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Abstract: A large percentage of infants develop viral bronchiolitis needing medical intervention and
often develop further airway disease such as asthma. To characterize metabolic perturbations in
acute respiratory syncytial viral (RSV) bronchiolitis, we compared metabolomic profiles of moderate
and severe RSV patients versus sedation controls. RSV patients were classified as moderate or
severe based on the need for invasive mechanical ventilation. Whole blood and urine samples were
collected at two time points (baseline and 72 h). Plasma and urinary metabolites were extracted in
cold methanol and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-
MS/MS), and data from the two biofluids were combined for multivariate data analysis. Metabolite
profiles were clustered according to severity, characterized by unique metabolic changes in both
plasma and urine. Plasma metabolites that correlated with severity included intermediates in the
sialic acid biosynthesis, while urinary metabolites included citrate as well as multiple nucleotides.
Furthermore, metabolomic profiles were predictive of future development of asthma, with urinary
metabolites exhibiting higher predictive power than plasma. These metabolites may offer unique
insights into the pathology of RSV bronchiolitis and may be useful in identifying patients at risk for
developing asthma.

Keywords: respiratory syncytial virus; pediatrics; bronchiolitis; asthma; metabolomics; liquid
chromatography-mass spectrometry; partial least squares regression; critical care

1. Introduction

Respiratory syncytial virus (RSV) is a major cause of childhood morbidity across the
world and mortality in low to middle income countries [1]. In the United States, RSV repre-
sents the most frequent cause of hospitalization in the first year of life [2]. Twenty percent
of the annual birth cohort develops viral bronchiolitis that requires medical attention [3],
and acutely ill patients have been reported to continue having other respiratory problems
requiring medical attention throughout their childhood [4]. Improved understanding of the
molecular mechanisms underlying development of severe symptoms in RSV infection is
therefore crucial to identify potential risk factors for both severe RSV and other associated
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respiratory problems, as well as improve treatment strategies. We previously reported
the results of a multidimensional RNA analysis, including gene, transcript, immune cell
deconvolution, secondary infections, and immune repertoire comparison between RSV
patients and controls, and discovered that infants with severe RSV had significant blood
signatures connected to the immune system, interferon signaling, and cytokine activa-
tion [5]. Metabolomics has been used in a number of studies to identify associations
between metabolic changes in biofluids and perturbations to the immune system; for exam-
ple, altered levels of aromatic amino acids, fatty acids and energy metabolites have been
reported to associate with serum inflammatory markers in a number of different medical
conditions [6–9]. Here, we extend our study of the aforementioned cohort by using liquid
chromatography–tandem mass spectrometry (LC-MS/MS) metabolomics to characterize
metabolic perturbations associated with RSV severity in plasma and urine of these patients.
LC-MS/MS has been employed in a number of metabolomic analyses of clinical samples
including urinary and serum or plasma [10–13]; although less comprehensive in coverage
than untargeted metabolomics, targeted LC-MS/MS has the advantage of increased sensi-
tivity and quantitative performance [14,15], and our established method [16–19] is capable
of profiling a wide range of metabolites including amino acids, phosphorylated compounds
in glycolysis and pentose phosphate pathway, organic acids in the tricarboxylic acid (TCA)
cycle, as well as intermediates in nucleotide biosynthesis and nucleotide sugar metabolism
to detect perturbations within a variety of metabolic pathways. Since metabolomics are
predictive of the development of disease [20], biomarkers identified in this study may also
have prognostic utility in determining whether severe disease may develop after initial
hospitalization.

An epidemiological link between bronchiolitis caused by RSV and the development
of recurrent wheezing and/or asthma was first described more than 60 years ago [21].
Together with genetic predisposition to allergic sensitization (atopy), RSV infection in early
life is now recognized as one of the most important risk factors for pediatric asthma [22–24].
Here, we also tested the hypothesis that RSV patient metabolomic profiles may be predictive
for future development of asthma over the two years after pediatric ICU admission.

2. Results
2.1. Patient Demographics

A detailed description of the patient cohort can be found in our previous blood
transcriptomics study [5] and are summarized in Table 1. RSV patients requiring invasive
mechanical ventilation were considered severe, while those only requiring non-invasive
respiratory support were considered moderate. From this patient cohort, we identified
plasma and urinary metabolites correlated with severity of RSV infection, and additionally
found urinary metabolites with strong predictive power for future asthma development in
RSV patients.

Additional details of the patient demographics are included in Supplementary Table S1.
Weight at time of study enrollment PICU admission was found to be statistically lower
in RSV patients as compared to control (4.25 kg vs. 7.32 kg; p ≤ 0.005). It was a largely
Caucasian population, and there were three premature (less than 36 weeks) infants among
the RSV patients. All RSV patients presented with acute bronchiolitis, and a significant
number (15/20) were also diagnosed with pneumonia; detailed diagnoses as well as the
severity of illness scores for the 20 RSV patients are summarized in Supplementary Table S2.
PELOD was included, given that it is a measure of the first 10 days in the ICU [25]. Both
comprehensive and Day 0 PELOD scores were similar for both severe and moderate patient
populations. The greatest variability was seen on day 3, whereby moderate patients had
less than half the scores of the severe (2.75 vs. 7.93). Although included in the table, both
Pediatric Index of Mortality 2 (PIM2) [26] and Pediatric Risk of Mortality III (PRISMIII) [27]
are calculated during the first hours of ICU admission only, the time to consenting patients
was within the first 24 h of admission, and their relevance is not clear in this context.
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Table 1. Patient cohort information for samples used in this study.

Range (n) % Mean Median St. dev.

Age (months) 0.5–7 30 100 2.24 2.0 1.60
Controls 0.5–6 10 3.20 3.0 1.83
RSV 0–7 20 2.00 2.0 1.52

Gender
Female 17 56.7
Controls 4 13.3
RSV 13 43.3

Birth weight (kg)
Controls 10 3.65 3.7 0.40
RSV 20 3.10 3.2 0.84

Hospital LOS 1 (days) 20 14.93 11.20 9.37
Severe 15 15.73 14.58 8.63
Moderate 5 12.53 6.72 12.13

PICU 2 LOS 1 (days) 20 10.60 10.04 5.56
Severe 15 11.28 11.41 4.86
Moderate 5 8.56 5.53 7.58

Respiratory Support (days)
Mechanical ventilation 15 8.95 7.08 4.30
Mechanical ventilation (non-invs.) 1 2.00 2.0 N/A
High flow oxygen 4 0.91 0.19 1.56

1 LOS: length of stay; 2 PICU: pediatric intensive care unit.

2.2. Principal Components Analysis Reveals Sample Clustering by RSV Severity

We quantified a total of 64 plasma and 70 urinary metabolite peaks over two time
points. Unsupervised principal component analysis (PCA) was performed on the combined
metabolite profiles to address sample clustering. The first two principal components (PCs)
were each driven by one or two strong outliers—data points that are highly divergent from the
majority of samples (Appendix A Figure A1). We therefore focused on PCs 3 and 4 and found
that these two PCs cluster the samples into distinct control (non-RSV), severe RSV baseline,
and severe RSV 72 h groups (Figure 1A), indicating that metabolic differences corresponding
to RSV severity are reflected in the data. Control and severe RSV samples separated along
PC 3, while the PC 4 axis separated baseline and 72 h samples. Most moderate RSV baseline
samples fell in between the severe RSV baseline and control samples, which is consistent with
these samples originating from patients exhibiting a moderate pathology.

2.3. Plasma Sialic Acid Metabolic Intermediates and Urinary Nucleotides Discriminate RSV Samples

To further investigate the differences between RSV and control patients, we performed
PLS regression on combined plasma and urinary metabolites, using RSV severity as the
response variable. Numerical values for RSV severity were assigned as follows: control, 0;
moderate RSV, 1; severe RSV, 2. Since 72 h samples were not available for all RSV patients,
nor control patients, we limited the analysis to baseline samples for the RSV patients. We
first investigated the PLS score plot and confirmed that the model successfully identified
metabolite trends that correspond to RSV severity, with control and severe RSV samples
falling on opposite ends of the plot and moderate RSV samples in the middle (Figure 1B).
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axes represent 1st and 2nd PLS component scores, respectively. 
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raminate, p = 0.0357) (Figure 2C). 

Figure 1. Plasma and urinary metabolite profiles reflect RSV severity. (A) Score plot of principal
components analysis (PCA) performed using plasma and urinary metabolite data for all samples.
Horizontal and vertical axes represent 3rd and 4th principal component scores, respectively. (B) Score
plot of partial least squares (PLS) regression performed using metabolite data from control and RSV
baseline samples, with RSV severity used as response variable. Horizontal and vertical axes represent
1st and 2nd PLS component scores, respectively.

To identify plasma metabolites that correlate positively or negatively with RSV severity,
we examined the PLS coefficients (Figure 2A, Supplementary Table S3). Metabolites with
large positive coefficients were positively correlated with the RSV response variable. Plasma
metabolites with the highest positive coefficients were xanthosine, phosphoserine, and N-
acetylneuraminate. Box plots of the normalized metabolite levels showed that these metabo-
lites were highest in severe RSV and lowest in control groups (xanthosine, p = 7.34 × 10−6;
phosphoserine, p = 8.5 × 10−5; N-acetylneuraminate, p = 1.84 × 10−5) (Figure 2B). Mean-
while, metabolites with negative coefficients included N-acetylglucosamine-1-phosphate,
glycerol 3-phosphate, alpha ketoglutarate, and CMP-N-acetylneuraminate. In the box
plots, N-acetylglucosamine-1-phosphate showed a clear stepwise decrease from con-
trols to moderate to severe RSV (control vs. moderate RSV, p = 0.04; control vs. se-
vere RSV, p = 4.28 × 10−6), while glycerol 3-phosphate, alpha ketoglutarate and CMP-N-
acetylneuraminate also significantly decreased between control and severe RSV samples
(glycerol 3-phosphate, p = 0.0163; alpha ketoglutarate, p = 0.00603; CMP-N-acetylneuraminate,
p = 0.0357) (Figure 2C).

Next, we examined the PLS coefficients for urinary metabolites (Figure 3A, Supple-
mentary Table S4). Adenosine monophosphate (AMP), uridine monophosphate (UMP),
xylulose-5-phosphate, and inosine monophosphate (IMP) had large positive coefficients
indicating correlation with RSV severity. From boxplots of the normalized metabolite levels,
we found that the positive correlation of these metabolites with RSV severity was driven
by large increases in severe RSV samples (AMP, p = 0.02; UMP, p = 0.00872; xylulose-5-
phosphate, p = 0.207; IMP, p = 0.0408), while the metabolite levels were not significantly
different between control and moderate RSV samples (Figure 3B). Conversely, metabolites
with large negative coefficients included citrate/isocitrate, guanosine diphosphate (GDP)
and cytidine diphosphate (CDP). Citrate/isocitrate showed a stepwise decrease from con-
trol to moderate and further to severe RSV (control vs. moderate RSV, p = 0.0303; control
vs. severe RSV, p = 0.000361), while GDP (control vs. moderate RSV, p = 0.0303; control
vs. severe RSV, p = 0.00227) and CDP (control vs. moderate RSV, p = 0.00433; control vs.
severe RSV, p = 0.00318) were decreased in RSV samples compared to controls but were not
different between moderate and severe RSV (Figure 3C).
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Figure 2. Sialic acid pathway metabolites in plasma are correlated with RSV severity. (A) PLS
coefficients of plasma metabolites in the RSV model. Metabolites with positive coefficients are
positively correlated with RSV severity, i.e., enriched in RSV samples; metabolites with negative
coefficients are negatively correlated with RSV severity, i.e., enriched in controls relative to RSV
samples. (B,C) Box plots of top plasma metabolites with (B) positive or (C) negative coefficients.
Vertical axes represent normalized relative metabolite levels. Lower and upper ranges of the boxes
represent 1st and 3rd quartiles, respectively; the center lines represent median values, and whiskers
indicate maximum and minimum values. P values displayed underneath the sample class labels are
calculated by the Mann–Whitney U test; significant (p < 0.05) values are highlighted in red.
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Figure 3. Nucleotides in urine are correlated with RSV severity. (A) PLS coefficients of urinary
metabolites in the RSV model. Metabolites with positive coefficients are positively correlated with
RSV severity, i.e., enriched in RSV samples; metabolites with negative coefficients are negatively
correlated with RSV severity, i.e., enriched in controls relative to RSV samples. (B,C). Box plots
of top urinary metabolites with (B) positive or (C) negative coefficients. Vertical axes represent
normalized relative metabolite levels. Lower and upper ranges of the boxes represent 1st and 3rd
quartiles, respectively; the center lines represent median values, and whiskers indicate maximum
and minimum values. p values displayed underneath the sample class labels are calculated by the
Mann–Whitney U test; significant (p < 0.05) values are highlighted in red.

2.4. Patient Weight and Plasma Protein Levels Negatively Correlate with RSV Severity

Unsupervised and supervised multivariate analyses identified plasma and urinary
metabolites altered in RSV relative to control. Using these multivariate analysis strategies
also enabled investigation of the relationships between other patient data. We performed
PCA on available clinical covariates including white blood cell measurements. Protein
levels quantified in the biofluid samples following metabolite extraction were included
as variables in this analysis, and categorical data such as gender, race, prematurity, diet,
presence of ENT problems, or classification as asthmatic within a two-year follow-up period
were converted to numerical variables (Appendix A Table A1).

Length on ventilator, RSV severity, and length of stay had positive loadings on PC 1 in
this model, indicating that they were all strongly correlated with each other (Figure 4A,
Supplementary Table S5). We noted that the future asthma classification covariate also had a
positive loading, indicating that future classification as asthmatic correlated with severe RSV.
Weight, plasma protein, and age had negative loadings, indicating that they were negatively
correlated with RSV severity. Thus, severe RSV patients tended to have lower weight, lower
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levels of plasma protein, as well as younger age. These trends were confirmed from the PCA
score plot, with the color coding of data points varied to visualize RSV severity (Figure 4B),
weight (Figure 4C), plasma protein (Figure 4D), and asthma classification (Figure 4E). The
PC 2 of this model seems to be driven by an inverse relationship between prematurity
and ear nose throat (ENT) problems, as well as birth weight (Appendix A Figure A2). The
relatively high positive loading of eosinophil counts on this PC also suggests a correlation
between prematurity and eosinophils.
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Figure 4. Patient weight and plasma protein are inversely correlated with RSV severity. (A) Covariate
loadings on the 1st principal component of the covariates PCA model. Covariates with positive
loadings have higher values in samples with positive 1st principal component scores, and vice versa;
hence, covariates on the same side of the loading plot are positively correlated with each other, and
covariates on the opposite side are inversely correlated. (B–E) Score plots all showing the 1st and
2nd principal components in the covariates-only PCA model, with sample data points color-coded
according to (B) RSV severity, (C) patient weight, (D) plasma protein quantification, (E) classification
of the patient as asthmatic within the two-year follow-up period after hospital visit.

2.5. Urinary Metabolites Are Predictive of Future Asthma Development

As noted above, asthma classification showed a correlation with RSV severity. Only
one out of 10 control patients were classified as asthmatic in the two-year follow-up
period after hospital visit. A larger proportion of moderate and severe RSV patients (3
out of 5 moderate RSV, 7 out of 15 severe RSV; in total 10 out of 20 RSV patients, or
50%) were classified as asthmatic in the following two years (Figure 5A). To investigate
whether metabolite profiles of samples taken at initial hospitalization is predictive of
future diagnosis of asthma, we performed PLS regression on combined plasma and urinary
metabolites, using asthma classification as the response variable. Since RSV infection
exerts a strong effect on metabolite profiles of baseline samples (Figure 1B), we only used
metabolite data from control and 72 h timepoint RSV samples for asthma prediction to
minimize potential confounding effects from RSV-driven metabolic perturbations. This
strategy resulted in two out of three moderate RSV patients who developed asthma being
excluded from the analysis, since 72 h samples were not collected for these patients due
to early discharge from intensive care. The asthma PLS model separated asthma and
non-asthma samples as indicated by the score plot (Figure 5B). Since the metabolite profiles
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were sampled during initial hospitalization and the patient classification as asthmatic
occurred at a later date, this suggests that metabolite profiles are predictive of future
asthma development in infant patients. The score plot showed that non-asthma severe RSV
samples, while still clustering together with non-asthma control and moderate RSV samples,
tended to fall closer to the asthma group (Figure 5B) indicating a potential underlying
predisposition of severe RSV patients to develop asthma. To exclude the possibility of
overlap between high-contributing metabolites of the RSV and the asthma models, we
plotted PLS coefficients from the RSV model versus the asthma model and determined
that there was low correlation (Pearson’s r = 0.417) between the two sets of coefficients
(Appendix A Figure A3).
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Figure 5. Future development of asthma is predictable from combined plasma and urinary metabolite
profiles. (A) Stacked bar plot showing breakdown of numbers of control, moderate RSV and severe
RSV patients who were diagnosed as asthmatic in the two-year follow-up period post hospital visit.
(B) Score plot of PLS model using metabolite data from control and RSV 72 h timepoint samples,
with asthma classification as response variable. Triangles represent patients classified as asthmatic
while rectangles represent patients not classified as asthmatic. Horizontal and vertical axes represent
1st and 2nd PLS component scores, respectively. (C) PLS coefficients of metabolites in the RSV
model. Metabolites with positive coefficients are positively correlated with asthma classification, i.e.,
enriched in patients classified as asthmatic; conversely, metabolites with negative coefficients are
enriched patients not classified as asthmatic. Plasma and urinary metabolite names include “PL.”
and “UR.”, respectively, and the bar plot is further color-coded (pink bars for plasma, yellow bars for
urinary metabolites).

Examination of the PLS coefficients in the asthma prediction model showed that
many urinary metabolites had positive coefficients and therefore are positively correlated
with asthma classification, including lysine, ornithine, UMP, IMP and GDP-mannose (Fig-
ure 5C, Supplementary Table S6). The metabolite with largest negative coefficient (i.e.,
negatively correlated with asthma classification) was also a urinary metabolite, xanthosine.
Receiver–operator characteristic (ROC) curves using either top positive and negative uri-
nary metabolites (lysine and xanthosine) or top positive and negative plasma metabolites
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(uracil and citrate/isocitrate) showed area under the curve (AUC) values close to 1, indi-
cating good predictive power of both top urinary and plasma metabolites (Appendix A
Figure A4). However, AUC was larger with urinary metabolites (0.956) than plasma
metabolites (0.895). Thus, urinary metabolites have a higher predictive power toward
future asthma development compared to plasma metabolites.

3. Discussion

In this paper, we report results of a metabolomic analysis of blood and urine samples
from RSV patients and healthy controls, which complements a previous transcriptomics
study performed on the same cohort [5]. The current study is the combined analysis of
plasma and urine, which allows us to explore associations between metabolites extracted
from the two biofluids in our multivariate analysis models.

We found significant metabolite differences in the plasma and urinary metabolites of
RSV patients compared to non-RSV controls. Among urinary metabolites, citrate/isocitrate
strongly and negatively correlated with RSV severity (Figure 3A). This result is consistent
with previous studies comparing urinary metabolites between RSV patients and healthy
controls [28,29]. The studies also found perturbations in the TCA cycle that included
decreased succinate in urine samples of RSV patients; in agreement with this, we found
lower succinate levels in RSV samples relative to controls (Appendix A; Figure A5).

Other significant perturbations to urinary metabolites appear to involve nucleotides,
specifically increased monophosphate nucleotides (AMP, UMP, IMP) and decreased diphos-
phate nucleotides (GDP, CDP) in RSV samples. Monophosphate nucleotides are converted
to diphosphate nucleotides by nucleoside–monophosphate kinases (NMPK) [30], while
the opposite conversion from diphosphate to monophosphate nucleotides is mediated by
nucleoside pyrophosphatase/phosphodiesterases (NPPs) [31]. Hence, accumulation of
monophosphate nucleotides and decrease in diphosphate nucleotides may be due to either
decreased NMPK activity, and/or increased NPP activity in urine-associated tissues such
as the kidney or urinary tract.

We also observed apparent perturbations in the plasma metabolites of RSV patients
compared to controls, particularly to the hexosamine and sialic acid biosynthesis pathways.
N-acetylglucosamine-1-phosphate is an intermediate in hexosamine biosynthesis, which
produces UDP-N-acetylglucosamine that in turn feeds into the sialic acid biosynthesis path-
way. The product of sialic acid biosynthesis, N-acetylneuraminate, is further conjugated
with CMP to form CMP-N-acetylneuraminate, the activated form that is used as substrate
by sialyltransferases; sialyltransferase reactions attach the N-acetylneuraminate moiety
onto glycan chains of glycoproteins and glycolipids destined for the cell surface. In addi-
tion to N-acetylglucosamine-1-phosphate, which had the largest negative coefficient in the
RSV model (Figure 2A), both UDP-N-acetylglucosamine and CMP-N-acetylneuraminate
were also decreased in RSV samples (Appendix A Figure A6). The decreased levels of
these metabolites suggest a decrease in hexosamine and sialic acid pathway activities.
Free N-acetylneuraminate positively correlated with RSV severity (Figure 2B). Since N-
acetylneuraminate can be recycled from endocytosed cell surface proteins or taken up
directly from the extracellular environment, it is possible that dysregulation in the pathway
resulted in N-acetylneuraminate accumulation despite decreased biosynthetic activity. We
previously reported an increase in N-acetylneuraminate and xanthosine levels in highly
metastatic mouse mammary tumors relative to less metastatic tumors [17]. In the present
study, we also identified a positive correlation between xanthosine and RSV severity, which
echoes the results from the previous study. Free xanthosine can arise from degradation
of xanthosine monophosphate (XMP), an intermediate in de novo guanosine nucleotide
biosynthesis [32]. XMP is produced from IMP by inosine 5′-monophosphate dehydrogenase
(IMPDH); this reaction is important for DNA synthesis particularly in rapidly proliferating
cells including microbes, cancer cells and cells of the immune system [33]. Thus, an in-
crease in xanthosine levels may reflect increased IMPDH activity following immune system
activation in the RSV patients [34].
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Respiratory viral infections are the most important risk factors for the onset of wheez-
ing in infants and small children [22,35]. It remains unclear whether bronchiolitis causes
chronic respiratory symptoms, or if it is a marker for children with a genetic/environmental
predisposition for developing asthma. Here, we found that metabolite profiles from this
patient cohort could be used to predict whether patients hospitalized for acute RSV bron-
chiolitis will become classified as asthmatic within a two-year follow-up period (Figure 5B).
Although most patients who developed asthma within this cohort are RSV patients
(Figure 5A), the metabolite coefficients in the RSV characterization and asthma predic-
tion models do not show a high degree of correlation (Appendix A Figure A3), indicating
that asthma predisposition is driven by a separate set of underlying metabolic factors
independent of RSV severity. We additionally found that urinary metabolites have high
predictive power for future asthma risk (Figure 5C). The initially surprising result that
urinary metabolites have stronger predictive value than plasma could be due to the exten-
sive contact of urine with tubule epithelial cells of the kidney, which share many of the
cell properties of lung epithelial cells. As urine is one of the simplest to obtain materials
from patients, these correlations could have high future clinical utility, especially if these
metabolites are studied in a broader non-RSV infant cohort to establish if the RSV and
metabolite correlations are dependent on each other.

Symptoms of both RSV and asthma are characterized by interferon responses within
the respiratory system, with a complex interaction of immune cells with lung epithelial
cells [36]. As nearly every infant is exposed to RSV, but only a small percentage are
hospitalized, the priming of the innate immune system by other factors is likely responsible
for the severe phenotype in many cases. This same priming is likely shared in asthma.
Culture experiments have shown that Th1 or Th2 cytokine priming can overstimulate
the immune system and independently increase risks for both severe RSV responses and
asthma development [37]. Therefore, it has been suggested that asthma development is
likely independent of RSV infections. The notion of a shared underlying cause of immune
priming but distinct pathways of diseases development for severe RSV and asthma is
reflected in our study results, which showed that patients hospitalized for severe RSV have
a higher risk of asthma development (Figure 5A) but metabolic perturbations due to RSV
and metabolic signatures predictive of asthma are distinct (Appendix A Figure A4).

One caveat of the current study is that we performed relative quantification of metabo-
lites. We identified metabolites perturbed in RSV infection as well as metabolites predictive
of asthma development; our data in the present state do not allow for establishment of
concentration thresholds to be used as biomarkers for RSV diagnosis or asthma prediction.
Absolute quantification of metabolite concentrations in biofluids require labeled internal
standards for compounds of interest, which were not available for this study. As a future
direction, we propose validating the results of this study in a separate cohort and then
performing absolute quantification of the metabolites of interest to determine threshold
concentrations for biomarkers.

In conclusion, we identified a perturbation in plasma metabolites in the sialic acid
pathway that correlate with severity of RSV infection. Changes in urinary metabolites,
especially nucleotides, also correlate with RSV severity. Additionally, we determined
that urinary metabolites predict future development of asthma. These results will inform
further mechanistic studies into RSV pathology as well as development of biomarkers for
predicting future asthma risk to inform early detection and intervention.

4. Materials and Methods
4.1. Study Population, Site and Sample Collection

Samples were collected under the IRB protocol 2107-049-SH/HDVCH. Samples were
collected at the Helen DeVos Children’s Hospital (HDVCH), a quaternary-care, urban,
pediatric hospital in Western, Michigan. In brief, study patients were admitted to the PICU
with bronchiolitis, were positive for RSV by nasopharyngeal test, and were less than six
months of age (excluding premature births less than 34 weeks gestation). Consent was
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obtained, and then blood and urine samples were collected. At least 0.5 mL of blood was
collected in EDTA tubes on ice and immediately centrifuged at 4 ◦C to obtain plasma.
Plasma samples were stored at−20 ◦C overnight and then at−80 ◦C until batch processing.
Urine samples were collected under clinically sterile conditions at the bedside using a
substrate-free vacutainer (BD® #364992-1) according to manufacturer specifications and
frozen at −20 ◦C for short-term storage, and −80 ◦C for long-term storage.

RSV patient samples were collected at two time points; within 24 h of PICU ad-
mission, and directly prior to intravenous (IV) catheter removal and discharge from the
PICU/hospital (on average three-four days later), which reflected the sampling of the acute
and stabilization/recovery phase of the illness. In total, 20 patients with RSV bronchiolitis
consented. Patients were divided into either severe or moderate groupings based on need
for invasive mechanical ventilation.

A total of 10 healthy, age-matched, sedation-control patients with normal airways
and lungs, presenting for routine IV sedation had blood and urine samples collected at
one time point. Patient cohort details are provided in Table 1. Patient data were collected,
de-identified and managed using Research Electronic Data Capture (REDCap) tools.

4.2. Metabolite Extraction

Plasma and urine samples were thawed on ice, and 20 µL plasma or 50 µL urine
were added to 500 µL ice-cold HPLC-grade methanol containing 1 µM piperazine-N,N′-bis
(PIPES) and 1 µM camphorsulfonic acid as internal standards. Samples were vortexed
and centrifuged at 16,100× g for 5 min at 4 ◦C to precipitate protein and other cell debris.
The metabolite extracts were dried under nitrogen gas and stored at −80 ◦C until analysis.
Protein precipitated during the extraction was dissolved in 0.2 mM KOH overnight and
then quantified by BCA protein assay using Pierce BCA Protein Assay Kit (Thermo Fisher,
Waltham, MA, USA).

4.3. Metabolite Analysis by LC-MS/MS

Dried metabolite extracts were suspended in 100 µL HPLC-grade water and cen-
trifuged at 16,100× g for 5 min at 4 ◦C to remove any precipitate. The aqueous resuspen-
sions were diluted 1:1 with 20 mM perfluoroheptanoic acid (PFHA) to obtain metabolite
suspensions in 10 mM PFHA for amino acid analysis. Samples were analyzed by ion-
pairing reverse phase chromatography using an Acquity HSS T3 column (2.1 × 100 mm,
1.8 µm, Waters) for separation and a Waters Quattro Micro triple quadrupole mass spec-
trometer operated in positive mode as mass analyzer. The LC parameters were as follows:
autosampler temperature, 10 ◦C; injection volume, 10 µL; column temperature, 40 ◦C. The
LC solvents were A: 1 mM PFHA in water and B: acetonitrile. Elution from the column
was performed over 13 min with flow rate fixed at 0.3 mL/min and using the following
gradient, defined in terms of acetonitrile %: t = 0, 0%; t = 1, 0%; t = 8, 65%; t = 8.01, 90%; t = 9,
90%; t = 9.01, 0%; t = 13, 0%. Mass spectra were acquired using positive-mode electrospray
ionization operating in multiple reaction monitoring (MRM) mode. The capillary voltage
was 1000 V, and cone voltage was 45 V. Nitrogen was used as cone gas and desolvation
gas, with flow rates of 40 and 800 L/h, respectively. The source temperature was 120 ◦C,
and desolvation temperature was 350 ◦C. Argon was used as collision gas at a manifold
pressure of 2.31 × 10−3 mbar.

A second half of the aqueous resuspensions were diluted 1:1 with 2× tributylamine
(TBA) solvent (see below) to obtain metabolite suspensions in 1× TBA solvent for analysis of
other metabolites, including glycolytic intermediates, TCA cycle intermediates, nucleotides,
and nucleotide sugars. These samples were analyzed by ion-pairing reverse phase chro-
matography using an Ascentis Express C18 column (5 cm× 2.1 mm, 2.7 µm, Sigma-Aldrich,
St. Louis, MO, USA) for separation and a Waters Xevo TQ-S triple quadrupole mass spec-
trometer as mass analyzer. The LC parameters were as follows: autosampler temperature,
4 ◦C; injection volume, 5 µL; column temperature, 50 ◦C. The LC solvents were 10 mM
TBA and 15 mM acetic acid in 97:3 water:methanol (“TBA solvent”) and methanol. Elution
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from the column was performed over 12 min with the following varying flow rate gradient,
defined in terms of methanol %: t = 0, 0%, flow rate 0.4 mL/min; t = 1, 0%, flow rate 0.4
mL/min; t = 2, 20%, flow rate 0.3 mL/min; t = 3, 20%, flow rate 0.25 mL/min; t = 5, 55%,
flow rate 0.15 mL/min; t = 8, 95%, flow rate 0.15 mL/min; t = 9.5, 95%, flow rate 0.15
mL/min; t = 10, 0%, flow rate 0.4 mL/min; t = 12, 0%, flow rate 0.4 mL/min. Mass spectra
were acquired using negative-mode electrospray ionization operating in MRM mode. The
capillary voltage was 3000 V, and cone voltage was 50 V. Nitrogen was used as cone gas and
desolvation gas, with flow rates of 150 and 600 L/h, respectively. The source temperature
was 150 ◦C, and desolvation temperature was 500 ◦C. Argon was used as collision gas at a
manifold pressure of 4.3 × 10−3 mbar.

On both instruments, sample order was randomized to avoid systematic bias, and each
sample was run twice as analytical replicates. MRM transitions for the two instruments are
listed in Supplementary Table S7.

4.4. Data Processing and Analysis

Peak processing was performed using MAVEN [38]. For each plasma or urine sample,
data from the Quattro Micro (amino acids) and TQ-S (other metabolites) runs were sepa-
rately scaled to internal standard peak (camphorsulfonic acid) measured in the respective
run, and then data from both platforms were combined. Samples were further normalized
within the set (plasma or urine) using Probabilistic Quotient Normalization [39] to account
for concentration differences in the biofluids. Analytical replicates were then averaged to
obtain the final metabolite profile for each sample. Principal component analysis (PCA)
and partial least squares (PLS) regression were performed in R using the ropls package [40]
using default settings (unit variance scaling, no log-transformation, leave-one-out cross val-
idation). Metabolite boxplots were plotted in R and statistical comparisons were performed
using the Mann–Whitney U test.

4.5. Clinical Covariates

Urine and plasma protein levels were quantified by BCA assay following methanol
precipitation and metabolite extraction as described above (Section 4.2).

Classification of patients as asthmatic was performed by pediatric pulmonologists
at the hospital during outpatient visits in the two-year period following enrollment in
this study. Asthma diagnosis was based on responsiveness to bronchodilators following
episodic symptoms of airflow obstruction or airway hyperresponsiveness, as standardized
pulmonary function testing such as spirometry could not be performed in patients under 5
years of age [41].

White blood cell count values, including total WBC, lymphocytes, eosinophils and
neutrophils were obtained from Complete Blood Count (CBC) tests performed on a Sysmex
XN 10 Automated Hematology Analyzer as part of the routine care for inpatients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12020178/s1, Supplementary Table S1: Patient demo-
graphics of RSV Study (N = 30), Supplementary Table S2: Diagnosis of RSV positive patients (N = 20),
Supplementary Table S3: PLS coefficients of plasma metabolites in RSV model, Supplementary Table
S4: PLS coefficients of urinary metabolites in RSV model, Supplementary Table S5: PCA loadings in
the covariate model, Supplementary Table S6: PLS coefficients of metabolites in asthma prediction
model, Supplementary Table S7: MRM transitions for target metabolites.
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monophosphate dehydrogenase; IV: intravenous; LC-MS/MS: liquid chromatography coupled
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nucleoside-monophosphate kinases; NPPs: nucleoside pyrophosphatase/phosphodiesterases; PCA:
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syncytial viral; TBA: tributylamine; TCA: tricarboxylic acid; UMP: uridine monophosphate; WBC:
white blood cells; XMP: xanthosine monophosphate.

Appendix A

Table A1. Data values used in principal components analysis of clinical data.

Value Value Type Categorical to Numeric
Conversion

Asthma classification categorical no (0), yes (1)

Diet categorical breast-fed (0), mixed diet (1),
formula-fed (2)

ENT 1 problems categorical no (0), yes (1)
Gender categorical male (1), female (2)
Prematurity categorical no (0), yes (1)
Race categorical White (1), Other (2)

RSV severity categorical control (0), moderate (1),
severe (2)

Sample timepoint categorical baseline (0), 72 h (1)
Age numeric (weeks)
Birth weight numeric (kg)
Eosinophils numeric (count)
Length of stay numeric (h)
Length on ventilator numeric (h)
Lymphocytes numeric (count)
Neutrophils numeric (count)
Plasma protein numeric (µg/mL)
Urine protein numeric (µg/mL)
WBC 2 numeric (count)
Weight at hospitalization numeric (kg)

1 ENT: ear nose throat; 2 WBC: white blood cells.
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Figure A1. The first two principal components are driven by strong outliers and do not reflect RSV 
severity. Score plot of principal components analysis (PCA) performed using plasma and urinary 
metabolite data all samples. Horizontal and vertical axes represent the 1st and 2nd principal com-
ponent scores, respectively. PC 1 is driven by a single outlier (PDM06), while PC 2 is driven by two 
outliers (PDM17 and PDM40). 

 

Figure A2. PCA of clinical covariates reveals inverse relationship between prematurity and ENT 
problems. (A) Covariate loadings on the 2nd principal component of the covariates PCA model. 
Covariates with positive loadings have higher values in samples with positive 2nd principal com-
ponent scores, and vice versa; hence, covariates on the same side of the loading plot are positively 
correlated with each other, and covariates on the opposite side are inversely correlated. (B–E) Score 
plots all showing the 1st and 2nd principal components in the covariates-only PCA model, with 
sample data points color-coded according to (B) prematurity, (C) ENT problems, (D) eosinophils 
count (empty squares indicate that eosinophils were not quantified for these patients), and (E) birth 
weight. 

Figure A1. The first two principal components are driven by strong outliers and do not reflect
RSV severity. Score plot of principal components analysis (PCA) performed using plasma and
urinary metabolite data all samples. Horizontal and vertical axes represent the 1st and 2nd principal
component scores, respectively. PC 1 is driven by a single outlier (PDM06), while PC 2 is driven by
two outliers (PDM17 and PDM40).
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Figure A2. PCA of clinical covariates reveals inverse relationship between prematurity and ENT
problems. (A) Covariate loadings on the 2nd principal component of the covariates PCA model. Co-
variates with positive loadings have higher values in samples with positive 2nd principal component
scores, and vice versa; hence, covariates on the same side of the loading plot are positively correlated
with each other, and covariates on the opposite side are inversely correlated. (B–E) Score plots all
showing the 1st and 2nd principal components in the covariates-only PCA model, with sample data
points color-coded according to (B) prematurity, (C) ENT problems, (D) eosinophils count (empty
squares indicate that eosinophils were not quantified for these patients), and (E) birth weight.
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Figure A3. Asthma and severe RSV have distinct metabolic signatures. Scatterplot of RSV model 
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Positive and negative values on each axis represent direction and strength of correlation of individ-
ual metabolites with the response variable represented by that axis. Although severe RSV and 
asthma classification are loosely correlated (Figures 4A and 5A), the individual metabolites most 
strongly associated with RSV severity and asthma classification are distinct. 

 

Figure A4. Urinary metabolites are more predictive of future asthma occurrence. Receiver–operator 
characteristic (ROC) curves for asthma prediction, using either (A) the top positive and negative 
urinary metabolites (lysine and xanthosine) or (B) the top positive and negative plasma metabolites 
(uracil and citrate/isocitrate) in the asthma PLS model. The predictor for each ROC curve was cal-
culated by subtracting the negative-coefficient metabolite value from the positive-coefficient metab-
olite value. The values in parentheses for the areas under the curve (AUC) represent 95% confidence 
intervals determined by bootstrap validation. 

Figure A3. Asthma and severe RSV have distinct metabolic signatures. Scatterplot of RSV model
PLS coefficients (vertical axis) against asthma prediction model PLS coefficients (horizontal axis).
Positive and negative values on each axis represent direction and strength of correlation of individual
metabolites with the response variable represented by that axis. Although severe RSV and asthma
classification are loosely correlated (Figures 4A and 5A), the individual metabolites most strongly
associated with RSV severity and asthma classification are distinct.
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Figure A4. Urinary metabolites are more predictive of future asthma occurrence. Receiver–operator
characteristic (ROC) curves for asthma prediction, using either (A) the top positive and negative
urinary metabolites (lysine and xanthosine) or (B) the top positive and negative plasma metabolites
(uracil and citrate/isocitrate) in the asthma PLS model. The predictor for each ROC curve was
calculated by subtracting the negative-coefficient metabolite value from the positive-coefficient
metabolite value. The values in parentheses for the areas under the curve (AUC) represent 95%
confidence intervals determined by bootstrap validation.
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Figure A5. Succinate levels are decreased in urine samples of RSV patients. Vertical axis represents 
normalized relative metabolite level. Lower and upper ranges of the boxes represent 1st and 3rd 
quartiles, respectively; the center lines represent median values, and whiskers indicate maximum 
and minimum values. p values displayed underneath the sample class labels are calculated by the 
Mann–Whitney U test; significant (p < 0.05) values are highlighted in red. 

 

Figure A6. Metabolites in the hexosamine and sialic acid biosynthesis pathways are decreased in 
plasma of RSV patients. Vertical axes represent normalized relative metabolite levels. Lower and 
upper ranges of the boxes represent 1st and 3rd quartiles, respectively; the center lines represent 
median values, and whiskers indicate maximum and minimum values. p values displayed under-
neath the sample class labels are calculated by the Mann–Whitney U test; significant (p < 0.05) values 
are highlighted in red. 
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