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Abstract: A strain of Bacillus cereus was isolated from the Saudi Red Sea coast and identified based 
on culture features, biochemical characteristics, and phylogenetic analysis of 16S rRNA sequences. 
EPSR3 was a major fraction of exopolysaccharides (EPS) containing no sulfate and had uronic acid 
(28.7%). The monosaccharide composition of these fractions is composed of glucose, galacturonic 
acid, and arabinose with a molar ratio of 2.0: 0.8: 1.0, respectively. EPSR3 was subjected to antioxi-
dant, antitumor, and anti-inflammatory activities. The results revealed that the whole antioxidant 
activity was 90.4 ± 1.6% at 1500 µg/mL after 120 min. So, the IC50 value against DPPH radical found 
about 500 µg/mL after 60 min. While using H2O2, the scavenging activity was 75.1 ± 1.9% at 1500 
µg/mL after 60 min. The IC50 value against H2O2 radical found about 1500 µg/mL after 15 min. 
EPSR3 anticytotoxic effect on the proliferation of (Bladder carcinoma cell line) (T-24), (human breast 
carcinoma cell line) (MCF-7), and (human prostate carcinoma cell line) (PC-3) cells. The calculated 
IC50 for cell line T-24 was 121 ± 4.1 µg/mL, while the IC50 for cell line MCF-7 was 55.7 ± 2.3 µg/mL, 
and PC-3 was 61.4 ± 2.6 µg/mL. Anti-inflammatory activity was determined for EPSR3 using differ-
ent methods as Lipoxygenase (LOX) inhibitory assay gave IC50 12.9 ± 1.3 µg/mL. While cyclooxy-
genase (COX-2) inhibitory test showed 29.6 ± 0.89 µg /mL. EPSR3 showed potent inhibitory activity 
against methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci. 
The exposure times of EPSR3 for the complete inhibition of cell viability of methicillin resistant S. 
aureus was found to be 5% at 60 min. Membrane stabilization inhibitory gave 35.4 ± 0.67 µg/mL. 
EPSR3 has antitumor activity with a reasonable margin of safety. The antitumor activity of EPSR3 
may be attributed to its content from uronic acids with potential for cellular antioxidant and anti-
cancer functional properties. 
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1. Introduction 
Bacterial exopolysaccharides are extracellular organic macromolecules that play a 

significant role in various bacterial cellular activities, including phage protection, bacterial 
cell clustering under osmatic stress, and surface adhesion [1]. The exopolysaccharides 
(EPS) is made up of biofilm structural components engaged in preserving water and pro-
cessing foreign organic compounds and inorganic ions to prevent cell desiccation [2]. 

pH, yeast, and sucrose extract supply are factors that impact the synthesis and gen-
eration of EPS [3]. By adjusting the different parameters, the EPS generating yield may be 
increased. The most well-known producers of EPS are Lactobacillus, Lactococcus, Bifidobac-
terium, Leuconostoc, Pediococcus, Streptococcus, Enterococcus and Weissella sp. [4]. Si et al. [5] 
investigated the EPS production of Lactobacillus plantarum YM-2, finding 24 mg/L prior to 
optimization and 257 mg/L after optimization. 

Drug delivery, medicinal coatings, surgical sealants, and anticancer activities are just 
a few of the medical and industrial applications for EPS [6]. Aerococcus, Carnobacterium, 
Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, 
and Weissella, were reported to leave a significant impact in rapid industrialization [7]. 

EPS has also been used as a powerful antioxidant agent due to its bioavailability in 
nature. Because of its vast spectrum of biological uses, there has been an increasing inter-
est in discovering EPS in recent years [8]. The EPS generated by Lactobacillus acidophilus, 
Lactobacillus gasseri, Lactobacillus plantarum, and Lactobacillus rhamnosus isolated from di-
verse sources have been shown to exhibit antitumor as well as antioxidant properties 
[9,10]. 

Microorganisms that produced antibiotics and enzymes from harsh environments 
showed great promise in biotechnological applications [11,12]. Numerous studies have 
been conducted on the growth of bacterial EPS, which comprises larger levels of nucleic 
acids, proteins, and polysaccharides [13]. 

Bacterial strains that have been found to have a high affinity for EPS production is 
critical. Furthermore, the EPS production by Gram-positive Bacillus species has been 
proven, and they are currently considered prospective antioxidant agents [1]. 

As far as we know, no research studies have been published concerning the isolation, 
identification, or generation of EPS from bacteria obtained from marine sediment sources 
from the Red Sea, Saudi Arabia. Therefore, this study aims to isolate and biochemically 
characterize EPS isolated from marine B. cereus and, further, to assay its in vitro anti-staph-
ylococci, antioxidant; anti-inflammatory; antitumor; and immunological activities. 

2. Materials and Methods 
2.1. Sampling and Isolation of Bacteria 

Samples were collected from the Red Sea’s marine sediment sources in Saudi Arabia. 
The serial dilution approach was used to isolate bacteria [14] on marine media. The fol-
lowing ingredients were dissolved in 750 mL seawater to make 1 L: glucose 20, CaCO3 1.0, 
NH4NO3 0.8, KH2PO4 0.05, K2HPO4 0.6, MgSO4.7H2O 0.05, MnSO4. 4H2O 0.1, yeast extract 
0.1 [15]. 

2.2. Identification of Bacterial Isolates 
Based on physical and biochemical parameters, the isolate that generated the most 

EPSs and had the highest antioxidant activity was determined [16]. Phylogenic analysis 
was used to validate the identification [17]. On a 1.2 percent agarose gel, genomic DNA 
from the bacterial isolate was extracted, and the quality was assessed; a single band of 
high Mw DNA was detected. The forward primer was 5′-TCCGTAGGTGAACTTTGCGG-
3′, and the reverse primer was 5′-TCCTCCGCTTATTGATATGC-3′ PCR [18]. The DNA 
sequence was compared to the GenBank database at the National Center for Biotechnol-
ogy Information (https://www.ncbi.nlm.nih.gov/) using the BLAST tool. The phylogenetic 
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tree was created by aligning sequences with the highest similarity to the 16S rRNA se-
quences of the bacterial isolate. The bacteria’s 16S rRNA gene sequences were submitted 
to the DDBJ/EMBL/GenBank nucleotide sequence databases. 

2.3. Production and Fractionation of EPS 
The promising strain (R3) was chosen for EPS production. The production medium’s 

fermented broth contained (g/L) sucrose 20, yeast extract 2, and peptone 4, dissolved in 
750 mL seawater and diluted to 1 L to remove bacterium cells. The sample was collected 
and centrifuged at 4000 rpm for 30 min at 4 °C. TCA (10%) was added and kept overnight 
at 4 °C before centrifuging for 20 min at 5000 rpm to remove protein. With NaOH solution, 
the pH of the supernatant was adjusted to 7 [19]. The bacterial mass was collected by cen-
trifugation after four liters of absolute cold ethanol were added to the supernatant. The 
residue was redissolved in deionized water, and then dialysis was performed for 72 h 
against deionized water. Fractional precipitation was performed on the dialyzed solution 
using 1, 2, 3, and 4 L of absolute cold ethanol, respectively. To check the presence of pro-
teins and nucleic acids, the UV absorption spectra were collected between 200 and 800 nm 
[20]. 

2.4. Analysis of EPSR3 
EPSR3 FTIR spectra were obtained using KBr pellets (2.0 mg sample and 200 mg KBr, 

respectively, using the FTIR-UNIT Bruker Vector 22 Spectrophotometer), as described in 
the paper [21]. The m-hydroxybiphenyl colorimetric technique was used to identify uronic 
acids at 525 nm [22]. The turbidity technique determined sulfate [23]. The monosaccharide 
composition was defined (Agilate Pack, serics1, 200), using an Aminex carbohydrate HP-
87C column (300 × 7.8 mm) and 0.5 mL/min deionized water as the mobile phase [24]. 
High-performance chromatography (HPLC, Agilent 1100 Series System, Hewlett-Pack-
ard, Germany) with refractive index (RI) detection was used to measure the average mo-
lecular weight (Mw). The Mw/Mn ratio was used to construct the polydispersity index (PI) 
[25]. 

2.5. Assessment of Antioxidant Activity  
2.5.1. DPPH Assay 

EPSR3 at a varied concentration of 100, 300, 500, 1000, and 1500 g/mL was utilized in 
a DPPH experiment with a combination of 2 mL DPPH solution and EPSR3 to determine 
antioxidant activity. The mixture was aggressively shaken and permitted to stand in the 
dark for 30, 60, 90, and 120 min, with the absorbance measured at 517 nm, Brand-Williams 
et al. [26]., and the scavenging activity computed as follows: 

Scavenging ability (%) = (A control−A sample /A control) × 100  

2.5.2. Hydrogen Peroxide Scavenging (H2O2) Assay 
EPSR3’s capacity to scavenge H2O2 was evaluated according to Ruch et al. [27]. EPSR3 

was added to H2O2 at various concentrations (200, 400, 600, 800, 1000, and 1500 g/mL) in 
distilled H2O, and absorbance was measured at 230 nm. The following formula computed 
the percentage of H2O2 scavenging: 

Scavenging ability (%) = (A control−A sample /A control) × 100 

2.6. Evaluation of Cytotoxic Effects Using Different Cell Line  
For cytotoxicity assay, the cells of MCF-7 cells (human breast carcinoma cell line), 

PC-3 cells (human prostate carcinoma cells), and T-24 (Bladder carcinoma) were seeded 
in a 96-well plate at a cell concentration of 1 × 104 cells per well in 100 µL of growth me-
dium. The percentage of viability was calculated as [(ODt/ODc)] × 100%, where ODt is the 
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mean optical density of wells treated with the tested sample and ODc is the mean optical 
density of untreated cells [28].  

2.7. Evaluation of Anti-Inflammatory Activity 
2.7.1. In Vitro Lipoxygenase (LOX) Inhibition 

EPSR3 and the reference compound (Ibuprofen) were tested to examine the anti-in-
flammatory response by inhibiting the LOX enzyme from Glycine max (type I-B). This 
assay was performed according to Granica et al. [29]. The inhibitory percentages were 
calculated according to the formula: 

Inhibitory activity (%) = (1 − As/Ac) × 100, where As is the absorbance in the presence 
of test substance and Ac is the absorbance of control. 

IC50 values—the inhibitory concentration of the samples required to decrease the en-
zyme’s activity by 50%—were determined from the plotted graphs of enzyme inhibition 
(%) against the concentrations of the samples. 

2.7.2. In Vitro Cyclooxygenase (COX-2) Inhibition 
EPSR3 was evaluated at concentrations ranging from 125 to 0.98 g/mL to assess the 

anti-inflammatory response induced by inhibiting the COX-2 enzyme. With minor adjust-
ments, this experiment was carried out according to [30,31]. The inhibitory activity was 
evaluated using a microplate reader to detect the rise in absorbance at 611 nm (BIOTEK; 
Santa Clara, CA, USA). The inhibitory percentages were determined using the following 
formula: Inhibitory activity (percent) = (1 − As/Ac) × 100, whereas is the absorbance when 
the test drug is present, and Ac is the absorbance when the control substance is present. 
The concentration inducing 50% enzyme inhibition was used to measure the effectiveness 
of extracts and the reference chemical (Celecoxib) in inhibiting the COX-2 isoenzyme 
(IC50). 

2.7.3. Membrane Stabilization 
The membrane stabilizing activity of EPSR3 was assessed using hypotonic solution-

induced erythrocyte hemolysis, according to [32]. The percentage inhibition of hemolysis 
or membrane stabilization was calculated by: 

% Inhibition of hemolysis (membrane stabilization %) = 100 × {OD1 − OD2/OD1} 
Where: OD1 = Optical density of hypotonic-buffered saline solution alone OD2 = Optical 
density of test sample in hypotonic solution. The IC50 value was defined as the concentra-
tion of the sample to inhibit 50% RBCs hemolysis under the assay conditions. 

2.8. Antimicrobial Tests 
2.8.1. Microbial Strains  

The agar diffusion assay was performed according to a modified Kirby–Bauer disc 
diffusion method. One loopful of each test organism was suspended in 3 mL 0.9% NaCl 
solution separately. All clinical isolates of methicillin resistant and sensitive Staphylococcus 
aureus and coagulase-negative staphylococci were isolated from human beings and belong 
to the microbiological laboratory collection of the microbiology laboratory of Department 
of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, 
Saudi Arabia. Identification and antimicrobial susceptibility of the isolated strains were 
performed by a VITEK automated system (BioMerieux, Marcy I’Etoile, France). Nutrient 
agar was inoculated with this suspension of the respective organism and poured into a 
sterile petri dish.  

2.8.2. Disc-Diffusion Assay 
The EPSR3 were dissolved in dimethylsulfoxide (DMSO) to a final concentration of 

30 mg/mL and sterilized by filtration by 0.45 µm Millipore filters. Antistaphylococci tests 
were then carried out by disc diffusion method [33] using 100 µL of suspension containing 
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108 cfu/mL of bacteria spread on nutrient agar (NA). The discs (6 mm in diameter) were 
impregnated with 5 mg/disc and placed on the inoculated agar. Negative controls were 
prepared using the same solvent employed to dissolve extract. Oxicillin (30 µg/disc) was 
used as positive reference standards to determine the sensitivity of one strain/isolate in 
each microbial species tested. The inoculated plates were incubated at 37 °C for 24 h for 
clinical bacterial strains. Antimicrobial activity was evaluated by measuring the zone of 
inhibition against the test organisms. 

2.8.3. Statistical Analysis  
The variations between experiments were estimated by standard deviations, and the 

statistical significance of changes was estimated using the student’s t-test. Only the prob-
ability P ≤ 5% was regarded as indicative of statistical significance. 

3. Results  
3.1. Isolation and Identification of the EPS Producing Bacteria 

For the screening program to produce EPSs, five bacterial isolates were isolated from 
a marine source based on their unique morphological features colony. Two strains were 
discovered to be producers of EPSs. One of these marine bacteria isolated from the sea 
produced the most EPS (R3) (7.95 g/L). Standard morphological, physiological, and bio-
chemical plates revealed that strain R3 was a Gram-positive bacillus with a dull colony 
surface, an undulate edge, a large irregular colony, and no pigments. A Catalase test, 
Voges-Proskauer test, Simon citrate test and Nitrate reduction all showed a positive prom-
ising yielded. 

The nucleotide sequence has been entered into the GenBank database. So, it was iden-
tified as Bacillus cereus strain AG3 with accession number OL814950 (Figure 1).  

 
Figure 1. 16S rRNA of the local isolate Bacillus cereus strain AG 3 respects to closely related sequences 
available in Gen Bank databases. 

3.2. Isolation, Partial Purification and Composition of EPSR3 
Exopolysaccharide production reached a maximum of 7.95 g/L, subjected to partial 

purification and fractionation by being redissolved in deionized water followed by dialy-
sis in contradiction of deionized water for 72 h. The dialyzed solution was precipitated by 
1, 2, 3, and 4 volumes of absolute cold ethanol. The main fraction of EPSR3 (85%) was 
obtained after fractionated with three volumes of ethanol precipitation from the crude 
EPS. It was yellow, odorless powder, and soluble in water but insoluble in ethanol and 
other organic solvents. 



Metabolites 2022, 12, 132 6 of 15 
 

 

There was no sulfate in the EPSR3 fraction, although it did contain uronic acid 
(28.7%). The monosaccharide composition of this fraction is 2.0: 0.8: 1.0, with glucose, 
galacturonic acid, and arabinose being the molar ratios. This suggests that this fraction is 
an acidic heteropolysaccharide. GPC looked at EPSR3 weight average molecular weight 
(Mw), number average of molecular weights (Mn), and polydispersity (Mw/Mn). In the GPC 
chromatogram, the EPSR3 molecules were widely scattered, with a polydispersity index 
(PI) of 1.2 and an overall average molecular weight (Mw) of 1.66 × 104 g/mol and a number 
average molecular weight (Mn) 1.37 × 104 g/mol. 

The FTIR spectrum fraction exhibited a significant as showed in Figure 2, broad char-
acteristic peak at around at 3420.14 cm−1 region was attributed to the expansion vibration 
of O–H in the ingredient sugar residues. The EPSR3 fraction also has a band at 1670.05 
cm−1, dominated by circle vibrations. The band at 1126.22 cm−1 indicated the SO = 3. inter-
fered with stretching vibration of C-O glycosidic bond vibration, and the strap at 832.13 
cm−1 suggested the β-pyranose. 

 
Figure 2. FTIR Spectrum of EPSR3. 

3.3. Antioxidant Activity of EPSR3 
At different intervals, the antioxidant activity was measured quantitatively at (30, 60, 

90, and 120 min). Figure 3A shows that by increasing EPSR3 concentrations from 100, 300, 
500, 1000, and 1500 g/mL, the overall antioxidant activity is enhanced. Maximum antioxi-
dant activity was 90.4 ± 1.6% at 1500 µg/mL after 120 min. So, the IC50 value against DPPH 
radical found about 500 µg/mL after 60 min. While using H2O2 scavenging activity to eval-
uate EPSR3’s capacity to scavenge hydrogen peroxide at various concentrations (200, 400, 
600, 800, 1000, and 1500 g/mL), the highest extreme activity was 75.1 ± 1.9% at 1500 µg/mL 
after 60 min. The IC50 value against H2O2 radical found about 1500 µg/mL after 15 min 
(Figure 3B). 
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(B) 

Figure 3. Scavenging activity of EPSR3 at different times (A) DPPH and (B): H2O2. 

3.4. Antitumor Activity against Different Cell Lines 
As shown in Figure 4, EPSR3 influenced the proliferation of T-24, MCF-7, and PC-3 

cells. The determined IC50 for cell line T-24 was 121 ± 4.1 µg/mL, whereas the IC50 for cell 
lines MCF-7 and PC-3 was 55.7 ± 2.3 µg/mL and 61.4 ± 2.6 µg/mL, respectively  
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Figure 4. Evaluation of cytotoxicity against different cell line (A): T-24 and (B): MCF7 and (C) PC-
3. 

3.5. Anti-Inflammatory Activity 
EPSR3 anti-inflammatory activity was assessed using various methods, including the 

Lipoxygenase (LOX) inhibitory as shown in Figure 5A, which had an IC50 12.9 ± 1.3 µg/mL. 
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In contrast, the control sample (ibuprofen) had an IC50 1.5 ± 1.3 µg/mL. Therefore, the 
COX-2 inhibitory shown in Figure 5B gave 29.6 ± 0.89 µg /mL, while control (Celecoxib) 
gave 0.28 ± 1.7 µg/mL. Figure 5C shows that membrane stabilization inhibitory gave35.4 
± 0.67 µg/mL. In comparison, control (Indomethacin) is 17.02 ± 0.82 µg/mL. 

  
(A) lox (A) Control 

  
(B) COX-2 (B) Control 

  
(C) Membrane stabilization (C) Control 

Figure 5. Evaluation of anti-inflammatory activity against different cell line (A): LOX; (B): COX-2 
and (C) Membrane stabilization. 

EPSR3 showed potent inhibitory activity (MIC/MBC: 0.5/2 mg/mL) against S. aureus. 
The MIC/MBC values of the isolated compounds against methicillin-resistant S. aureus 
(MRSA),methicillin-sensitive S. aureus and coagulase-negative staphylococci. The MICs 
and MBCs for the 12 isolates, as determined by the broth micro dilution method. EPSR3 
compounds showed very potent inhibitory activity against clinical isolates of S. aureus. 
The effect on the cell viabilities of S. aureus demonstrated that exposure of date extract at 
5% concentration had a potential antibacterial impact on the viabilities of strains. The ex-
posure times of EPSR3 for the complete inhibition of cell viability of methicillin resistant 
S. aureus was found to be 5% at 60 min (Figure 6).  
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Figure 6. Effect of EPSR3 (5%) on the viability of Methicillin–resistant Staphylococcus aureus (MRSA), 
Methicillin–senstive Staphylococcus aureus (MSSA) and coagulase- negative Staphylococci. Values 
are the average of three individual replicates (means ± S.D). Differences between samples were de-
termined by the Student’s t-test and were considered to be significant when p ≤ 0.05. 

4. Discussion 
Different bacteria genera generate EPS, and Bacillus spp. have been found to create 

extracellular polysaccharides [34]. Although the antioxidant capabilities of EPS from Ba-
cillus spp. probiotic bacteria have been demonstrated [35], the antioxidant activities of ma-
rine Bacillus spp. have yet to be fully investigated. We studied the antioxidant, anti-inflam-
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marine microorganisms and the antioxidant potential of bacterial extracts. 

Two bacterial isolates were discovered as producing EPSs out of five examined, with 
the greatest production coming from a marine bacterium isolate (R3). Chemical examina-
tion of pure EPSR3 revealed no sulfate and the presence of uronic acid. Furthermore, the 
monosaccharide composition of these fractions was revealed, with glucose, galacturonic 
acid, and arabinose being the molar ratios. This indicates that the portion in question is an 
acidic heteropolysaccharide. 

It is worth noting that, while most EPS’ fundamental carbohydrate structures remain 
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the EPS’ properties and activity [36]. 
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fered with stretching vibration of C-O glycosidic bond vibration, and the strap at 832.13 
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gerous heavy metal pollutants from sewage treatment systems [42]. The antioxidant and 
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free radical scavenging activities of the EPS of four different monosaccharides produced 
by B. coagulans (glucose, fructose, galactose, and mannose) were investigated [43]. This is 
the first time EPS from marine Bacillus has been demonstrated to scavenge superoxide and 
hydroxyl radicals in a concentration-dependent manner, with IC50 value of about 500 
µg/mL after 60 min against DPPH radical found and maximum antioxidant activity 90.4 
± 1.6% at 1500 µg/mL after 120 min. 

The hydroxyl group, as well as the presence of uronic acid, are responsible for 
EPSR3’s antioxidant action (28.7%). Ye et al. [44] isolated and purified an acidic EPS from 
marine Pseudomonas PF-6 that belongs to the β-type heteropolysaccharide and possesses 
a pyran group that exhibited antioxidant activity. Additionally, [45] in another report EPS 
isolated from Bacillus amyloliquefaciens 3MS 2017 may also scavenge DPPH free radicals 
with a maximal activity of 99.39% at 1000 g/mL. Streptomyces carpaticus yielded an EPS 
with an EC50 value of 111 g/mL that has DPPH antioxidant activity, as reported by [46]. 

Compositionally, EPSR3 consisted of three different monosaccharides, including glu-
cose, galacturonic acid, and arabinose. Except for glucuronic acid, these monosaccharides 
are efficient reductive agents since they have an aldehyde group [47]. The radical scav-
enging capacity of EPS may be due to the reductive capacity of such monosaccharides. 
Purified polysaccharides generated from crude polysaccharides have been more func-
tional in vitro compared to crude polysaccharides in several studies [48]. 

The high purity of EPS must be guaranteed, and the purity must be accurately rec-
orded. The anticancer benefits of EPS are frequently misunderstood because of the unex-
pected and ambiguous impacts of the undesired components. Taking into consideration 
that the purity of the extracted EPS is affected by differences in isolation and purification 
procedures, more investigation into the purification of crude EPS from marine Bacillus 
cereus AG3 and the refined fractions’ molecular structure and antioxidant capabilities is 
required.  

Next, as shown in Figure 4, the effect of EPSR3 on the proliferation of T-24, MCF-7, 
and PC-3 cells is evaluated. EPS from L. plantarum, L. acidophilus, and L. helveticus are the 
most commonly reported EPS with good anticancer properties among EPS-producing 
species. Even from the same species, the antiproliferative activity of EPS differed from 
strain to strain [9,49]. The apoptotic anticytotoxic activity of EPS has recently been re-
ported [50]. However, we would like to shed some light on the contentious influence of 
Mw on the anticancer function of EPS. 

According to various studies, EPS with a high Mw are more effective against cancer 
since they cannot enter the cell and instead connect with cancer cell receptors that govern 
signaling and transduction [51–54]. Others, on the other hand, felt that low Mw permitted 
EPS to penetrate past the cell membrane barrier more efficiently, allowing it to fulfill bio-
logical activities such as cell cycle arrest [55]. In our finding, molecular weight (Mw) of 
1.66 × 104 g/mol and number average molecular weight (Mn) of 1.37 × 104 g/mol was cal-
culated. 

Furthermore, the inclusion of specific structures such as uronic acid, sulfate [56,57],β-
type glycosidic linkages [57], protein molecules [58] and side chains [59] may influence 
the EPS’ anticancer activity. The current EPSR3 contained no sulfate but uronic acid 
(28.7%). 

It is consequently suggested that acetylation, phosphorylation, carboxymethylation, 
and sulfonation be used to improve such cytotoxic activities [56,60]. Another important 
point to mention is that the microbiological source and tumor cells targeted appear to 
make a difference in the anticancer effects of EPS. However, no conclusions can be reached 
based on current research on which bacterial source has the most impact or which type of 
tumor cell is the most responsive. These characteristics contribute to a considerable rise in 
the incompatibility of research. Furthermore, as previously indicated, the wide range of 
extraction and isolation processes adds to the incomparability. 

Finally, EPSR3 anti-inflammatory activity was assessed using various methods, in-
cluding the Lipoxygenase (LOX) inhibitory, as shown in Figure 5. This anti-inflammatory 
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effect can be related to its structure and the inhibitory activity of cyclooxygenases [61]. 
Furthermore, it is thought that exopolysaccharide’s principal effect is to modulate cyto-
kines and their related transcription factors [62]. TNF-α, IL-1, and IL-6, which are pro-
inflammatory cytokines, and IL-10, which is an anti-inflammatory cytokine, are the pri-
mary mediators of these natural products’ effects [63]. 

5. Conclusions 
In this study, a marine Bacillus strain isolated from the Red Sea Saudi coast produced 

EPSR3 at (7.95 g/L). From 16S rRNA analysis, the strain was related to B. cereus strain AG3. 
The EPS displayed moderate scavenging activity on superoxide, hydroxyl radical, and 
DPPH radicals. In addition, the EPS exhibited a significant protective impact on cancer 
cell lines. Based on the chemical analysis and in vitro assessments, this study suggests that 
the EPS from marine B. cereus might contribute to a potential application as a natural an-
tioxidant agent and a new therapeutic agent for treatment of staphylococcal infection and 
cancers diseases.  
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