirred
tank bioreactors batch cultivations at different scales. Additionally, the model allowed
detailed in silico studies to link intracellular rates to physiological states of the cell. In this
study, this modeling approach was transferred to describe the growth of suspension MDCK
cells used in IAV vaccine production and extended to assess the impact of IAV replication
on cellular metabolism. As expected, changing the cell line, the cultivation medium and the
operation mode from stirred tank to shake flask required specific changes in the previously
established model. Furthermore, virus production (virus particle accumulation in the
supernatant) and virus-induced cell death had to be considered. In addition, with the
introduction of new states in the structured part of the model relating to central carbon
and energy metabolism, various reactions/transporter kinetics had to be modified. For a
detailed description of the extended model, please refer to the model definition section in
the supplement (Supplementary File S1).

2.1. Simulation of Cell Growth and Virus Production

After inoculation with 7.6 × 105 cells/mL, cell concentrations increased exponentially
in both shake flask cultivations (Figure 1), reaching a maximum cell growth rate (µmax) of
0.0025 h−1 (Figure 1(A1,A2)). The first cultivation (Cultivation 1, mock-infected) reached a
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maximum cell concentration of 9.47 × 106 cells/mL at around 130 h before cells began to die
due to substrate depletion. The second cultivation (Cultivation 2, infected) reached a cell
concentration of 2.1 × 106 cells/mL at around 48 h and was infected with IAV at moi = 10
(infectivity based on TCID50 assay). As soon as 3 hpi, cell concentrations, mean diameter of
cells and consequently viable cell volumes started to decrease. In comparison, the mean cell
diameters of Cultivation 1 decreased only gradually from a maximum of 14 µm (around
22 h post inoculation) to 11 µm (end of cultivation, Figure 1B). Similar findings for changes
in the mean cell diameter of mock-infected cultures have been reported for adherent MDCK
cells [45,53,54] and other suspension cell lines [52], though to a lesser degree. Overall,
model simulations effectively reproduced the dynamics of cell concentrations, mean cell
diameters and viable cell volumes for both mock-infected and infected cells. Accordingly,
it can be safely assumed that the segregated model and the structured model were linked
with good accuracy. The model simulations for both cultivations cover changes in the
mean cell diameter of about 20%, resulting in up to 50% variation in the mean cell-specific
volume (Vc

s , Equation (9) in Supplementary File S1) and up to a 40% variation in volumetric
enzyme activities (Equation (2) in Supplementary File S1). These changes are consistent
with previous findings for lower volumetric enzyme activities during exponential cell
growth compared to later cultivation phases for adherent MDCK cells [45,55] and other
suspension cell lines [56].

Metabolites 2022, 12, x FOR PEER REVIEW 5 of 29 
 

 

 
Figure 1. Dynamics of cell growth in mock-infected and infected suspension MDCK cells. (A1,A2) 
Viable cell concentration, (B1,B2) mean cell diameter and (C1,C2) total volume of viable cells. Data 
and error bars represent the mean and standard deviation of technical triplicates for two independ-
ent experiments (mock-infected Θ and infected ∆). Lines: model simulations. Vertical blue lines cor-
respond to 0, 12 and 24 h post infection. Experimental data used for parameter estimation: A1, B1, 
C1 (see Supplementary File S4 and S5). 

Staining with a monoclonal antibody directed against the IAV nucleoprotein (NP) 
demonstrated that all cells in Cultivation 2 were infected concurrently, as expected for an 
infection with moi = 10 (Figure 2A). Viral ribonucleoproteins (vRNP) accumulated 
strongly in the cell nucleus after infection (Figure 2B). Shortly after (1.8 hpi), the percent-
age of vRNP dropped to about 31% (Figure 2B), indicating the export of viral genomes to 
the cytoplasm for budding and virus release. In the supernatant of Cultivation 2, first vi-
rions could be quantified by the HA assay at around 6 hpi and they reached a maximum 
of 10.24 log10(virions/mL) at 24 hpi (Figure 2C). The percentage of apoptotic cells started 
to increase at around 12 hpi (Figure 2D). Model simulations accurately describe the in-
crease in number of infected cells and increase in the total number of virions. 

Figure 1. Dynamics of cell growth in mock-infected and infected suspension MDCK cells. (A1,A2)
Viable cell concentration, (B1,B2) mean cell diameter and (C1,C2) total volume of viable cells. Data
and error bars represent the mean and standard deviation of technical triplicates for two independent
experiments (mock-infected

Metabolites 2022, 12, x FOR PEER REVIEW 5 of 29 
 

 

 
Figure 1. Dynamics of cell growth in mock-infected and infected suspension MDCK cells. (A1,A2) 
Viable cell concentration, (B1,B2) mean cell diameter and (C1,C2) total volume of viable cells. Data 
and error bars represent the mean and standard deviation of technical triplicates for two independ-
ent experiments (mock-infected Θ and infected ∆). Lines: model simulations. Vertical blue lines cor-
respond to 0, 12 and 24 h post infection. Experimental data used for parameter estimation: A1, B1, 
C1 (see Supplementary File S4 and S5). 

Staining with a monoclonal antibody directed against the IAV nucleoprotein (NP) 
demonstrated that all cells in Cultivation 2 were infected concurrently, as expected for an 
infection with moi = 10 (Figure 2A). Viral ribonucleoproteins (vRNP) accumulated 
strongly in the cell nucleus after infection (Figure 2B). Shortly after (1.8 hpi), the percent-
age of vRNP dropped to about 31% (Figure 2B), indicating the export of viral genomes to 
the cytoplasm for budding and virus release. In the supernatant of Cultivation 2, first vi-
rions could be quantified by the HA assay at around 6 hpi and they reached a maximum 
of 10.24 log10(virions/mL) at 24 hpi (Figure 2C). The percentage of apoptotic cells started 
to increase at around 12 hpi (Figure 2D). Model simulations accurately describe the in-
crease in number of infected cells and increase in the total number of virions. 

and infected

Metabolites 2022, 12, x FOR PEER REVIEW 7 of 29 
 

 

good description of the dynamics of glucose, pyruvate and glutamine not only during the 
first 24 h post inoculation, but also during later phases. 

 
Figure 3. Dynamics of extracellular substrates and metabolic by-products in mock-infected and in-
fected suspension MDCK cells. (A1,A2) Glucose, (B1,B2) lactate, (C1,C2) glutamine, (D1,D2) 
ammonium, (E1,E2) pyruvate, and (F1,F2) glutamate. Data and error bars represent the mean and 
standard deviation of technical triplicates for two independent experiments (mock-infected Θ and 
infected ∆). Lines: model simulations. Vertical blue lines correspond to 0, 12 and 24 h post infection, 
respectively. The grey dashed lines indicate the limit of quantification for each metabolite and grey 
data points are under the limit of quantification. Experimental data used for parameter estimation: 
A1, B1, C1, D1, E1 and F1 (see Supplementary File S4 and S5). 

The concentration of extracellular lactate (Figure 3B) increased in the bioreactor until 
glucose was depleted. As previously reported for MDCK cells [57,58], the stoichiometric 
ratio of lactate to glucose was approximately 1:1 for both cultivations. Typically, in con-
tinuous cell lines, the majority of glucose is converted to pyruvate via glycolytic enzymes, 
which in turn is converted to lactate to regenerate NAD+ to maintain a high ATP genera-
tion rate [59,60]. The previous model used lumped reaction to describe extracellular lac-
tate production directly from intracellular pyruvate [52]. However, in this study, to better 
describe the extracellular lactate dynamics, lactate metabolism had to be considered in 

). Lines: model simulations. Vertical blue lines corre-
spond to 0, 12 and 24 h post infection. Experimental data used for parameter estimation: A1, B1, C1
(see Supplementary Files S4 and S5).



Metabolites 2022, 12, 239 5 of 27

Staining with a monoclonal antibody directed against the IAV nucleoprotein (NP)
demonstrated that all cells in Cultivation 2 were infected concurrently, as expected for an
infection with moi = 10 (Figure 2A). Viral ribonucleoproteins (vRNP) accumulated strongly
in the cell nucleus after infection (Figure 2B). Shortly after (1.8 hpi), the percentage of
vRNP dropped to about 31% (Figure 2B), indicating the export of viral genomes to the
cytoplasm for budding and virus release. In the supernatant of Cultivation 2, first virions
could be quantified by the HA assay at around 6 hpi and they reached a maximum of
10.24 log10(virions/mL) at 24 hpi (Figure 2C). The percentage of apoptotic cells started to
increase at around 12 hpi (Figure 2D). Model simulations accurately describe the increase
in number of infected cells and increase in the total number of virions.
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2.2. Simulation of Substrate and Metabolic By-Product Dynamics

The substrates and metabolic products considered in this study were glucose, lactate,
glutamine, ammonium pyruvate and glutamate (Figure 3). Extracellular glucose (Figure 3A)
was rapidly consumed until depletion approximately 144 h after Cultivation 1 was inocu-
lated (Figure 3(A1)). Glutamine and pyruvate were consumed even faster and depleted at
around 100 h (Figure 3(C1,E1)). Similar to other suspension cell lines, glucose depletion
occurred concomitantly with the onset of the cell death phase of the mock-infected cells
(Figure 1(A1)), confirming its critical role as a key substrate. For Cultivation 2, which was
infected at around 48 h post inoculation, the cells initially consumed glucose at a similar
rate as for Cultivation 1 (mock-infected), but consumption ceased as virus replication
progressed, which subsequently led to cell death (Figures 1(A2) and 3(A2)). Notably, model
simulations using the same set of parameters for both cultures allowed a good description
of the dynamics of glucose, pyruvate and glutamine not only during the first 24 h post
inoculation, but also during later phases.

The concentration of extracellular lactate (Figure 3B) increased in the bioreactor until
glucose was depleted. As previously reported for MDCK cells [57,58], the stoichiometric
ratio of lactate to glucose was approximately 1:1 for both cultivations. Typically, in contin-
uous cell lines, the majority of glucose is converted to pyruvate via glycolytic enzymes,
which in turn is converted to lactate to regenerate NAD+ to maintain a high ATP generation
rate [59,60]. The previous model used lumped reaction to describe extracellular lactate
production directly from intracellular pyruvate [52]. However, in this study, to better
describe the extracellular lactate dynamics, lactate metabolism had to be considered in
greater detail. In particular, it was assumed that intracellular lactate is produced via lactate
dehydrogenase (LDH) in a reversible reaction, and an equation was added (Equation (61)
in Supplementary File S1) to connect intracellular lactate to its extracellular form. LDH
is a highly regulated enzyme with a very fast turnover. Additionally, depending on the
metabolic state of the cell, it can favor either lactate production or lactate consumption.
Lactate metabolism is complex and different theories exist regarding the control of lactate
production and consumption [61–68]. Here, a reversible hill kinetic with two modifiers
(Equation (61) in Supplementary File S1) was used and was sufficient to account for the
inherent complexity. Furthermore, for the uptake of lactate, a reversible hill equation was
used (Equation (45) in Supplementary File S1), which considers a minor lactate consump-
tion after glucose depletion (Figure 3(B1) and rLacx

trans
in Figure S4). As a result, model

simulations accurately reproduced the lactate dynamics in mock-infected and infected cells.
Note that the accumulation of lactate in the bioreactor supernatant was estimated directly
from the intracellular rates.

Mock-infected cells consumed glutamine and pyruvate from the extracellular en-
vironment until their depletion at around 100–110 h (Figure 3(C1,E1)). However, both
metabolites were not depleted when the cells were infected at 48 h post inoculation since
cell growth was halted and cells started to die soon after infection (Figures 1(A2) and
3(C2,E2)). Similar to the previous model [52], their transport into the intracellular environ-
ment was not considered to be growth-related, as both substrates were depleted before the
exponential cell growth phase ended (Figures 1(A1) and 3(C1,E1)). Their consumption rates
take into account different kinetics as they might be governed by homeostasis or involve
other mechanisms unrelated to cell growth [69]. More specifically, their mechanism of
transport was described using Michaelis–Menten kinetics or a direct binding equation [70]
(Equations (43) and (46) in Supplementary File S1). Overall, the model accurately describes
the dynamics in the concentration of these metabolites in the mock-infected cell culture
and accurately predicts their dynamics in infected cells.
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Ammonium and glutamate accumulated until the end of Cultivation 1, even after the
depletion of glutamine, their primary source (Figure 3(D1,F1)). Glutamate is a non-essential
amino acid that is synthesized from glutamine and other amino acids, e.g., via proline and
lysine catabolism [71]. In contrast, the production of ammonium is closely linked to the
metabolism of various amino acids. Apart from glutamine and glutamate, no additional
amino acids were quantified in this study, but we have previously shown that the majority
of amino acids are not depleted at the end of the exponential growth phase of suspension
MDCK cell cultivations [72]. Therefore, and as reported previously for other suspension
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cell lines [52,73], an intracellular accumulation of glutamate and ammonium appears to
occur even during late stages of cultivation, followed by their release into the supernatant.
Accordingly, model simulations are also in good agreement with the experimental data
in the mock-infected cells cultivation (Figure 3(D1,F1)). For Cultivation 2, however, sig-
nificant discrepancies between model predictions and experimental data are observed
(Figure 3(D2,F2)). Starting about 12 hpi, ammonium and glutamate concentrations are
clearly underestimated. Assuming that assumptions in the model about glutamate and
ammonium metabolism are justified, it must be concluded that virus infection either results
in drastic changes in cellular metabolism during the late phase of IAV infection or there
are other sources in which virus-induced cell death and cell lysis play a significant role.
In particular, either enzymes released into the extracellular environment following cell
lysis retain a high level of activity or both metabolites leak into the supernatant due to cell
lysis. The latter, however, can be safely excluded as in silico model simulations clearly
demonstrated that the complete release of intracellular glutamate and ammonium would
not result in more than a 1.5% increase in their extracellular concentrations (an increase
of about 0.025 mmol/L for glutamate and 0.009 mmol/L for ammonium, respectively;
see Section 2.1 in Supplementary File S6). On the other hand, it cannot be ruled out that
enzymes released into the extracellular environment because of cell lysis retain a signifi-
cant activity. According to results obtained from in silico model simulations, taking the
amino acid degradation/conversion rate based on viable cell volume (microscale) and
converting it to the bioreactor volume scale (macroscale) would be enough to explain
the increase in extracellular ammonium and glutamate concentrations (see Section 2.2 in
Supplementary File S6). Similar mechanisms might also apply for other metabolites includ-
ing lactate and pyruvate. However, as these events take place in a time window where
most virus particles have been released into the supernatant and the number of productive
cells is declining rapidly, these findings are more or less irrelevant for process optimization.

2.3. Simulation of Intracellular Metabolism
2.3.1. Glycolysis, Pentose Phosphate Cycle and Uridine Diphosphate Sugar Metabolism

Similar dynamics were observed for the majority of glycolytic metabolites: a short,
more or less peak-like initial accumulation of metabolites followed by a gradual decrease
over the cultivation time for both cultivations (Figure 4). Similar dynamics occurred for the
pentose phosphate pathway and uridine diphosphate metabolites, with relatively stable
concentrations initially followed by rapid depletion over time (Figure 4). Prior to depletion,
glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P) exhibited comparable dynam-
ics; the same was true for 3-phosphoglutarate (3GP) and phosphoenolpyruvate (PEP). On
the other hand, the dynamics of fructose-1,6-biphosphate (F16P), ribose-5-phosphate (R5P)
and uridine diphosphate glucose (UDPGlc) appeared to be not related to those of any other
metabolite. In Cultivation 1, glycolytic metabolites were depleted at around 144 h concomi-
tant with glucose depletion from the medium (Figures 3(A1) and 4). In Cultivation 2, the
concentrations of these metabolites decreased to low levels shortly after virus infection.
Model simulations of glycolytic metabolite concentrations closely capture their dynamics
in mock-infected cells. This indicates that reasonable assumptions about glycolysis and
pentose phosphate shunt reactions kinetics were made, particularly regarding the enzymes
involved in feedback control, namely hexokinase (HK), phosphofructokinase (PFK) and
LDH [74–76]. Model predictions of glycolytic metabolite concentrations in infected cells
are also very much in agreement with the experimental data, especially for the first 24 hpi
(before onset of cell lysis and degradation). However, the model slightly underestimated
the concentrations of G6P and F6P, though their concentrations started to drop below the
limit of detection around 12 hpi. Additionally, the model did not predict the peak-like
dynamic of F16P after virus infection. The latter may be considered an outlier since it
is a single measurement. Given the precision with which the dynamics of the majority
of metabolites were described, model assumptions regarding the kinetics and control of
glycolysis appear to be sufficiently justified. These results, in combination with the fact that
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the same set of parameters was used for infected and non-infected cells, suggest that virus
infection had a relatively minor impact on glycolysis, especially during the first 24 hpi when
virus-induced apoptosis and cell lysis are negligible. This is consistent with the fact that
the total virus particle volume (of 12,000 virions/cell in this instance) accounts for around
0.55% of the volume of a single cell. Even considering that some of the viral components
(protein, RNA) synthesized in infected cells are not used for progeny virus production,
the overall burden of virus replication on cellular metabolism can be considered low. This
implies that in theory a single cell can produce many more virions. Note that the limit
of quantification refers to the intracellular concentration and not to the concentration in
the sample. As the sample volume was constant, the limit of quantification is inversely
proportional to the viable cell volume per milliliter; increasing the number of cells per
sample reduces the concentration of intracellular metabolites required to reach the limit of
quantification and vice versa.
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2.3.2. TCA Cycle

As for glycolytic metabolites, the concentration of the majority of TCA cycle metabo-
lites showed an initial peak-like behavior and then decreased until about 144 h, when
they remained practically constant until the end of Cultivation 1 (Figure 5). The excep-
tion was succinate (Suc), which did not exhibit the initial peak-like accumulation and
its concentration remained almost constant initially (Figure 5(E1)). The concentration of
citrate (Cit) remained approximately 100-fold that of cis-aconitate (cAc) and iso-citrate sug-
gesting that the enzyme aconitate (ACO) favored citrate production (Figure 5(A1,B1,C1)).
Other TCA cycle intermediates, such as alpha-ketoglutarate (Keto), fumarate (Fum) and
malate (Mal) showed similar dynamics with concentrations exceeding the detection limit
(Figure 5(D1,F1,G1)). The model simulation captures the dynamics of these metabolites
in Cultivation 1 reasonably well. This implies that reasonable assumptions were made
about the reactions kinetics of the TCA cycle, glutaminolysis and transamination. This
occurred in particular, for example, by accounting for the inhibitory effect of oxaloacetate
on succinate dehydrogenase [77,78], where the model simulation was able to capture the
increase in Suc concentration near the end of the cultivation.
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For Cultivation 2 (infected approximately 48 h post inoculation), concentrations of
Cit, cAc and iso-citrate decreased immediately after infection and increased again around
24 hpi (Figure 5(A2,B2,C2)). Contrary to mock-infected cells, the concentration of Suc
remained below the detection limit of after infection. Additionally, the concentrations
of Keto, Fum and Mal increased rapidly immediately after infection (on average about
21%), decreased between 12–24 hpi and subsequently increased again with the onset
of cell lysis and degradation (Figure 5(D2,F2,G2)). Using the same set of parameters
estimated for mock-infected cells, the model predicts the dynamics of these metabolites
reasonably well for about 24 hpi. The discrepancies between model predictions and
the peak-like increase in Keto, Fum and Mal immediately after infection are difficult to
interpret. Metabolic changes at early infection stages might be related to virus-induced
cessation of cell growth [21], and/or early virus protein production [26], which in turn
can lead to changes in the control of enzymes [25,26,79–83]. In this case, the noticeable
accumulation of some metabolites of TCA cycle is either a side effect of virus infection or due
to specific changes in related enzymes induced by early infection events. However, in any
scenario, because of the characteristics of the metabolic network established (in particular its
structural robustness and small-world property considering only a low number of reactions
linking intracellular metabolites) [84], the dynamics of the reactions involved would allow
a fast transition towards its inherent “normal behavior” where model assumptions are valid
again. Nonetheless, the observed differences between model prediction and experimental
data are generally small in the first 24 hpi, implying that virus replication had only minor
impact on intracellular metabolite concentrations of the TCA cycle and closely related
metabolic pathways. Discrepancies beginning at around 24 hpi are most likely due to
virus-induced apoptosis, which results in the disintegration of mitochondrial membranes
and cell lysis. In addition to this, the discrepancies due to the increase in the concentrations
of certain metabolites of the TCA cycle starting about 24 h post infection may indicate a
partial shutdown of the central carbon and energy metabolism. In addition, limitations
concerning certain model assumptions and enzyme kinetics cannot be completely ruled out.

2.3.3. Energy Metabolism

As expected, the ATP concentration (Figure 6) in mock-infected cells (Cultivation 1)
remained high throughout the exponential cell growth phase (Figure 6(A1)) and de-
creased shortly after glutamine and pyruvate depletion (Figure 3(C1,E1)), at approx-
imately 100 h post inoculation. The model simulation accurately reproduces the dy-
namics of ATP, implying that a good balance between consumption and production
was achieved (Equations (38), (84) and (88) in Supplementary File S1). ATP is generated
in glycolysis, TCA cycle, oxidative phosphorylation and other related metabolic path-
ways (Equations (82)–(90) in Supplementary File S1). Given the enymatic reactions for ATP
production previously discussed, according to model simulations, glycolysis (rglycolysis,
Equation (82) in Supplementary File S1) accounts for approximately 20% of the total ATP
production (rglycolysis in Figure S5), while glucose is present in the medium (until about
144 h). This is well within the range of 1–64% reported previously for several animal
cell lines [85]. Additionally, the estimated theoretical oxygen consumption ranged from
62–113 fmol/cell/h (ro2 in Figure S5), which is comparable to the consumption of other
continuous cell lines with 7–97 fmol/cell/h [86,87].

For Cultivation 2, ATP concentrations remained high, even for the first 24 hpi, but
subsequently decreased fast approaching the limit of quantification. Model simulations
using the same set of parameters estimated for mock-infected cells resulted in a reasonable
prediction of ATP concentration dynamics during the first 24 hpi. As specific mechanisms
for the shutdown of metabolic pathways associated with apoptosis and cell deterioration
have not been implemented (only cell death has been considered so far), the model sig-
nificantly overestimates the concentration of ATP at later time points. In fact, the sharp
decrease in ATP concentration starting at 24 hpi also supports the hypothesis of at least
a partial metabolic shutdown, as ATP production via TCA cycle (rTCA, Equation (83) in
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Supplementary File S1) accounted for approximately 80% of the estimated ATP production
(rTCA, Figure S5). Note that the amount of ATP produced from the TCA is obtained as
described in Equations (38), (84) and (88) in Supplementary File S1. Generally, as for gly-
colysis and TCA cycle, model assumptions for ATP generation and consumption seem to
be sufficiently justified. Furthermore, model parameters estimated for mock-infected cells
enabled a good prediction of the dynamics in IAV infected cells as long as the shutdown of
intracellular pathways does not play a significant role, i.e., for the first 12–24 h after virus
entry, onset of intracellular virus replication and virus release.
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The concentration of extracellular lactate (Figure 3B) increased in the bioreactor until 
glucose was depleted. As previously reported for MDCK cells [57,58], the stoichiometric 
ratio of lactate to glucose was approximately 1:1 for both cultivations. Typically, in con-
tinuous cell lines, the majority of glucose is converted to pyruvate via glycolytic enzymes, 
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tion rate [59,60]. The previous model used lumped reaction to describe extracellular lac-
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infection, respectively). The grey lines indicate the limit of quantification for each metabolite and
the grey data points are under the limit of quantification. Experimental data used for parameter
estimation: A1 (see Supplementary Files S4 and S5).

Overall, the previously discussed changes in extracellular and intracellular metabolite
dynamics seem to be predictable not only for mock-infected but also for infected cells. Rea-
sonable predictions of the dynamics of key metabolites of both non-infected and infected
cells for the period relevant for IAV replication and release were achieved. In particular,
taking into account that a single set of parameters estimated for mock-infected cells was
used and only kinetics for cell growth arrest and cell death after virus infection were imple-
mented. This strongly suggests that the description of metabolic changes in IAV-infected
cells primarily requires a reasonable description of cell growth arrest and transition to cell
death, rather than specific enzymes kinetics. The fact that simulations of the metabolism dy-
namics of infected cells do not require a new set of parameters (compared to mock-infected
cells), and suggests that IAV-specific mechanisms affecting the host cell’s central metabolic
pathways do not play a significant role. This is further supported by the fact that the total
volume of IAV virus particles released per cell is negligible (0.55%) and the theoretical
energy cost of IAV replication is negligible (1%) in comparison to the host cell’s synthesis
capacity [88]. Furthermore, previous studies also showed only minor differences in the
specific oxygen uptake of mock-infected and infected cells during early stages of virus
replication [89]. However, the effects of infection may be cell line- and/or virus-specific as
contradictory findings have been reported for other virus–host cell systems, for instance in
baculovirus production using insect cells [25].

2.3.4. Analysis of Intracellular Rates

In the following, a brief description of metabolism based on model simulations is
provided for glycolysis and pentose phosphate pathway (Figure 7), and for TCA cycle,
glutaminolysis and transamination (Figure 8).
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Extracellular glucose (Figure 3A) was transported into the intracellular environment 
and rapidly converted to G6P through the hexokinase enzyme (HK) during the exponen-
tial cell growth phase in both cultivations (Figure 7A). After glucose was depleted in Cul-
tivation 1 (mock-infected cells) at approximately 144 h (Figure 3 (A1)) and the cell entered 
death phase (Figure 1 (A1)), the estimated HK rate decreased to zero. Cells of Cultivation 
2 (infected at around 48 h) still consumed glucose (Figure 3 (A2)) at a similar rate after 
infection (Figure 7A). Approximately 14‒16% of the intracellular glucose (after conversion 
by HK, percentage of 5dR Pr  divided by the HK rate, Figure 7B) was further processed to 
R5P via glucose-6-phophate dehydrogenase or via transaldolase and transketolase during 
the exponential cell growth phase of both cultivations (6‒108 h mock-infected, 6‒48 h in-
fected). This is well within the previously reported range of 0‒40% for glucose conversion 
to R5P [90–92]. In the established model, the usage of R5P in unspecified reactions is taken 
into account using a general consumption rate ( 5dR Pr , Equation (56) in Supplementary File 
S1), and its rate is zero after glucose depletion in mock-infected cells (Figure 7B). This rate 
also slightly decreased after viral infection (Figure 7B). The upper glycolytic metabolites 
that are not channeled to R5P reach enolase (ENO, Figure 7C), which has a time course 
similar to HK in both cultivations. Except for lactate dehydrogenase (LDH, Figure 7D), all 
rates addressed thus far have a relatively small standard deviation. Cells in Cultivation 1 
had a high LDH rate during exponential cell growth. During the cell death phase, this rate 
became negative since glucose was depleted, indicating lactate conversion to pyruvate. 
Similarly, in Cultivation 2, a high LDH rate was observed during the exponential phase 
of cell growth (Figure 7D). After virus infection, however, these cells still consumed glu-
cose (Figure 3 (A2)) and glycolysis remained active (see HK and ENO, Figure 7A,C), which 
led to a relatively high lactate production rate (Figure 7D). This high LDH rate allowed a 
very good prediction of the extracellular lactate accumulation in the bioreactor after infec-
tion (Figure 3 (B2)). Pyruvate that was produced in glycolysis was converted via a variety 
of enzymes including PDH ( PDHr , Figure S5), transaminase ( AlaTAr , Figure S5), and py-
ruvate carboxylase (PC, Figure 8A). As previously reported for other cell lines [68,93], 
conversion of pyruvate to oxaloacetate (OAA) via PC resulted in a significant carbon sup-
ply to the TCA cycle from glycolysis. In fact, a relatively high PC rate was estimated dur-
ing both cultivations’ exponential cell growth phases, which increased significantly not 
only during the cell death phase (Cultivation 1), but also after virus infection (Cultivation 
2). Another important carbon source for the TCA cycle of animal cells is glutamine, fol-
lowing its conversion to glutamate via glutaminase. For mock-infected cells, the glutami-
nase rate was relatively high during exponential cell growth phase, but decreases after 
substrate depletion and subsequent cell death (GLNase, Figure 8B). However, glutami-
nase activity was not zero during this phase since glutamine synthetase ( GSr , in Figure S5 
was still active). For Cultivation 2, a similar rate was estimated during the exponential 
phase of cell growth and after viral infection (Figure 8B) as the cells were infected before 
depletion of extracellular glutamine (Figure 3 (C2)). Another possible source of glutamate 
in the model is the degradation of other amino acids ( AAexr , Figure 8C). For both cultiva-
tions, the estimated amino degradation rate was high during the exponential cell growth 
phase and further increased during the cell death phase (Cultivation 1) and after virus 
infection (Cultivation 2). During the exponential phase of both cultivations, the resulting 
glutamate was converted to Keto via glutamate dehydrogenase (GLDH, Figure 8D). How-
ever, a stark difference was observed between these cultivations during the cell death 
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Extracellular glucose (Figure 3A) was transported into the intracellular environment 
and rapidly converted to G6P through the hexokinase enzyme (HK) during the exponen-
tial cell growth phase in both cultivations (Figure 7A). After glucose was depleted in Cul-
tivation 1 (mock-infected cells) at approximately 144 h (Figure 3 (A1)) and the cell entered 
death phase (Figure 1 (A1)), the estimated HK rate decreased to zero. Cells of Cultivation 
2 (infected at around 48 h) still consumed glucose (Figure 3 (A2)) at a similar rate after 
infection (Figure 7A). Approximately 14‒16% of the intracellular glucose (after conversion 
by HK, percentage of 5dR Pr  divided by the HK rate, Figure 7B) was further processed to 
R5P via glucose-6-phophate dehydrogenase or via transaldolase and transketolase during 
the exponential cell growth phase of both cultivations (6‒108 h mock-infected, 6‒48 h in-
fected). This is well within the previously reported range of 0‒40% for glucose conversion 
to R5P [90–92]. In the established model, the usage of R5P in unspecified reactions is taken 
into account using a general consumption rate ( 5dR Pr , Equation (56) in Supplementary File 
S1), and its rate is zero after glucose depletion in mock-infected cells (Figure 7B). This rate 
also slightly decreased after viral infection (Figure 7B). The upper glycolytic metabolites 
that are not channeled to R5P reach enolase (ENO, Figure 7C), which has a time course 
similar to HK in both cultivations. Except for lactate dehydrogenase (LDH, Figure 7D), all 
rates addressed thus far have a relatively small standard deviation. Cells in Cultivation 1 
had a high LDH rate during exponential cell growth. During the cell death phase, this rate 
became negative since glucose was depleted, indicating lactate conversion to pyruvate. 
Similarly, in Cultivation 2, a high LDH rate was observed during the exponential phase 
of cell growth (Figure 7D). After virus infection, however, these cells still consumed glu-
cose (Figure 3 (A2)) and glycolysis remained active (see HK and ENO, Figure 7A,C), which 
led to a relatively high lactate production rate (Figure 7D). This high LDH rate allowed a 
very good prediction of the extracellular lactate accumulation in the bioreactor after infec-
tion (Figure 3 (B2)). Pyruvate that was produced in glycolysis was converted via a variety 
of enzymes including PDH ( PDHr , Figure S5), transaminase ( AlaTAr , Figure S5), and py-
ruvate carboxylase (PC, Figure 8A). As previously reported for other cell lines [68,93], 
conversion of pyruvate to oxaloacetate (OAA) via PC resulted in a significant carbon sup-
ply to the TCA cycle from glycolysis. In fact, a relatively high PC rate was estimated dur-
ing both cultivations’ exponential cell growth phases, which increased significantly not 
only during the cell death phase (Cultivation 1), but also after virus infection (Cultivation 
2). Another important carbon source for the TCA cycle of animal cells is glutamine, fol-
lowing its conversion to glutamate via glutaminase. For mock-infected cells, the glutami-
nase rate was relatively high during exponential cell growth phase, but decreases after 
substrate depletion and subsequent cell death (GLNase, Figure 8B). However, glutami-
nase activity was not zero during this phase since glutamine synthetase ( GSr , in Figure S5 
was still active). For Cultivation 2, a similar rate was estimated during the exponential 
phase of cell growth and after viral infection (Figure 8B) as the cells were infected before 
depletion of extracellular glutamine (Figure 3 (C2)). Another possible source of glutamate 
in the model is the degradation of other amino acids ( AAexr , Figure 8C). For both cultiva-
tions, the estimated amino degradation rate was high during the exponential cell growth 
phase and further increased during the cell death phase (Cultivation 1) and after virus 
infection (Cultivation 2). During the exponential phase of both cultivations, the resulting 
glutamate was converted to Keto via glutamate dehydrogenase (GLDH, Figure 8D). How-
ever, a stark difference was observed between these cultivations during the cell death 
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Extracellular glucose (Figure 3A) was transported into the intracellular environment
and rapidly converted to G6P through the hexokinase enzyme (HK) during the expo-
nential cell growth phase in both cultivations (Figure 7A). After glucose was depleted
in Cultivation 1 (mock-infected cells) at approximately 144 h (Figure 3(A1)) and the cell
entered death phase (Figure 1(A1)), the estimated HK rate decreased to zero. Cells of Culti-
vation 2 (infected at around 48 h) still consumed glucose (Figure 3(A2)) at a similar rate after
infection (Figure 7A). Approximately 14–16% of the intracellular glucose (after conversion
by HK, percentage of rdR5P divided by the HK rate, Figure 7B) was further processed to
R5P via glucose-6-phophate dehydrogenase or via transaldolase and transketolase during
the exponential cell growth phase of both cultivations (6–108 h mock-infected, 6–48 h in-
fected). This is well within the previously reported range of 0–40% for glucose conversion to
R5P [90–92]. In the established model, the usage of R5P in unspecified reactions is taken into
account using a general consumption rate (rdR5P, Equation (56) in Supplementary File S1),
and its rate is zero after glucose depletion in mock-infected cells (Figure 7B). This rate also
slightly decreased after viral infection (Figure 7B). The upper glycolytic metabolites that
are not channeled to R5P reach enolase (ENO, Figure 7C), which has a time course similar
to HK in both cultivations. Except for lactate dehydrogenase (LDH, Figure 7D), all rates
addressed thus far have a relatively small standard deviation. Cells in Cultivation 1 had
a high LDH rate during exponential cell growth. During the cell death phase, this rate
became negative since glucose was depleted, indicating lactate conversion to pyruvate.
Similarly, in Cultivation 2, a high LDH rate was observed during the exponential phase of
cell growth (Figure 7D). After virus infection, however, these cells still consumed glucose
(Figure 3(A2)) and glycolysis remained active (see HK and ENO, Figure 7A,C), which
led to a relatively high lactate production rate (Figure 7D). This high LDH rate allowed
a very good prediction of the extracellular lactate accumulation in the bioreactor after
infection (Figure 3(B2)). Pyruvate that was produced in glycolysis was converted via a
variety of enzymes including PDH (rPDH , Figure S5), transaminase (rAlaTA, Figure S5), and
pyruvate carboxylase (PC, Figure 8A). As previously reported for other cell lines [68,93],
conversion of pyruvate to oxaloacetate (OAA) via PC resulted in a significant carbon supply
to the TCA cycle from glycolysis. In fact, a relatively high PC rate was estimated during
both cultivations’ exponential cell growth phases, which increased significantly not only
during the cell death phase (Cultivation 1), but also after virus infection (Cultivation 2).
Another important carbon source for the TCA cycle of animal cells is glutamine, following
its conversion to glutamate via glutaminase. For mock-infected cells, the glutaminase rate
was relatively high during exponential cell growth phase, but decreases after substrate
depletion and subsequent cell death (GLNase, Figure 8B). However, glutaminase activity
was not zero during this phase since glutamine synthetase (rGS, in Figure S5 was still
active). For Cultivation 2, a similar rate was estimated during the exponential phase of
cell growth and after viral infection (Figure 8B) as the cells were infected before depletion
of extracellular glutamine (Figure 3 (C2)). Another possible source of glutamate in the
model is the degradation of other amino acids (rAAex, Figure 8C). For both cultivations,
the estimated amino degradation rate was high during the exponential cell growth phase
and further increased during the cell death phase (Cultivation 1) and after virus infection
(Cultivation 2). During the exponential phase of both cultivations, the resulting gluta-
mate was converted to Keto via glutamate dehydrogenase (GLDH, Figure 8D). However,
a stark difference was observed between these cultivations during the cell death phase
(Cultivation 1) and after virus infection (Cultivation 2). The GLDH rate was estimated to
be negative for Cultivation 1, indicating that glutamate was produced from Keto. As a
result, glutamate accumulated intracellularly and was exported to the supernatant during
this phase, leading to good agreement between model simulations and experimental data
(Figure 3(F1)). On the other hand, the GLDH rate was estimated to remain high after virus
infection in Cultivation 2. This prevented the accumulation of glutamate on the intracellular
level, and likely contributed to the discrepancy between experimental data and model
simulations after virus infection (Figure 3(F2)). Interestingly, in all scenarios, Keto was
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mostly produced from glutamate since the isocitrate dehydrogenase rates estimated were
low (Figure 8E). The fact that the aspartate transaminase rate (AspTA) was estimated to
be negative in all scenarios (Figure 8F) implies that the TCA cycle was truncated and only
half of the TCA cycle was active in addition to the transamination reactions for energy
production, as previously reported [52]. The other half of the TCA cycle, as usual, pro-
vided intermediates for biosynthesis through citrate [94]. Additional figures from model
simulation and prediction of rates are provided in Figures S1 and S3–S5.

3. Materials and Methods
3.1. Shake Flask Cultivations

Pre-cultures of MDCK.SUS2 suspension cells were grown in shaker flasks (125 mL
polycarbonate Erlenmeyer flasks, #431143, Corning®, New York city, NY, USA) with 50 mL
working volume (wv), in a Multitron Pro incubator (Infors HT, Bottmingen, Switzerland) at
37 ◦C and 5% CO2 atmosphere with a shaking frequency of 180 rpm. Cells were passaged
every 3–4 days with a seeding density of 0.5–0.8 × 106 cells/mL.

IAV A/Puerto Rico/8/34 (H1N1) seed virus was used for infection, generated in ad-
herent MDCK cells (ECACC # 84121903). The seed virus had a titer of 1.1 × 109 TCID50/mL.

Cells were cultivated in a chemically defined, protein-free and animal component-free
medium, Smif8 (Smif8 PGD 2×, supplemented with 5 mM glutamine, and 8 mM pyruvate),
specifically developed for the cultivation of suspension MDCK cells [95].

Growth and infection experiments for model validation were performed using 500 mL
shaking flasks (#4113-0500, Nalgene™, Thermo Scientific, Waltham, MA, USA) with an ini-
tial cultivation volume of 200 mL at 150 rpm. Two cultivations were performed, one mock-
infection (Cultivation 1), where cells grew for about 200 h, and one infection (Cultivation 2),
where cells were infected with IAV at about 49 h post inoculation. To achieve a synchronous
infection of the cell population, a moi = 10 was used. Due to the relatively low cell concen-
tration at time of infection (2.1 × 106 cells/mL) and the high moi used, neither medium
replacement nor trypsin addition (for virus activation) was necessary. In both cultivations,
sterile Milli-Q water was added before sampling to compensate for water evaporation
(1–2 mL/day) since the experiment was performed in a non-hydrated incubator.

3.2. Analytics
3.2.1. Cell Count and Cell Volume

A Vi-Cell counter (XR #731050, Beckman Coulter, Krefeld, Germany) was used to
determine viable cell counts and cells diameters. Due to the presence of cell aggregates,
MDCK.SUS2 cells were trypsinized before counting. Therefore, 1 mL of the cell suspension
was centrifuged using a tabletop centrifuge (800× g, 1 min, RT), 900 µL of supernatant was
removed and the cell pellet was resuspended by adding 500 µL of trypsin-EDTA solution
(1×). In a next step, cells were incubated for 10 min at 37 ◦C, mixed with 400 µL of fetal
bovine serum, triturated and analyzed. The average cell diameter was determined by
taking 1000–18,000 stationary pictures of individual cells using the Vi-Cell counter. The
total cell volume was determined from the product of the mean cell volume (assuming a
spherical cell shape) and the viable cell concentration.

3.2.2. Hemagglutination Activity Assay

The virus titer was estimated using the hemagglutination activity (HA) assay as de-
scribed by Kalbfuss et al. [96]. The cell-free virus samples and standards were serially
diluted (two rows, 21–12 and 20.5–12) in the wells of a 96-round-bottom-well plate (of 100 µL)
with PBS. Afterwards, a chicken erythrocyte solution (100 µL) was added with a concentra-
tion of 2 × 107 erythrocytes/mL (Ery, erythrocytes/mL) and incubated for 3–8 h at RT. The
erythrocyte agglutination was evaluated using a plate reader (Infinite® M200 microplate
reader, Tecan Group, Männedorf, Switzerland) measuring the extinction at 700 nm. A curve
function was fitted to the data and used to determine the dilution at which the agglutination
stops, which corresponds to the HA activity. The virus titer is commonly expressed as
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logarithm of the hemagglutination units (HAU) per analysis volume: log10(HAU/100 µL).
Assuming that the virus and erythrocyte concentration are equal at the highest diluted
sample showing agglutination, the concentration of the total number of virus particles (Vp,
virions per mL) can be calculated using Equation (1). The standard deviation of this assay
is 0.08 log10(HAU/100 µL) [96].

Vp = [Ery] · HAU = 2 · 107 1
mL

· 10log10 (HAU) (1)

3.2.3. Imaging Flow Cytometry

The relative amount of infected cells, the percentage of vRNP in the cell nucleus and
the percentage of apoptotic cells were determined using imaging flow cytometry, based
on previously established assays [97]. Cell fixation was carried out using 1 mL of infected
MDCK cells, which were mixed with paraformaldehyde to a final concentration of 2% and
incubated at 4 ◦C for 30 min. Thereafter, the cells were washed with PBS (300× g, 10 min,
4 ◦C), added to 5 mL 70% ethanol (−20 ◦C) and stored at −20 ◦C. For staining, fixed cells
in ethanol were centrifuged (300× g, 10 min, 4 ◦C) to remove the storage solution. The
cell pellet was washed twice with FACS-buffer (PBS containing 0.1% BSA and 2% glycine)
and blocked in PBS containing 1% BSA (30 min, 37 ◦C). vRNP positive cells were stained
with a monoclonal mouse anti-NP antibody mAb61A5 [98] as a primary antibody, and
Alexa Fluor 647-conjugated goat anti-mouse pAb (#A21235, Thermo Scientific, Waltham,
MA, USA,) as a secondary antibody. All antibodies were incubated for 60 min at 37 ◦C in
FACS-buffer. Between each incubation step, cells were washed twice with FACS-buffer
(300× g, 10 min, 4 ◦C). Before analysis, nucleic DNA was stained with DAPI (50 mg/L,
#6843.2, Carl Roth, Karlsruhe, Germany). Ten thousand single cells were analyzed with
an ImageStream X Mark II (#100220, Merck, Darmstadt, Germany) using a 60× objective
lens. Image processing was carried out with the IDEAS software (version 6.1). The vRNP-
positive cells were considered infected and nucleic condensation and fragmentation were
used as signs of apoptosis.

3.2.4. Extracellular Metabolites

Samples were centrifuged at 300× g for 5 min at RT and the supernatant was used for
the quantification of extracellular metabolites. Virus-containing samples were inactivated
in a heat block at 80 ◦C for 3 min prior to analysis. In some cases, the cell-free supernatant
was stored at −80 ◦C until their respective analysis. Glucose, lactate, glutamine, glutamate,
and ammonium were quantified using a BioProfile 100 Plus analyzer (Nova Biomedical,
Waltham, MA, USA) using external standards. Pyruvate was quantified using a Cedex Bio
Analyzer (#06395554001, Roche Diagnostics, Mannheim, Germany).

3.2.5. Intracellular Metabolites

Samples for the quantification of intracellular metabolites require a quenching step
to limit metabolite degradation. Therefore, MDCK cells were quenched in a methanol
ammonium bicarbonate (MeOH-AMBIC) solution, and separated by centrifugation using
a method adapted from Selick et al. [99]. A thermostat was used (FP89-HL, JULABO,
Seelbach, Germany) with silicone oil as a heat transfer liquid (KRYO 90, JULABO, Seelbach,
Germany) to adjust the MeOH-AMBIC solution temperature to −40 ◦C [99]. The pH value
of the MeOH Ambic solution was adjusted to pH 7.4 by adding 5 M HCl. Then, 10 mL
of this solution was transferred to 15 mL polypropylene tubes (17/120 mm, CELLSTAR,
Greiner, Pleidelsheim, Germany) and cooled in a cryostat to −40 ◦C (approximately 10 min).
Next, 2 mL of the cell suspension samples were added to the MeOH-AMBIC solution and
the tube was inverted twice and centrifuged for one minute at 3000× g in a precooled
(−20 ◦C) centrifuge (Sigma 4–16KS, swing bucket rotor #11650, Sigma Laborzentrifugen,
Harz, Germany). The supernatant was removed with a Pasteur pipette connected to
a peristaltic pump, 600 µL of −20 ◦C methanol/chloroform solution [100] was added,
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vortexed for 5 s and snap frozen in liquid nitrogen. Samples were stored at −80 ◦C for up
to five days until metabolite extraction.

Metabolite extraction was based on previous work for adherent cells [101] and suspen-
sion cells [56]. During extraction, all solutions were stored on ice for 5 min, vortexed and
transferred to an extraction tube (Safe-Lock Tubes, 2 mL, Eppendorf) containing 500 µL
of chloroform. To each sample vial, 800 µL of extraction solution (methanol 47.4% and
tricine 2 mM) was added, vortexed and transferred to an extraction tube (E1). The resulting
two phases (chloroform and MeOH-buffer) were mixed thoroughly (vortex, 20 s, max.
speed), and centrifuged for 5 min at 16,000× g (Biofuge Primo R, swing bucket rotor # 7592,
Heraeus, Thermo Scientific, Waltham, MA, USA), which was precooled to 0 ◦C. The upper
hydrophilic layer (MeOH-buffer) was removed and transferred to another extraction tube
(E2). For the second extraction, 800 µL of extraction buffer was transferred to an extraction
tube (E1), followed by the same steps as for the first extraction. The hydrophilic layers
of the first and second extraction were combined (E2), heated to 85 ◦C for 5 min and
centrifuged for 10 min at 16,000× g. The resulting extracts were transferred to storage tubes
(Safe-Lock Tubes, 2 mL, ambra, Eppendorf AG, Hamburg, Germany) and stored at −80 ◦C
until drying. The extracts were dried for 8–10 h at RT under a nitrogen gas stream and
stored as dry powder at −80 ◦C until quantification. All solutions used for the previous
steps were prepared before media sampling and precooled to the according temperature
(Table S4A). Before quantification, dry powders were solved in 300–800 µL of ultra-pure
LC-MS grade water (Milli-Q Type 1 plus LC-Pak Polisher, Merck, Darmstadt, Germany),
vortexed and incubated at 4 ◦C for 15 min. The final volume of the reconstituted sample
volume was adjusted to match the viable cell volume of the 2 mL sample. Reconstituted
samples were vortexed, centrifuged at 16,000× g for 10 min at 4 ◦C and transferred to
HPLC glass vials. Intracellular metabolites were quantified by liquid chromatography-
mass spectrometry (LC-MS) with an ICS-5000 MSQ-plus system (Dionex, Thermo Scientific,
Waltham, MA, USA) similar to the protocol of Ritter et al. [100]. Accordingly, the run time
was reduced by 10 min. Furthermore, a more robust separation was achieved by skipping
declining gradients of potassium hydroxide (KOH), which was used as eluent. For each
measurement, 15 µL volume of the reconstituted samples was injected and metabolites were
separated with two analytical anion-exchange columns (Dionex IonPac AS11, 2 × 250 mm,
30 ◦C) connected serially after an inline filter (35/5/0.45 µm) and a guard column (Dionex
IonPac AG11, 2 × 50 mm). A potassium hydroxide gradient (2–100 mM) was used as
eluent with a constant flow of 0.35 mL/min (∼=2300 psi) using an in-line eluent generator
(Dionex ICS-5000 + EG). Post column continuous eluent suppression (Dionex AERS 500,
2 mm) permitted the detection of metabolites using a serial connected conductivity (Dionex
ICS-5000+ CD), UV (Dionex ICS-Series VWD, single-channel, 260 nm) and MS detector
(MSQ Plus Mass Spectrometer). The eluent flow through the columns was directed to the
MSQ from 2 to 6 min and from 9 to 53 min, due to the elution of a high amount of chlorine
ions between 6–9 min. Several metabolites were separated with this optimized gradient
(Table S4B) and quantified using an external standard mix of all metabolites. Single ion
monitoring was used to detect specific predetermined metabolite ions (Table S4C). The
standard mix stock (Table S4D) stored at −80 ◦C was diluted with tricine buffer (10 mM
tricine, 6 mM NaCl) and water to simulate the extraction matrix (Table S4E). All standards
and samples were measured as analytical triplicates. Intracellular metabolite concentra-
tions were calculated by the product of the amount of metabolites ([C], concentration of
metabolite in mmol per L) in the reconstituted extract measured via LC-MS ([Canalyte])
and the reconstitution volume (Vrec), divided by the product of the viable cell volume (Vc)
in the extracted sample and the volume of the sampled cell suspension (Vs, 2 mL), as in
Equation (2). The experimental data set is provided in Supplementary File S4.

[C] =

[
Canalyte

]
· Vrec

Vc · Vs
(2)
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3.3. Model Definition

The model established for this study follows, in structure and basic assumptions, a
model established previously for the human suspension cell line AGE.HN [52]. This model
describes cell growth, virus production and metabolism by coupling model variables from a
segregated growth model (for the macroscopic scale) with a structured model of the central
carbon metabolism (for the microscopic scale). Compared to the previous approach [52],
various modifications were made to cover the virus infection phase. This includes a
description of virus production (the concentration of all virus particles in the supernatant)
as well as changes in cell growth and the death of infected cells that are not related to
the substrate availability. Further modifications, described in more detail below, refer to
the introduction of new states in the structured part of model dealing with the central
metabolism. This includes new state variables for the intracellular concentration of lactate
and ammonium, a rate to describe the consumption of pyruvate, the transport of ammonium
and lactate, and some reactions/transport kinetics modified in order to fit the experimental
data sets obtained for shake flask cultivations (compared to stirred tank bioreactors described
before [55]). Finally, equations related to alpha-1-antitrypsin production were removed. An
overview of this model is shown in Figure 9 and a detailed model description and a list of
symbols used are found in the Supplementary Files S1 and S2, respectively.
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metabolites not accounted for in the model. Red triangles: all the reactions included in the energy 
balance. Abbreviations of metabolites and product: 3PG: 3-phosphoglycerate, AcCoA: acetyl coen-
zyme A, ATP: adenosine tri-phosphate, cAc: cis-Aconitate, Cit: citrate, F16P: fructose 1,6-biphos-
phate, F6P: fructose-6-phosphate, Fum: fumarate, G6P: glucose-6-phosphate, Glc: glucose (intracel-
lular), Glcx: glucose (extracellular), Gln: glutamine (intracellular), Glnx: glutamine (extracellular), 
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experimentally; in grey: metabolites not measured. Ellipsoids: enzymes considered in the model.
Arrows: reactions or transport, with the arrowhead indicating the reaction or transport direction
(for simplification, reversible reactions have an arrow for both directions). Grey rectangles: sinks or
metabolites not accounted for in the model. Red triangles: all the reactions included in the energy bal-
ance. Abbreviations of metabolites and product: 3PG: 3-phosphoglycerate, AcCoA: acetyl coenzyme
A, ATP: adenosine tri-phosphate, cAc: cis-Aconitate, Cit: citrate, F16P: fructose 1,6-biphosphate, F6P:
fructose-6-phosphate, Fum: fumarate, G6P: glucose-6-phosphate, Glc: glucose (intracellular), Glcx:
glucose (extracellular), Gln: glutamine (intracellular), Glnx: glutamine (extracellular), Glu: glutamate
(intracellular), Glux: glutamate (extracellular), IsoCit: iso-citrate, Keto: alpha-ketoglutarate, Lacx: lac-
tate (extracellular), Mal: malate, NH4: ammonium (intracellular), NH4x: ammonium (extracellular),
OAA: oxaloacetate, PEP: phosphoenolpyruvate, Pyr: pyruvate (intracellular), Pyrx: pyruvate (extra-
cellular), R5P: ribose-5-phosphate, SUC: succinate, UDPGlc: uridine diphosphate Glucose. Abbrevia-
tions of enzymes and transport rates: HK: hexokinase, G6PDH: glucose-6-phosphate dehydrogenase,
UT: uridyl transferase, GLYS: glycogen synthetase, GPI: glucose-6-phosphate isomerase, TATKF6P:
transaldolase and transketolase, TATK3PG: transaldolase and transketolase, PFK: phosphofructoki-
nase, ALD: aldolase, ENO: Enolase, rCCM: reaction rate with overall ATP production, rdATP: reaction
rate with overall ATP consumption, PK: pyruvate kinase, PEPCK: phosphoenolpyruvate-kinase,
LDH: lactate dehydrogenase, PC: pyruvate carboxylase, PDH: pyruvate dehydrogenase, AlaTA:
alanine transaminase, ME: malic enzyme, CS: citrate synthetase, CL: citrate lyase, ACO: aconitase,
ICDH: isocitrate dehydrogenase, KDH: ketoglutarate dehydrogenase, AspTA: aspartate transaminase,
SDH: succinate dehydrogenase, FMA: fumarase, MDH: malate dehydrogenase, GLDH: glutamate
dehydrogenase, GS: glutamine synthetase, GLNase: glutaminase, rAAex: amino acids degradation, in
the following reaction rates are listed as “reaction rate accounting for”: rdR5P: ribose-5-phosphate
consumption, rdNH4: ammonium consumption, ruGLC: other uridine diphosphate glucose consump-
tion, rGLUT: extracellular glucose consumption, Pyrx

trans
: extracellular pyruvate consumption, rNH4x

trans
:

extracellular ammonium production from intracellular rates, rGlnx
trans

: extracellular glutamine con-
sumption, rLacx

trans
: extracellular lactate production/consumption from intracellular rates and rGlux

trans
:

extracellular glutamate production from intracellular rates.

3.3.1. Segregated Cell Growth and Infection Model

The segregated cell growth and infection model describes the dynamics of cells,
substrates, metabolic by-products, and virus particles on the macroscopic scale.

The specific transition rate (rtrans, Equation (3)), between the cell classes is described
by a Monod equation (µ) using the extracellular glucose concentration (Glcx) multiplied
with a constant (δ) that depends on the number of cell classes considered in the model
(for a mathematical explanation, see [53]). The transition rate is not equal for infected and
mock-infected cells; to use the same model variable for both, two step-functions are used.
The first step function (ε) is 0 for mock-infected cells and 1 for infected cells.

rtrans = µδ(1 − Φ1ε)

with


µ = µmax

[Glcx]

km
Glcx + [Glcx]

δ = 1
21/Nc−1

(3)

The parameter µmax is the maximum specific cell growth rate and km
Glcx is the Monod

constant. A time dependent sigmoidal step function (Φ1 and Φ2) are used to take into
account the decrease in µ and increase in the death rate (kd, Equation (6)), respectively, after
virus infection. This function was previously used to describe the transition of viable cell to
apoptosis for IAV infected cells [102], and the smoothness of the transition depends on a
constant (ρ1, manually adjusted) and the number of hours post infection (hpi).

Φ1 =
1

1 + e(ρ1−hpi)
(4)
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The inhibition factor (f, Equation (5)) corresponds to a limitation in the number of cells
that start cell division and is related to extracellular glucose concentration (Glcx). It has
a maximum value of 1 (corresponding to 100% of the first cell class starting the division
process) and a minimum of 0 (0% of the cells of the first cell class). A scaling constant (α) is
used to adjust the changes in the inhibition factor. Here, it was assumed that infected cells
do not divide anymore by using the step function (ε) introduced above.

f =

1 − e
−α

Glcx

Xv

(1 − ε) (5)

Overall, the inhibition factor ( f , Equation (5)) is effectively zero after virus infection
and the growth rate decreases with a smooth step such as function (Φ1) leading also
to a smooth decrease in the transition rate (rtrans, Equation (3)). This implies that even
after a synchronous infection, some cells of the classes (X2 − X4, Equations (3)–(5) in
Supplementary File S1) finish the division process leading to a small but noticeable increase
in the cell concentration shortly after the infection step. More importantly, however, this
also has an impact on the dynamics of the mean cell diameters and consequently the
cell-specific volume and maximum enzyme activities. A more detailed discussion and data
showing differences between the assumption of a null transition rate (rtrans) and the smooth
decrease in the transition rate after infection and their impact on the model prediction
of viable cell concentrations and mean cell diameters can be found in Section 3.2 of the
Supplementary File S1.

During the cell growth phase, cell death after substrate depletion is described by the
rate (kd, Equation (6)) as introduced before by Ramos et al. [52]. It considers a basal cell
death rate (kmin

d ) related to cell age, mechanical damage, etc. and an additional term (kmax
d ),

which is inversely correlated with the effective cell growth rate. The parameter β is an
adjustable constant for which effective growth rate and death rate are equal.

kd =

(
kmin

d + kmax
d

(
β

β + µ f

)2
)
(1 − ε) +

(
kmin

dinf + kmax
dinf Φ2

)
ε (6)

Mechanisms of cell death are obviously not the same for infected and mock-infected
cells. In particular, infected cells mainly die due to virus-induced apoptosis. Accordingly,
death rate (kd) in these two scenarios also makes use of the step function (ε) introduced
previously, and a smooth step-like function (Φ2). The latter is similar to the previously
introduced step function (Φ1, Equation (4)), where the constant parameter ρ1 was replaced
with a different value (ρ2, manually adjusted). More specifically, for infected cells, it is
assumed that a basal cell death rate (kmin

dinf) applies and, in addition, a term (kmax
dinf ) is added,

which is a time-related increase in the cell death rate caused by using the time step function
(Φ2). The time-related increase in the cell death rate is closely related to the transition to an
apoptotic state typically observed for infected cells, as described by Rüdiger et al. [102].

Finally, a new state variable was required to describe the virus dynamics. As the
maximum number of virions produced per cell, the CSVY (vp = 11, 989), corresponds
to only 0.55% of the mean cell volume, no attempts were made to describe the virus
particle increase by substrate- or precursor-based kinetics. Instead, the concentration of
all virions (Vt) released from infected cells was considered using Equation (7), where vp is
the virus production rate and Φ3 is a smooth step function to account for the time delay
between virus infection and virus release (eclipse phase). This step function is similar to
the previously introduced step function (Φ1, Equation (4)), where the constant parameter
ρ1 was replaced with a different value (ρ3, manually adjusted).

d[Vt]

dt
= Xv · vpΦ3 (7)
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3.3.2. Structured Model of the Central Carbon Metabolism

The structured model for central carbon metabolism describes the microscopic scale
(Figure 9), and comprises reactions from glycolysis, citric acid cycle, glutaminolysis,
transamination, and the pentose phosphate pathway. The model was coupled with the
structured cell growth model using growth-related variables such as the cell-specific vol-
ume, and uptake or release rates of the extracellular substrates and metabolic by-products,
respectively. This link was accomplished by converting the model variables between the
different scales using (Equation (1) in Supplementary File S1). This implies that substrate
consumption rates were used as input and metabolic by-products accumulation rates were
the outputs of the intracellular metabolic network, effectively allowing the description
of dynamics of metabolites both at the extra- and the intracellular level. To describe the
dynamics of metabolic product accumulation on the extracellular level, linked to the cen-
tral carbon metabolism, the concentrations of intracellular lactate and ammonium were
considered (Equations (25) and (32) in Supplementary File S1). In addition, to allow fit-
ting of the dynamics of PEP, 3-phosphoglycerat, extracellular lactate (Lacx), extracellular
glutamate (Glux), extracellular ammonium (NH4x), Cit and Keto, the model described
by Ramos et al. [52] was updated in a few cases. Whether this was because parts of the
central carbon metabolism of suspension MDCK cells differ from metabolism of suspension
AGE1.HN cells or that metabolism of suspension cells differs for cultivations performed
in shaker flasks (MDCK cells) and stirred tank reactor (AGE1.HN cells) or both cannot
be decided for now. The main changes concern few enzymes or transporter kinetics such
as enolase (ENO), aldolase (ALD), pyruvate kinase (PK), pyruvate carboxylase (PC), glu-
taminase (Glnase), ammonium transporter (NH4x

trans), citrate lyase (CL) and aspartate
transaminase (AspTA) according to the literature [70]. The equations for the structured
intracellular metabolism states (ODEs and kinetics) along with the symbols used are pro-
vided in the Supplementary Files S1 and S2, respectively. The MATLAB version of the
model for simulation is provided in Supplementary File S3.

3.4. Parameter Fitting and Model Simulation

The model was implemented using the Systems Biology Toolbox 2 [103] in MATLAB
(Version R2012b, the Mathworks, Inc., Natick, MA, USA). Model simulations were carried
out using MATLAB executable (mex) of the model, which speeds up the execution time
significantly. For the integration of ODEs, the CVODE from SUNDIALS was used [104]. For
the parameter optimization, a covariance matrix adaptation evolution (CMA-ES) algorithm
was used that enables stochastic and derivative free global optimization [105,106]. The
CMA-ES was used as it performed better than methods used in a similar study [52].
For the implementation of the bootstrap method, in silico data were generated through
Monte-Carlo sampling using the average of the experimental data and their corresponding
standard deviation. In a next step, parameters were fitted using these newly generated
data sets (provided in Supplementary File S5, Tables S1 and S2). Additionally, figures from
model simulations using the over 2500 parameter sets obtained via the bootstrap method
can be found in Figure S2.

In a first step, parameters related to cell growth and extracellular glucose dynamics
(Equations (3)–(6) and (10) in Supplementary File S1) were fitted using the experimental
data from the mock-infected culture. Next, parameters for the infected culture were fitted
(Equations (6)–(7); step functions Φ1, Φ2, Φ3) to describe virus dynamics and the transition
from exponential cell growth phase to cell death after virus infection, respectively. Finally,
the parameters related to the dynamics of the remaining extracellular (Equations (11)–(15)
in Supplementary File S1) and intracellular metabolites were fitted (Equations (16)–(38) in
Supplementary File S1). During optimization, the initial values for the parameters were
either taken from the literature [45,52,58] or estimated from experimental data (i.e., the
specific cell growth rate). Note that, apart from the description of virus dynamics, cell
growth and cell death, the same kinetics (transport kinetics, intracellular reactions kinetics)
and the same set of parameters were used for both the infected and mock-infected cells.
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Overall, 143 parameters were fitted using 360 data points applying Equation (8) where p
is the parameter set, e = 1, . . . , Te the number of experiments, n = 1, . . . , Tn is number of
states and i = 1, . . . , Ti the time, while η is the weighting to the maximum for state n in
the experiment e. Due to the complexity of the developed model and the limited number
of experimental data sets to test the model predictability, parameter overfitting (fitting of
the noise in the data set) cannot be ruled out in this instance. Nevertheless, parameter
fitting of over 2500 data sets generated in silico using Monte-Carlo sampling (as described
above) resulted in reasonably low parameter ranges (Tables S1 and S2). Furthermore, model
simulations using these parameters show similar dynamics (Figure S2).

min
p

Te

∑
e=1

Tn

∑
n=1

Ti

∑
i=1

(
predictioneni − dataeni

η

)2

(8)

Initial values for the state variables of the cell classes (Equations (3)–(5) in
Supplementary File S1) and extracellular metabolite concentrations (Equations (10)–(15)
in Supplementary File S1) were adjusted manually within the error range of the first ex-
perimental data point. The same principle was used for the state variable that describes
the virus particle concentration (Equation (7)). Initial conditions for the concentration
of intracellular metabolites were obtained via simulation of a pre-culture coming from
late exponential growth phase (85 h) as described in the Materials and Methods section
(shake flask cultivation). For the simulation of extracellular metabolites of the pre-culture,
the known medium composition was used. For intracellular metabolites state variables,
the concentration of the first sampling time point was used (in case these data were not
available, a low concentration was assumed taking into account values from previous
studies [45,52–54]). A list of all initial values is given in Table S3.

4. Conclusions

Overall, based on a very comprehensive data set, most parameters of the model could
be estimated reliably (see data in Supplementary File S5, Tables S1 and S2). Furthermore,
based on one set of parameters estimated using experimental data from a mock-infected cell
culture, the model accurately simulated the dynamics of mock-infected cells and generally
correctly predicted the dynamics of virus-infected cells for up to 60 hpi. This implies that
mock-infected and infected cells do not differ much in their metabolism for the initial period
of virus replication and virus release for high moi scenarios. Furthermore, results obtained
clearly suggest that the majority of differences in metabolism observed after infection are
directly related to cessation of cell growth and the subsequent transition to apoptosis and
cell death. For the final stage of virus production, which is of minor relevance in IAV
vaccine manufacturing, a straightforward interpretation of some of the results is difficult.
This concerns, in particular, the relatively high accumulation of glutamate and ammonium
in the supernatant. As a release from lysing cells (by far) cannot explain their absolute
level, the conversion of extracellular amino acids by enzymes released from the cells has
to be assumed. Nevertheless, differences in the dynamics of metabolism occur after virus
infection. Often, they were shown to be host cell-dependent [22–25]. However, differences
were also noticed for the replication of the same influenza A virus subtype [21]. Clearly,
future studies should be performed to assess the impact of cessation of cell growth and
transition into apoptosis on yield after infection with other influenza viruses relevant for
vaccine production to establish a broader database for simulation studies and to contribute
to a better understanding of the complex interactions of viruses with their host cells.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12030239/s1, Figure S1: Box-and-whisker plot of in-
tracellular rates from model simulations for mock-infected and infected suspension MDCK cells;
Figure S2: Results of 2500 simulations using the parameters obtained via a bootstrap method for
the model established for mock-infected and infected suspension MDCK cells; Figure S3: Simulated
rates and standard deviations for Cultivation 1 and 2 (mock-infected –, infected), calculated from
2500 simulations via a bootstrap method; Figure S4: Box plot with average and standard deviation
of intracellular rates estimated from model simulations for mock-infected and infected suspension
MDCK cells; Figure S5: Simulated rates for Cultivation 1 and 2 (mock-infected –, infected); Table S1:
Estimated global parameters of the structured intracellular model with confidence intervals between
0.025-quantile and 0.972-quantile (Q0.025–Q0.975), calculated via a bootstrap method with 2500
runs; Table S2: Estimated global parameters of the segregated cell growth model with confidence
intervals between 0.025-quantile and 0.975-quantile (Q0.025–Q0.975), calculated via a bootstrap
method with 2500 runs; Table S3: Initial conditions used for the simulation of the model estab-
lished for mock-infected and infected suspension MDCK cells; Table S4: Experimental procedures;
Supplementary File S1: Model definitions and equations; Supplementary File S2: List of symbols;
Supplementary File S3: Demo version of the MATLAB model; Supplementary File S4: Experimental
data; Supplementary File S5: Bootstrap method results; Supplementary File S6: Additional studies
regarding the impact of different number of cell classes, the impact of usage of a growth-related time
step function after virus infection and the impact of intracellular metabolite and enzyme leakage into
the supernatant due to cell lysis.

Author Contributions: Conceptualization, J.R.C.R., T.B., Y.G. and U.R.; methodology, J.R.C.R., T.B.
and Y.G.; software, J.R.C.R.; validation, J.R.C.R., T.B., Y.G. and U.R.; formal analysis, J.R.C.R.; inves-
tigation, J.R.C.R. and T.B.; resources, U.R.; data curation, T.B.; writing—original draft preparation,
J.R.C.R. and T.B.; writing—review and editing, J.R.C.R., T.B., Y.G. and U.R.; visualization, J.R.C.R.;
supervision, Y.G. and U.R.; project administration, Y.G. and U.R. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available as Supplementary
Material.

Acknowledgments: The authors are thankful for the excellent technical support of Claudia Best and
Nancy Wynserski, regarding general laboratory work, cell culture, and analyses of virus samples.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Genzel, Y.; Rödig, J.; Rapp, E.; Reichl, U. Vaccine Production: Upstream Processing with Adherent or Suspension Cell Lines. In

Animal Cell Biotechnology; Pörtner, R., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2014; Volume 1104,
pp. 371–393. ISBN 978-1-62703-732-7.

2. Robertson, J.S.; Cook, P.; Attwell, A.M.; Williams, S.P. Replicative advantage in tissue culture of egg-adapted influenza virus over
tissue-culture derived virus: Implications for vaccine manufacture. Vaccine 1995, 13, 1583–1588. [CrossRef]

3. Govorkova, E.A.; Kodihalli, S.; Alymova, I.V.; Fanget, B.; Webster, R.G. Growth and immunogenicity of influenza viruses
cultivated in Vero or MDCK cells and in embryonated chicken eggs. Dev. Biol. Stand. 1999, 98, 39–51; discussion 73–74. [PubMed]

4. Tree, J.A.; Richardson, C.; Fooks, A.R.; Clegg, J.C.; Looby, D. Comparison of large-scale mammalian cell culture systems with egg
culture for the production of influenza virus A vaccine strains. Vaccine 2001, 19, 3444–3450. [CrossRef]

5. Hussain, A.I.; Cordeiro, M.; Sevilla, E.; Liu, J. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza
virus for commercial production of trivalent influenza vaccine: In vitro cell susceptibility and influenza virus replication kinetics
in permissive and semi-permissive cells. Vaccine 2010, 28, 3848–3855. [CrossRef] [PubMed]

6. Gregersen, J.-P.; Schmitt, H.-J.; Trusheim, H.; Bröker, M. Safety of MDCK cell culture-based influenza vaccines. Future Microbiol.
2011, 6, 143–152. [CrossRef] [PubMed]

7. Ambrozaitis, A.; Groth, N.; Bugarini, R.; Sparacio, V.; Podda, A.; Lattanzi, M. A novel mammalian cell-culture technique for
consistent production of a well-tolerated and immunogenic trivalent subunit influenza vaccine. Vaccine 2009, 27, 6022–6029.
[CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/metabo12030239/s1
https://www.mdpi.com/article/10.3390/metabo12030239/s1
http://doi.org/10.1016/0264-410X(95)00085-F
http://www.ncbi.nlm.nih.gov/pubmed/10494958
http://doi.org/10.1016/S0264-410X(01)00053-6
http://doi.org/10.1016/j.vaccine.2010.03.005
http://www.ncbi.nlm.nih.gov/pubmed/20307595
http://doi.org/10.2217/fmb.10.161
http://www.ncbi.nlm.nih.gov/pubmed/21366415
http://doi.org/10.1016/j.vaccine.2009.07.083
http://www.ncbi.nlm.nih.gov/pubmed/19666152


Metabolites 2022, 12, 239 24 of 27

8. Tzeng, T.-T.; Chen, P.-L.; Weng, T.-C.; Tsai, S.-Y.; Lai, C.-C.; Chou, H.-I.; Chen, P.-W.; Lu, C.-C.; Liu, M.-T.; Sung, W.-C.; et al.
Development of high-growth influenza H7N9 prepandemic candidate vaccine viruses in suspension MDCK cells. J. Biomed. Sci.
2020, 27, 47. [CrossRef] [PubMed]

9. Lowy, R.J. Influenza virus induction of apoptosis by intrinsic and extrinsic mechanisms. Int. Rev. Immunol. 2003, 22, 425–449.
[CrossRef] [PubMed]

10. Santos, L.A.; Solá, S.; Rodrigues, C.M.P.; Rebelo-de-Andrade, H. Distinct kinetics and pathways of apoptosis in influenza A and B
virus infection. Virus Res. 2015, 205, 33–40. [CrossRef] [PubMed]

11. Ludwig, S.; Pleschka, S.; Planz, O.; Wolff, T. Ringing the alarm bells: Signalling and apoptosis in influenza virus infected cells.
Cell. Microbiol. 2006, 8, 375–386. [CrossRef]

12. de Vries, W.; Haasnoot, J.; van der Velden, J.; van Montfort, T.; Zorgdrager, F.; Paxton, W.; Cornelissen, M.; van Kuppeveld, F.; de
Haan, P.; Berkhout, B. Increased virus replication in mammalian cells by blocking intracellular innate defense responses. Gene
Ther. 2008, 15, 545–552. [CrossRef] [PubMed]

13. Young, D.F.; Andrejeva, L.; Livingstone, A.; Goodbourn, S.; Lamb, R.A.; Collins, P.L.; Elliott, R.M.; Randall, R.E. Virus Replication
in Engineered Human Cells That Do Not Respond to Interferons. J. Virol. 2003, 77, 2174–2181. [CrossRef] [PubMed]

14. Schulze-Horsel, J.; Schulze, M.; Agalaridis, G.; Genzel, Y.; Reichl, U. Infection dynamics and virus-induced apoptosis in cell
culture-based influenza vaccine production-Flow cytometry and mathematical modeling. Vaccine 2009, 27, 2712–2722. [CrossRef]
[PubMed]

15. Majors, B.S.; Betenbaugh, M.J.; Chiang, G.G. Links between metabolism and apoptosis in mammalian cells: Applications for
anti-apoptosis engineering. Metab. Eng. 2007, 9, 317–326. [CrossRef] [PubMed]

16. Kim, J.W.; Dang, C.V. Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci. 2005, 30, 142–150. [CrossRef] [PubMed]
17. Pastorino, J.; Hoek, J. Hexokinase II: The Integration of Energy Metabolism and Control of Apoptosis. Curr. Med. Chem. 2005, 10,

1535–1551. [CrossRef] [PubMed]
18. Shaw, M.L.; Stertz, S. Role of Host Genes in Influenza Virus Replication. In Cellular and Molecular Immunology; Springer: Cham,

Switzerland, 2017; pp. 151–189. ISBN 9783030053697.
19. Fernandes, P.; Santiago, V.M.; Rodrigues, A.F.; Tomás, H.; Kremer, E.J.; Alves, P.M.; Coroadinha, A.S. Impact of E1 and Cre on

Adenovirus Vector Amplification: Developing MDCK CAV-2-E1 and E1-Cre Transcomplementing Cell Lines. PLoS ONE 2013, 8,
e60342. [CrossRef] [PubMed]

20. Laske, T.; Bachmann, M.; Dostert, M.; Karlas, A.; Wirth, D.; Frensing, T.; Meyer, T.F.; Hauser, H.; Reichl, U. Model-based analysis
of influenza A virus replication in genetically engineered cell lines elucidates the impact of host cell factors on key kinetic
parameters of virus growth. PLoS Comput. Biol. 2019, 15, e1006944. [CrossRef] [PubMed]

21. Ritter, J.B.; Wahl, A.S.; Freund, S.; Genzel, Y.; Reichl, U. Metabolic effects of influenza virus infection in cultured animal cells:
Intra- and extracellular metabolite profiling. BMC Syst. Biol. 2010, 4, 61. [CrossRef] [PubMed]

22. Genzel, Y.; Behrendt, I.; König, S.; Sann, H.; Reichl, U. Metabolism of MDCK cells during cell growth and influenza virus
production in large-scale microcarrier culture. Vaccine 2004, 22, 2202–2208. [CrossRef] [PubMed]

23. Silva, A.C.; Teixeira, A.P.; Alves, P.M. Impact of Adenovirus infection in host cell metabolism evaluated by 1 H-NMR spectroscopy.
J. Biotechnol. 2016, 231, 16–23. [CrossRef] [PubMed]

24. Vastag, L.; Koyuncu, E.; Grady, S.L.; Shenk, T.E.; Rabinowitz, J.D. Divergent Effects of Human Cytomegalovirus and Herpes
Simplex Virus-1 on Cellular Metabolism. PLoS Pathog. 2011, 7, e1002124. [CrossRef] [PubMed]

25. Bernal, V.; Monteiro, F.; Carinhas, N.; Ambrósio, R.; Alves, P.M. An integrated analysis of enzyme activities, cofactor pools and
metabolic fluxes in baculovirus-infected Spodoptera frugiperda Sf9 cells. J. Biotechnol. 2010, 150, 332–342. [CrossRef] [PubMed]

26. Sanchez, E.L.; Lagunoff, M. Viral activation of cellular metabolism. Virology 2015, 479, 609–618. [CrossRef] [PubMed]
27. Cvijovic, M.; Almquist, J.; Hagmar, J.; Hohmann, S.; Kaltenbach, H.M.; Klipp, E.; Krantz, M.; Mendes, P.; Nelander, S.; Nielsen, J.;

et al. Bridging the gaps in systems biology. Mol. Genet. Genomics 2014, 289, 727–734. [CrossRef] [PubMed]
28. Batt, B.C.; Kompala, D.S. A structured kinetic modeling framework for the dynamics of hybridoma growth and monoclonal

antibody production in continuous suspension cultures. Biotechnol. Bioeng. 1989, 34, 515–531. [CrossRef] [PubMed]
29. Bailey, J.E. Mathematical Modeling and Analysis in Biochemical Engineering: Past Accomplishments and Future Opportunities.

Biotechnol. Prog. 1998, 14, 8–20. [CrossRef]
30. van Riel, N.A.W. Dynamic modelling and analysis of biochemical networks: Mechanism-based models and model-based

experiments. Brief. Bioinform. 2006, 7, 364–374. [CrossRef] [PubMed]
31. Sidoli, F.R.; Mantalaris, A.; Asprey, S.P. Modelling of mammalian cells and cell culture processes. Cytotechnology 2004, 44, 27–46.

[CrossRef] [PubMed]
32. Miskovic, L.; Tokic, M.; Fengos, G.; Hatzimanikatis, V. Rites of passage: Requirements and standards for building kinetic models

of metabolic phenotypes. Curr. Opin. Biotechnol. 2015, 36, 146–153. [CrossRef]
33. Le Novère, N. Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 2015, 16, 146–158. [CrossRef]

[PubMed]
34. Almquist, J.; Cvijovic, M.; Hatzimanikatis, V.; Nielsen, J.; Jirstrand, M. Kinetic models in industrial biotechnology—Improving

cell factory performance. Metab. Eng. 2014, 24, 38–60. [CrossRef] [PubMed]
35. Macklin, D.N.; Ruggero, N.A.; Covert, M.W. The future of whole-cell modeling. Curr. Opin. Biotechnol. 2014, 28, 111–115.

[CrossRef] [PubMed]

http://doi.org/10.1186/s12929-020-00645-y
http://www.ncbi.nlm.nih.gov/pubmed/32241276
http://doi.org/10.1080/08830180305216
http://www.ncbi.nlm.nih.gov/pubmed/12959753
http://doi.org/10.1016/j.virusres.2015.05.008
http://www.ncbi.nlm.nih.gov/pubmed/26002021
http://doi.org/10.1111/j.1462-5822.2005.00678.x
http://doi.org/10.1038/gt.2008.12
http://www.ncbi.nlm.nih.gov/pubmed/18273055
http://doi.org/10.1128/JVI.77.3.2174-2181.2003
http://www.ncbi.nlm.nih.gov/pubmed/12525652
http://doi.org/10.1016/j.vaccine.2009.02.027
http://www.ncbi.nlm.nih.gov/pubmed/19428884
http://doi.org/10.1016/j.ymben.2007.05.003
http://www.ncbi.nlm.nih.gov/pubmed/17611135
http://doi.org/10.1016/j.tibs.2005.01.005
http://www.ncbi.nlm.nih.gov/pubmed/15752986
http://doi.org/10.2174/0929867033457269
http://www.ncbi.nlm.nih.gov/pubmed/12871125
http://doi.org/10.1371/journal.pone.0060342
http://www.ncbi.nlm.nih.gov/pubmed/23565229
http://doi.org/10.1371/journal.pcbi.1006944
http://www.ncbi.nlm.nih.gov/pubmed/30973879
http://doi.org/10.1186/1752-0509-4-61
http://www.ncbi.nlm.nih.gov/pubmed/20465796
http://doi.org/10.1016/j.vaccine.2003.11.041
http://www.ncbi.nlm.nih.gov/pubmed/15149778
http://doi.org/10.1016/j.jbiotec.2016.05.025
http://www.ncbi.nlm.nih.gov/pubmed/27215342
http://doi.org/10.1371/journal.ppat.1002124
http://www.ncbi.nlm.nih.gov/pubmed/21779165
http://doi.org/10.1016/j.jbiotec.2010.09.958
http://www.ncbi.nlm.nih.gov/pubmed/20933551
http://doi.org/10.1016/j.virol.2015.02.038
http://www.ncbi.nlm.nih.gov/pubmed/25812764
http://doi.org/10.1007/s00438-014-0843-3
http://www.ncbi.nlm.nih.gov/pubmed/24728588
http://doi.org/10.1002/bit.260340412
http://www.ncbi.nlm.nih.gov/pubmed/18588133
http://doi.org/10.1021/bp9701269
http://doi.org/10.1093/bib/bbl040
http://www.ncbi.nlm.nih.gov/pubmed/17107967
http://doi.org/10.1023/B:CYTO.0000043397.94527.84
http://www.ncbi.nlm.nih.gov/pubmed/19003227
http://doi.org/10.1016/j.copbio.2015.08.019
http://doi.org/10.1038/nrg3885
http://www.ncbi.nlm.nih.gov/pubmed/25645874
http://doi.org/10.1016/j.ymben.2014.03.007
http://www.ncbi.nlm.nih.gov/pubmed/24747045
http://doi.org/10.1016/j.copbio.2014.01.012
http://www.ncbi.nlm.nih.gov/pubmed/24556244


Metabolites 2022, 12, 239 25 of 27

36. Strutz, J.; Martin, J.; Greene, J.; Broadbelt, L.; Tyo, K. Metabolic kinetic modeling provides insight into complex biological
questions, but hurdles remain. Curr. Opin. Biotechnol. 2019, 59, 24–30. [CrossRef] [PubMed]

37. Fröhlich, F.; Loos, C.; Hasenauer, J. Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes. In
Methods in Molecular Biology; Springer: New York, NY, USA, 2019; Volume 1883, pp. 385–422. ISBN 9781493988822.

38. Nielsen, J. Systems Biology of Metabolism. Annu. Rev. Biochem. 2017, 86, 245–275. [CrossRef] [PubMed]
39. von Stosch, M.; Peres, J.; de Azevedo, S.F.; Oliveira, R. Modelling biochemical networks with intrinsic time delays: A hybrid

semi-parametric approach. BMC Syst. Biol. 2010, 4, 8–12. [CrossRef] [PubMed]
40. Karr, J.R.; Sanghvi, J.C.; MacKlin, D.N.; Gutschow, M.V.; Jacobs, J.M.; Bolival, B.; Assad-Garcia, N.; Glass, J.I.; Covert, M.W. A

whole-cell computational model predicts phenotype from genotype. Cell 2012, 150, 389–401. [CrossRef] [PubMed]
41. Khodayari, A.; Zomorrodi, A.R.; Liao, J.C.; Maranas, C.D. A kinetic model of Escherichia coli core metabolism satisfying multiple

sets of mutant flux data. Metab. Eng. 2014, 25, 50–62. [CrossRef] [PubMed]
42. Theobald, U.; Mailinger, W.; Baltes, M.; Rizzi, M.; Reuss, M. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae:

I. Experimental observations. Biotechnol. Bioeng. 1997, 55, 305–316. [CrossRef]
43. König, M.; Bulik, S.; Holzhütter, H.G. Quantifying the contribution of the liver to glucose homeostasis: A detailed kinetic model

of human hepatic glucose metabolism. PLoS Comput. Biol. 2012, 8, e1002577. [CrossRef]
44. Noguchi, R.; Kubota, H.; Yugi, K.; Toyoshima, Y.; Komori, Y.; Soga, T.; Kuroda, S. The selective control of glycolysis, gluconeogen-

esis and glycogenesis by temporal insulin patterns. Mol. Syst. Biol. 2013, 9, 664. [CrossRef] [PubMed]
45. Rehberg, M.; Ritter, J.B.; Reichl, U. Glycolysis Is Governed by Growth Regime and Simple Enzyme Regulation in Adherent MDCK

Cells. PLoS Comput. Biol. 2014, 10, e1003885. [CrossRef] [PubMed]
46. Bazil, J.N.; Buzzard, G.T.; Rundell, A.E. Modeling Mitochondrial Bioenergetics with Integrated Volume Dynamics. PLoS Comput.

Biol. 2010, 6, e1000632. [CrossRef] [PubMed]
47. Nazaret, C.; Heiske, M.; Thurley, K.; Mazat, J.P. Mitochondrial energetic metabolism: A simplified model of TCA cycle with ATP

production. J. Theor. Biol. 2009, 258, 455–464. [CrossRef] [PubMed]
48. Sidorenko, Y.; Reichl, U. Structured model of influenza virus replication in MDCK cells. Biotechnol. Bioeng. 2004, 88, 1–14.

[CrossRef] [PubMed]
49. Martinez, V.; Gerdtzen, Z.P.; Andrews, B.A.; Asenjo, J.A. Viral vectors for the treatment of alcoholism: Use of metabolic flux

analysis for cell cultivation and vector production. Metab. Eng. 2010, 12, 129–137. [CrossRef] [PubMed]
50. Carinhas, N.; Koshkin, A.; Pais, D.A.M.; Alves, P.M.; Teixeira, A.P. 13 C-metabolic flux analysis of human adenovirus infection:

Implications for viral vector production. Biotechnol. Bioeng. 2017, 114, 195–207. [CrossRef] [PubMed]
51. Carinhas, N.; Pais, D.A.M.; Koshkin, A.; Fernandes, P.; Coroadinha, A.S.; Carrondo, M.J.T.; Alves, P.M.; Teixeira, A.P. Metabolic

flux profiling of MDCK cells during growth and canine adenovirus vector production. Sci. Rep. 2016, 6, 23529. [CrossRef]
[PubMed]

52. Ramos, J.R.C.; Rath, A.G.; Genzel, Y.; Sandig, V.; Reichl, U. A dynamic model linking cell growth to intracellular metabolism and
extracellular by-product accumulation. Biotechnol. Bioeng. 2020, 117, 1533–1553. [CrossRef] [PubMed]

53. Rehberg, M.; Ritter, J.B.; Genzel, Y.; Flockerzi, D.; Reichl, U. The relation between growth phases, cell volume changes and
metabolism of adherent cells during cultivation. J. Biotechnol. 2013, 164, 489–499. [CrossRef] [PubMed]

54. Rehberg, M.; Wetzel, M.; Ritter, J.B.; Reichl, U. The regulation of glutaminolysis and citric acid cycle activity during mammalian
cell cultivation. IFAC Proc. Vol. 2013, 12, 48–53. [CrossRef]

55. Janke, R.; Genzel, Y.; Händel, N.; Wahl, A.; Reichl, U. Metabolic adaptation of MDCK cells to different growth conditions: Effects
on catalytic activities of central metabolic enzymes. Biotechnol. Bioeng. 2011, 108, 2691–2704. [CrossRef] [PubMed]

56. Rath, A.G.; Rehberg, M.; Janke, R.; Genzel, Y.; Scholz, S.; Noll, T.; Rose, T.; Sandig, V.; Reichl, U. The influence of cell growth and
enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells. J. Biotechnol. 2014, 178, 43–53. [CrossRef]
[PubMed]

57. Rehberg, M. Dynamics in Growth and Metabolism of Adherent MDCK Cells Unraveled by an Integrated Modeling Approach; Otto-von-
Guericke-Universität: Magdeburg, Germany, 2015.

58. Rehberg, M.; Rath, A.; Ritter, J.B.; Genzel, Y.; Reichl, U. Changes in intracellular metabolite pools during growth of adherent
MDCK cells in two different media. Appl. Microbiol. Biotechnol. 2014, 98, 385–397. [CrossRef] [PubMed]

59. Lopez-Lazaro, M. The Warburg Effect: Why and How Do Cancer Cells Activate Glycolysis in the Presence of Oxygen? Anticancer.
Agents Med. Chem. 2008, 8, 305–312. [CrossRef] [PubMed]

60. Pelicano, H.; Martin, D.S.; Xu, R.-H.; Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene 2006, 25, 4633–4646.
[CrossRef] [PubMed]

61. Martínez, V.S.; Dietmair, S.; Quek, L.-E.; Hodson, M.P.; Gray, P.; Nielsen, L.K. Flux balance analysis of CHO cells before and after
a metabolic switch from lactate production to consumption. Biotechnol. Bioeng. 2013, 110, 660–666. [CrossRef] [PubMed]

62. Xie, J.; Wu, H.; Dai, C.; Pan, Q.; Ding, Z.; Hu, D.; Ji, B.; Luo, Y.; Hu, X. Beyond Warburg effect—dual metabolic nature of cancer
cells. Sci. Rep. 2015, 4, 4927. [CrossRef] [PubMed]

63. Mulukutla, B.C.; Yongky, A.; Grimm, S.; Daoutidis, P.; Hu, W.S. Multiplicity of steady states in glycolysis and shift of metabolic
state in cultured mammalian cells. PLoS ONE 2015, 10, 1–20. [CrossRef]

64. Ryll, T.; Valley, U.; Wagner, R. Biochemistry of growth inhibition by ammonium ions in mammalian cells. Biotechnol. Bioeng. 1994,
44, 184–193. [CrossRef] [PubMed]

http://doi.org/10.1016/j.copbio.2019.02.005
http://www.ncbi.nlm.nih.gov/pubmed/30851632
http://doi.org/10.1146/annurev-biochem-061516-044757
http://www.ncbi.nlm.nih.gov/pubmed/28301739
http://doi.org/10.1186/1752-0509-4-131
http://www.ncbi.nlm.nih.gov/pubmed/20863397
http://doi.org/10.1016/j.cell.2012.05.044
http://www.ncbi.nlm.nih.gov/pubmed/22817898
http://doi.org/10.1016/j.ymben.2014.05.014
http://www.ncbi.nlm.nih.gov/pubmed/24928774
http://doi.org/10.1002/(SICI)1097-0290(19970720)55:2&lt;305::AID-BIT8&gt;3.0.CO;2-M
http://doi.org/10.1371/journal.pcbi.1002577
http://doi.org/10.1038/msb.2013.19
http://www.ncbi.nlm.nih.gov/pubmed/23670537
http://doi.org/10.1371/journal.pcbi.1003885
http://www.ncbi.nlm.nih.gov/pubmed/25329309
http://doi.org/10.1371/journal.pcbi.1000632
http://www.ncbi.nlm.nih.gov/pubmed/20052270
http://doi.org/10.1016/j.jtbi.2008.09.037
http://www.ncbi.nlm.nih.gov/pubmed/19007794
http://doi.org/10.1002/bit.20096
http://www.ncbi.nlm.nih.gov/pubmed/15384040
http://doi.org/10.1016/j.ymben.2009.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19815088
http://doi.org/10.1002/bit.26063
http://www.ncbi.nlm.nih.gov/pubmed/27477740
http://doi.org/10.1038/srep23529
http://www.ncbi.nlm.nih.gov/pubmed/27004747
http://doi.org/10.1002/bit.27288
http://www.ncbi.nlm.nih.gov/pubmed/32022250
http://doi.org/10.1016/j.jbiotec.2013.01.018
http://www.ncbi.nlm.nih.gov/pubmed/23434835
http://doi.org/10.3182/20131216-3-IN-2044.00011
http://doi.org/10.1002/bit.23215
http://www.ncbi.nlm.nih.gov/pubmed/21618469
http://doi.org/10.1016/j.jbiotec.2014.03.012
http://www.ncbi.nlm.nih.gov/pubmed/24657347
http://doi.org/10.1007/s00253-013-5329-4
http://www.ncbi.nlm.nih.gov/pubmed/24169951
http://doi.org/10.2174/187152008783961932
http://www.ncbi.nlm.nih.gov/pubmed/18393789
http://doi.org/10.1038/sj.onc.1209597
http://www.ncbi.nlm.nih.gov/pubmed/16892078
http://doi.org/10.1002/bit.24728
http://www.ncbi.nlm.nih.gov/pubmed/22991240
http://doi.org/10.1038/srep04927
http://www.ncbi.nlm.nih.gov/pubmed/24820099
http://doi.org/10.1371/journal.pone.0121561
http://doi.org/10.1002/bit.260440207
http://www.ncbi.nlm.nih.gov/pubmed/18618684


Metabolites 2022, 12, 239 26 of 27

65. Schmid, G.; Blanch, H.W. Extra- and intracellular metabolite concentrations for murine hybridoma cells. Appl. Microbiol. Biotechnol.
1992, 36, 621–625. [CrossRef] [PubMed]

66. Genzel, Y.; Fischer, M.; Reichl, U. Serum-free influenza virus production avoiding washing steps and medium exchange in
large-scale microcarrier culture. Vaccine 2006, 24, 3261–3272. [CrossRef] [PubMed]

67. Hartley, F.; Walker, T.; Chung, V.; Morten, K. Mechanisms driving the lactate switch in Chinese hamster ovary cells. Biotechnol.
Bioeng. 2018, 115, 1890–1903. [CrossRef] [PubMed]

68. Im, D.-K.; Cheong, H.; Lee, J.S.; Oh, M.-K.; Yang, K.M. Protein kinase CK2-dependent aerobic glycolysis-induced lactate
dehydrogenase A enhances the migration and invasion of cancer cells. Sci. Rep. 2019, 9, 5337. [CrossRef] [PubMed]

69. Bröer, S.; Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 2017, 474, 1935–1963.
[CrossRef] [PubMed]

70. Sauro, H.M. Enzyme Kinetics for Systems Biology; Future Skill Software (Ambrosius Publishing): Washington, DC, USA, 2012; ISBN
9780982477311.

71. Sonnewald, U. Glutamate synthesis has to be matched by its degradation—Where do all the carbons go? J. Neurochem. 2014, 131,
399–406. [CrossRef] [PubMed]

72. Bissinger, T. Evaluation of MDCK Suspension Cell Lines for Influenza A Virus Production: Media, Metabolism, and Process Conditions;
Otto-von-Guericke-Universität: Magdeburg, Germany, 2020.

73. Lohr, V.; Hädicke, O.; Genzel, Y.; Jordan, I.; Büntemeyer, H.; Klamt, S.; Reichl, U. The avian cell line AGE1.CR.pIX characterized
by metabolic flux analysis. BMC Biotechnol. 2014, 14, 72. [CrossRef] [PubMed]

74. Tanner, L.B.; Goglia, A.G.; Wei, M.H.; Sehgal, T.; Parsons, L.R.; Park, J.O.; White, E.; Toettcher, J.E.; Rabinowitz, J.D. Four Key
Steps Control Glycolytic Flux in Mammalian Cells. Cell Syst. 2018, 7, 49–62.e8. [CrossRef] [PubMed]

75. Yalcin, A.; Telang, S.; Clem, B.; Chesney, J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatases in cancer. Exp. Mol. Pathol. 2009, 86, 174–179. [CrossRef] [PubMed]

76. Sola-Penna, M.; Da Silva, D.; Coelho, W.S.; Marinho-Carvalho, M.M.; Zancan, P. Regulation of mammalian muscle type 6-
phosphofructo-1-kinase and its implication for the control of the metabolism. IUBMB Life 2010, 62, 791–796. [CrossRef] [PubMed]

77. Eprintsev, A.T.; Wu, T.L.; Selivanova, N.V.; Khasan Khamad, A. Obtaining homogenous preparations of succinate dehydrogenase
isoforms from the D-507 strain of Sphaerotilus natans. Appl. Biochem. Microbiol. 2012, 48, 541–545. [CrossRef]

78. Manhas, N.; Duong, Q.V.; Lee, P.; Richardson, J.D.; Robertson, J.D.; Moxley, M.A.; Bazil, J.N. Computationally modeling
mammalian succinate dehydrogenase kinetics identifies the origins and primary determinants of ROS production. J. Biol. Chem.
2020, 295, 15262–15279. [CrossRef] [PubMed]

79. Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11, 85–95. [CrossRef] [PubMed]
80. Cantor, J.R.; Sabatini, D.M. Cancer cell metabolism: One hallmark, many faces. Cancer Discov. 2012, 2, 881–898. [CrossRef]

[PubMed]
81. Grüning, N.M.; Lehrach, H.; Ralser, M. Regulatory crosstalk of the metabolic network. Trends Biochem. Sci. 2010, 35, 220–227.

[CrossRef] [PubMed]
82. Hyde, R.; Taylor, P.M.; Hundal, H.S. Amino acid transporters: Roles in amino acid sensing and signalling in animal cells. Biochem.

J. 2003, 373, 1–18. [CrossRef] [PubMed]
83. Yuan, H.-X.; Xiong, Y.; Guan, K.-L. Nutrient Sensing, Metabolism, and Cell Growth Control. Mol. Cell 2013, 49, 379–387. [CrossRef]

[PubMed]
84. Barabási, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113.

[CrossRef]
85. Zu, X.L.; Guppy, M. Cancer metabolism: Facts, fantasy, and fiction. Biochem. Biophys. Res. Commun. 2004, 313, 459–465. [CrossRef]
86. Wagner, B.A.; Venkataraman, S.; Buettner, G.R. The rate of oxygen utilization by cells. Free Radic. Biol. Med. 2011, 51, 700–712.

[CrossRef]
87. Herst, P.M.; Berridge, M.V. Cell surface oxygen consumption: A major contributor to cellular oxygen consumption in glycolytic

cancer cell lines. Biochim. Biophys. Acta—Bioenerg. 2007, 1767, 170–177. [CrossRef] [PubMed]
88. Mahmoudabadi, G.; Milo, R.; Phillips, R. Energetic cost of building a virus. Proc. Natl. Acad. Sci. USA 2017, 114, E4324–E4333.

[CrossRef] [PubMed]
89. Klemperer, H. Glucose breakdown in chick embryo cells infected with influenza virus. Virology 1961, 13, 68–77. [CrossRef]
90. Petch, D.; Butler, M. Profile of energy metabolism in a murine hybridoma: Glucose and glutamine utilization. J. Cell. Physiol. 1994,

161, 71–76. [CrossRef] [PubMed]
91. Bonarius, H.P.J.; Özemre, A.; Timmerarends, B.; Skrabal, P.; Tramper, J.; Schmid, G.; Heinzle, E. Metabolic-flux analysis of

continuously cultured hybridoma cells using 13CO2 mass spectrometry in combination with 13C-lactate nuclear magnetic
resonance spectroscopy and metabolite balancing. Biotechnol. Bioeng. 2001, 74, 528–538. [CrossRef] [PubMed]

92. Goudar, C.; Biener, R.; Boisart, C.; Heidemann, R.; Piret, J.; de Graaf, A.; Konstantinov, K. Metabolic flux analysis of CHO cells in
perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. Metab. Eng. 2010, 12, 138–149. [CrossRef]
[PubMed]

93. Dean, J.; Reddy, P. Metabolic analysis of antibody producing CHO cells in fed-batch production. Biotechnol. Bioeng. 2013, 110,
1735–1747. [CrossRef] [PubMed]

http://doi.org/10.1007/BF00183239
http://www.ncbi.nlm.nih.gov/pubmed/1368066
http://doi.org/10.1016/j.vaccine.2006.01.019
http://www.ncbi.nlm.nih.gov/pubmed/16472544
http://doi.org/10.1002/bit.26603
http://www.ncbi.nlm.nih.gov/pubmed/29603726
http://doi.org/10.1038/s41598-019-41852-4
http://www.ncbi.nlm.nih.gov/pubmed/30926903
http://doi.org/10.1042/BCJ20160822
http://www.ncbi.nlm.nih.gov/pubmed/28546457
http://doi.org/10.1111/jnc.12812
http://www.ncbi.nlm.nih.gov/pubmed/24989463
http://doi.org/10.1186/1472-6750-14-72
http://www.ncbi.nlm.nih.gov/pubmed/25077436
http://doi.org/10.1016/j.cels.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/29960885
http://doi.org/10.1016/j.yexmp.2009.01.003
http://www.ncbi.nlm.nih.gov/pubmed/19454274
http://doi.org/10.1002/iub.393
http://www.ncbi.nlm.nih.gov/pubmed/21117169
http://doi.org/10.1134/S0003683812060038
http://doi.org/10.1074/jbc.RA120.014483
http://www.ncbi.nlm.nih.gov/pubmed/32859750
http://doi.org/10.1038/nrc2981
http://www.ncbi.nlm.nih.gov/pubmed/21258394
http://doi.org/10.1158/2159-8290.CD-12-0345
http://www.ncbi.nlm.nih.gov/pubmed/23009760
http://doi.org/10.1016/j.tibs.2009.12.001
http://www.ncbi.nlm.nih.gov/pubmed/20060301
http://doi.org/10.1042/bj20030405
http://www.ncbi.nlm.nih.gov/pubmed/12879880
http://doi.org/10.1016/j.molcel.2013.01.019
http://www.ncbi.nlm.nih.gov/pubmed/23395268
http://doi.org/10.1038/nrg1272
http://doi.org/10.1016/j.bbrc.2003.11.136
http://doi.org/10.1016/j.freeradbiomed.2011.05.024
http://doi.org/10.1016/j.bbabio.2006.11.018
http://www.ncbi.nlm.nih.gov/pubmed/17266920
http://doi.org/10.1073/pnas.1701670114
http://www.ncbi.nlm.nih.gov/pubmed/28512219
http://doi.org/10.1016/0042-6822(61)90033-2
http://doi.org/10.1002/jcp.1041610110
http://www.ncbi.nlm.nih.gov/pubmed/7929610
http://doi.org/10.1002/bit.1145
http://www.ncbi.nlm.nih.gov/pubmed/11494221
http://doi.org/10.1016/j.ymben.2009.10.007
http://www.ncbi.nlm.nih.gov/pubmed/19896555
http://doi.org/10.1002/bit.24826
http://www.ncbi.nlm.nih.gov/pubmed/23296898


Metabolites 2022, 12, 239 27 of 27

94. DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The Biology of Cancer: Metabolic Reprogramming Fuels Cell
Growth and Proliferation. Cell Metab. 2008, 7, 11–20. [CrossRef]

95. Lohr, V.; Genzel, Y.; Behrendt, I.; Scharfenberg, K.; Reichl, U. A new MDCK suspension line cultivated in a fully defined medium
in stirred-tank and wave bioreactor. Vaccine 2010, 28, 6256–6264. [CrossRef]

96. Kalbfuss, B.; Knöchlein, A.; Kröber, T.; Reichl, U. Monitoring influenza virus content in vaccine production: Precise assays for the
quantitation of hemagglutination and neuraminidase activity. Biologicals 2008, 36, 145–161. [CrossRef]

97. Frensing, T.; Kupke, S.Y.; Bachmann, M.; Fritzsche, S.; Gallo-Ramirez, L.E.; Reichl, U. Influenza virus intracellular replication
dynamics, release kinetics, and particle morphology during propagation in MDCK cells. Appl. Microbiol. Biotechnol. 2016, 100,
7181–7192. [CrossRef] [PubMed]

98. Momose, F.; Kikuchi, Y.; Komase, K.; Morikawa, Y. Visualization of microtubule-mediated transport of influenza viral progeny
ribonucleoprotein. Microbes Infect. 2007, 9, 1422–1433. [CrossRef] [PubMed]

99. Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J. Metabolite profiling of
recombinant CHO cells: Designing tailored feeding regimes that enhance recombinant antibody production. Biotechnol. Bioeng.
2011, 108, 3025–3031. [CrossRef] [PubMed]

100. Ritter, J.B.; Genzel, Y.; Reichl, U. High-performance anion-exchange chromatography using on-line electrolytic eluent generation
for the determination of more than 25 intermediates from energy metabolism of mammalian cells in culture. J. Chromatogr. B Anal.
Technol. Biomed. Life Sci. 2006, 843, 216–226. [CrossRef] [PubMed]

101. Ritter, J.B.; Genzel, Y.; Reichl, U. Simultaneous extraction of several metabolites of energy metabolism and related substances in
mammalian cells: Optimization using experimental design. Anal. Biochem. 2008, 373, 349–369. [CrossRef] [PubMed]

102. Rüdiger, D.; Kupke, S.Y.; Laske, T.; Zmora, P.; Reichl, U. Multiscale modeling of influenza a virus replication in cell cultures
predicts infection dynamics for highly different infection conditions. PLoS Comput. Biol. 2019, 15, 1–22. [CrossRef] [PubMed]

103. Schmidt, H.; Jirstrand, M. Systems Biology Toolbox for MATLAB: A computational platform for research in systems biology.
Bioinformatics 2006, 22, 514–515. [CrossRef] [PubMed]

104. Cohen, S.D.; Hindmarsh, A.C. CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 1996, 10, 138–143. [CrossRef]
105. Hansen, N.; Kern, S. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany,
2004; pp. 282–291. ISBN 9783540302179.

106. Hansen, N.; Ostermeier, A. Completely Derandomized Self-Adaptation in Evolution Strategies. Evol. Comput. 2001, 9, 159–195.
[CrossRef]

http://doi.org/10.1016/j.cmet.2007.10.002
http://doi.org/10.1016/j.vaccine.2010.07.004
http://doi.org/10.1016/j.biologicals.2007.10.002
http://doi.org/10.1007/s00253-016-7542-4
http://www.ncbi.nlm.nih.gov/pubmed/27129532
http://doi.org/10.1016/j.micinf.2007.07.007
http://www.ncbi.nlm.nih.gov/pubmed/17905627
http://doi.org/10.1002/bit.23269
http://www.ncbi.nlm.nih.gov/pubmed/21769861
http://doi.org/10.1016/j.jchromb.2006.06.004
http://www.ncbi.nlm.nih.gov/pubmed/16798123
http://doi.org/10.1016/j.ab.2007.10.037
http://www.ncbi.nlm.nih.gov/pubmed/18036549
http://doi.org/10.1371/journal.pcbi.1006819
http://www.ncbi.nlm.nih.gov/pubmed/30779733
http://doi.org/10.1093/bioinformatics/bti799
http://www.ncbi.nlm.nih.gov/pubmed/16317076
http://doi.org/10.1063/1.4822377
http://doi.org/10.1162/106365601750190398

	Introduction 
	Results and Discussion 
	Simulation of Cell Growth and Virus Production 
	Simulation of Substrate and Metabolic By-Product Dynamics 
	Simulation of Intracellular Metabolism 
	Glycolysis, Pentose Phosphate Cycle and Uridine Diphosphate Sugar Metabolism 
	TCA Cycle 
	Energy Metabolism 
	Analysis of Intracellular Rates 


	Materials and Methods 
	Shake Flask Cultivations 
	Analytics 
	Cell Count and Cell Volume 
	Hemagglutination Activity Assay 
	Imaging Flow Cytometry 
	Extracellular Metabolites 
	Intracellular Metabolites 

	Model Definition 
	Segregated Cell Growth and Infection Model 
	Structured Model of the Central Carbon Metabolism 

	Parameter Fitting and Model Simulation 

	Conclusions 
	References

