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Abstract: Tomato is abundant in alkaloids, phenolic acids, and flavonoids; however, the effect of
transcription factor NOR-like1 on these metabolites in tomato is unclear. We used a combination of
widely targeted metabolomics and transcriptomics to analyze wild-type tomatoes and CR-NOR-like1
tomatoes. A total of 83 alkaloids, 85 phenolic acids, and 96 flavonoids were detected with significant
changes. Combined with a KEGG enrichment analysis, we revealed 16 differentially expressed
genes (DEGs) in alkaloid-related arginine and proline metabolism, 60 DEGs were identified in the
phenolic acid-related phenylpropane biosynthesis, and 30 DEGs were identified in the flavonoid-
related biosynthesis pathway. In addition, some highly correlated differential-expression genes
with differential metabolites were further identified by correlation analysis. The present research
provides a preliminary view of the effects of NOR-like1 transcription factor on alkaloid, phenolic
acid, and flavonoid accumulation in tomatoes at different ripening stages based on widely targeted
metabolomics and transcriptomics in plants, laying the foundation for extending fruit longevity and
shelf life as well as cultivating stress-resistant plants.

Keywords: tomato; widely targeted metabolomics; transcriptomics; NOR-like1; alkaloids; phenolic
acids; flavonoids

1. Introduction

Tomato (Solanum lycopersicon) is the world’s most valuable fruit and vegetable crop,
and it is rich in phenolic compounds (phenolic acids and flavonoids) and glycoside alka-
loids (tomatine) [1–4]. Alkaloids are preventive secondary metabolites present in plant
tissues. Steroid glycoside alkaloids (SGAs) are nitrogenous secondary metabolites primarily
identified in the Solanaceae species. SGAs protect plants from insects, bacteria, and viruses
that serve essential roles in defending against biological and non-biological stresses [5–7].
Alkaloids in wild-type tomatoes exist at high levels during early developmental stages and
decrease gradually at maturity [8]. Phenolic acids in tomatoes are dominated by hydrox-
ycinnamic acid and its conjugates; chlorogenic acid and caffeic acid present in tomatoes are
the most extensively investigated [9,10]. Phenolic acids are effective as components of the
plant defense system against UV, insects, viruses, and bacteria [11,12], as well as having
a remarkable effect on color retention, retarding microbial development, and extending
shelf life [13]. There are over 500 different flavonoids in tomatoes, which are mainly catego-
rized into flavones, flavonols, flavanones, flavanols, proanthocyanidins, and isoflavones,
depending on their glycosidic structures [14,15]. Naringenin chalcone is among the major
flavonoids, as well as various glycoconjugates of quercetin and kaempferol [16]. Flavonoids
have excellent antioxidant and anti-inflammatory characteristics, and fruit ripening in
tomatoes is related to flavonoid accumulation [17].
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Tomatoes undergo sharp changes in metabolism during the development of their
fruit, and the metabolite content determines their nutritional value [15,18,19], making it
an outstanding model for the study of maturation and secondary metabolism pathways
in fleshy fruits [20]. The ripening of fruit is a sophisticated biogenetic process controlled
by elements such as hormones, environmental signals, and transcription factors (TFs) and
involves drastic variations in chemical composition, colors, textures, and flavors, as well as
other sensory characteristics that directly influence the shelf life and quality of fruits [21–24].
Molecular genetic investigations indicate that the ripening of tomato fruit is controlled by
sequences of ripening-related TFs and an ethylene-coordinated transcriptional regulatory
network [25,26]. A total of 2026 genes have been identified as TFs in tomatoes, of which
516 have been linked to fruit ripening [27]. The various natural maturation inhibitory
mutants in tomatoes have already been used to examine fruit shelf-life extension—for
instance ripening inhibitor (rin), non-ripening (nor), colorless non-ripening (cnr), and never
ripening (nr) [4,23]. There are 101 NAC TFs in the tomato genome and the majority of
NAC proteins include a fully functional N-terminal DNA-binding structural region that is
well conserved, as well as a variable C-terminal structural domain [23,24]. NAC1 [28,29],
NAC4 [30], NAC9 [31], and NOR-like1 [24] have been shown previously to be involved
in tomato-ripening regulation. It has been demonstrated that knock-out of NOR-like1
delays the start of fruit ripening by 14 days, reduces ethylene production, slows down
softness and chlorophyll loss, and decreases the accumulation of lycopene [24]. However,
the effect of NOR-like1 on tomato metabolites is still unclear. In this study, to reveal the
effect of NOR-like1 on the metabolites of tomato at green ripening (GR), 3 days after the
color break (BR+3) and 9 days after the color break (BR+9) we combined widely targeted
metabolomics with transcriptomics to screen the three most distinctly different metabolites
(alkaloids, phenolic acids, and flavonoids) and the associated DEGs, with KEGG-pathway
enrichment analyses. In addition, relevant pathways of metabolism were further analyzed,
and correlation network analyses were performed for different metabolites and different
expression genes to provide deeper insights into the effects of NOR-like1 on alkaloids,
phenolic acids, and flavonoids during tomato maturation. The present study may contribute
to further investigation of the effect of NOR-like1 on metabolites in tomatoes at the various
stages of maturation and could help to enhance tomato quality as well as extend the
preservation period.

2. Materials and Methods
2.1. Plant Materials and Sample Preparation

Cultivated wild-type tomato Ailsa Craig (AC) and a NOR-like1 tomato transgenic line
employing CRISPR/Cas9 gene-editing techniques were both grown in a greenhouse at
China Agricultural University. A total of 18 samples of wild-type and CR-NOR-like1 fruits
were collected and sampled at the green-ripening (GR) stage 3 days after the color break
(BR+3) and 9 days after the color break (BR+9), including three biological replicates per
period, and each sample was derived from six fruits, which were immediately frozen after
sampling in liquid nitrogen at−80 ◦C and preserved until use. The biological samples were
freeze-dried with a vacuum freeze dryer (Scientz-100F). Using a mixer mill with zirconia
beads (MM 400, Retsch, Hamburg, Germany), the freeze-dried samples were pulverized at
30 Hz for 1.5 min. A total of 100 mg of the lyophilized powders were added by dissolving
them in 1.2 mL 70% of the methanol solution, mixing by vortex for 30 s six times every
30 min, and leaving the samples at 4 ◦C in the fridge overnight. Before UPLC-MS/MS
analysis, the extracts were filtered after centrifugation for 10 min on a 12,000 rpm centrifuge
(SCAA-104, pore size 0.22 µm; ANPEL, Shanghai, China).

2.2. Widely Targeted Metabolic Analysis

Metabolite analysis was performed using UPLC (SHIMADZU Nexera X2) and tandem
mass spectrometry (MS/MS, Applied Biosystems 4500 QTRAP) for metabolite analy-
ses. Chromatographic separation was performed on a column (Agilent SB-C18, 1.8 µm,
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2.1 mm × 100 mm), mobile phase-A in deionized water (containing 0.1% (v/v) formic acid),
and phase-B in acetonitrile (containing 0.1% (v/v) formic acid). The gradient of elution was
as follows: the B-phase was increased from 5% at 0 min up to 95% at 9.00 min and remained
at 95% until 10 min, then the B-phase percentage was reduced to 5% at 10.00–11.15 min and
equilibrated to 5% until 14 min. The flow rates were controlled with 0.35 mL/min, 40 ◦C
column temperature, and 4 µL injection volume. Flow-throughs were alternately linked to
the ESI-triple quadrupole linear ion trap (QTRAP)-MS.

LIT and triple quadrupole (QQQ) were obtained on a triple quadrupole linear-ion-trap
mass spectrometer (QTRAP) with a UPLC/MS/MS system operating in the positive-ion
mode (ESI+) and the negative-ion mode (ESI−). Operation of the ESI source parameters
were as follows: ion source and turbo spray; source temperature of 550 ◦C; ion spray
voltage of (IS) 5.5 kV (ESI+)/−4.5 kV (ESI−); ion-source gas I (GSI) of 50 psi, gas II (GSII)
of 60 psi, and curtain gas (CUR) of 25.0 psi; and collision-activated dissociation (CAD) set
to high. The tuning and mass calibration of the instrument was carried out in QQQ and
LIT mode with 10 and 100 µmol/L of polypropylene glycol solution, respectively. QQQ
scans were carried out in the MRM mode with the collision medium gas (nitrogen) setting.
Further optimization of DP and CE was carried out for single MRM ion pairs. The set of
specific pairs of MRM ions was monitored during each period according to the number of
metabolites eluted during each period.

2.3. Differential-Metabolite (DEM) Analysis

Pre-processing of the data was performed and the data were analyzed by multivariate
statistical analysis, which included principal component analysis (PCA) and orthogonal
partial-least-squares discriminant analysis (OPLS-DA). A powerful tool to identify global
patterns in multivariate experimental data, PCA provides a preliminary insight into the
variability of overall metabolism among samples and the magnitude within groups of sam-
ples. OPLS-DA can filter messages in metabolites that are not correlated with categorical
variables, thereby accurately analyzing inter-group differences in metabolites, which could
further improve the resolving power and effectiveness of the model. Metabolite identifi-
cation was conducted by matching the mass spectrum to the reference library MetWare
database (MWDB). MWDB was constructed based on the standard compounds or public
database like METLIN. Variable weight value (VIP) and p-values in t-tests were used to fil-
ter significantly different metabolites during different periods of growth between wild-type
and CR-NOR-like1 tomatoes, and FC > 2 or FC < 0.5, along with p < 0.053 and VIP > 1, was
satisfied to identify the differential compounds. KEGG annotation of significant DEM- and
KEGG-related pathway analyses were conducted, resulting in the identification of critical
pathways with the highest differential correlation to DEMs.

2.4. Transcriptomic Analysis

Using the procedure according to the RNeasy Mini Kit (Qiagen, Hilden, Germany),
we isolated total RNA from the fruits and digested them with DNaseI (Qiagen, Germany)
for genomic DNA removal. RNA was checked for purity with a NanoPhotometer® spec-
trophotometer (IMPLEN, Westlake Village, CA, USA). RNA-concentration measurement
was performed in a Qubit® RNA Assay Kit in the Qubit® 2.0 Flurometer (Life Technolo-
gies, Carlsbad, CA, USA). Detection of degradation and decontamination of RNA was
carried out with a 1% agarose gel. Assessment of RNA integrity was carried out with the
Bioanalyzer 2100 system’s RNA Nano 6000 assay kit (Agilent Technologies, Santa Clara,
CA, USA). The RNA library contained total RNA, ≥1 ug. After the cDNA libraries were
constructed, the libraries were tested for quality. After the library detection was qualified,
the various libraries were pooled based on the valid concentration and the amount of
target downstream data required for Illumina sequencing generated paired-end reads of
150 bp. The preliminary quality of the raw sequence data from the sequencer was analyzed
to obtain raw sequencing data. Clean data were obtained by removing all low-quality
sequences and the subsequent analysis was based on the clean reads. The reference genome



Metabolites 2022, 12, 1296 4 of 21

and its annotation files were downloaded from the indicated websites and indexed by
using HISAT v2.1.0 to compare the clean reads with the reference genome.

2.5. Quantification of Gene-Expression Levels

Gene alignments were calculated using featureCounts v1.6.2, followed by the FPKM
of each gene according to its length. FPKM is currently used as the most common method
available to assess gene-expression levels.

2.6. Differential Analysis and Differential Gene-Enrichment Analysis

Differentials expressed among the two groups were analyzed with DESeq2 v1.22.1
and corrected for p-values to obtain the false-discovery rate (FDR) using the Benjamini
and Hochberg method. |log2 foldchange| and FDR were employed as significantly dif-
ferentially expressed thresholds. KEGG is a test for hypergeometry and path cell-based
hypergeometric distribution based on enrichment analysis.

3. Results
3.1. Widely Targeted Metabolomic Differential Analysis

PCA analysis was performed to investigate the trend of separation between the groups
and the existence of differences between the samples within the groups. The PCA results
(Figure 1A) show that the quality-control samples were well aggregated, demonstrating the
good stability of the experimental method. Moreover, the sample points in each group were
relatively well concentrated, suggesting good sample reproducibility at each developmental-
period point for both tomatoes, and the distances between all groups were relatively dispersed,
which indicates that the NOR-like1 gene editing produced a more significant differential
change in the metabolites. The scatter plot of the OPLS-DA model scores (Figure 1B–D)
reveals significant differences between each of the two sample groups, and the samples were
all within the confidence interval, indicating that there are significantly different metabolites
between wild-type and CR-NOR-like1 tomatoes in the same developmental stage, which can
be used for subsequent differential-component analyses.
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Figure 1. (A) PCA results of the overall sample. Each dot indicates a sample, and one color indi-
cates the same group of samples. The closer the distribution of sample points, the more similar
the types and levels of metabolites in the samples. Mix is the quality-control sample. PC1, prin-
cipal component 1; PC2, principal component 2. Explained variants PC1: 27.41%, PC2: 16.04%.
(B) OPLS-DA model-score scatterplot in GR; (C) OPLS-DA model-score scatterplot in BR+3;
(D) OPLS-DA model-score scatterplot in BR+9, T score indicates the predicted principal compo-
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indicates the orthogonal principal component, and the vertical coordinate direction shows the gap
within groups. Percentage indicates the degree of explanation of this component to the dataset.
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3.2. Differential-Metabolite (DEM) Identification

To investigate the differential effects of the NOR-like1 gene on metabolites in the ripen-
ing stage of tomato, three groups of samples were analyzed for significantly different
metabolites in three developmental periods before and after NOR-like1 gene-editing treat-
ment, using FC > 2 or FC < 0.5, p < 0.05, and VIP > 1 as selection criteria. Firstly, cluster
heat-map analyses (Figure 2A) and k-means cluster analyses (Figure 2B) were applied
to the DEMs, and 620 DEMs were grouped in eight clusters. A total of 216 DEMs were
detected for WT-GR vs. CR-NOR-like1-GR (Figure 3A), including 177 upregulated and
39 downregulated, containing 48 flavonoids (41 up- and 7 downregulated), 48 phenolic
acids (40 up- and 8 downregulated), 41 alkaloids (40 up- and 1 downregulated), 21 lipids,
11 amino acids and their metabolites, 10 lignans and coumarins, 6 organic acids, 7 terpenoids,
5 nucleotides and their derivatives, 4 quinones, and 1 tannin. Altogether, 227 DEMs were
measured for WT-BR+3 vs. CR-NOR-like1-BR+3 (Figure 3B), of which 144 were upregulated
and 83 were downregulated, containing 57 phenolic acids (25 up- and 32 downregulated),
50 alkaloids (46 up- and 4 downregulated), 29 flavonoids (18 up- and 11 downregulated),
15 organic acids, 13 terpenoids, 13 nucleotides and their derivatives, 10 lipids, 7 lignans
and coumarins, 6 amino acids and their metabolites, 6 quinones, and 2 tannins. A series
of 219 DEMs was measured for WT-BR+9 vs. CR-NOR-like1-BR+9 (Figure 3C), of which
179 were upregulated and 40 were downregulated, containing 60 flavonoids (58 up- and
2 downregulated), 55 alkaloids (53 up- and 2 downregulated), 35 phenolic acids (19 up- and
16 downregulated), 17 terpenoids, 12 lipids, 9 lignans and coumarins, 7 nucleotides and their
derivatives, 5 organic acids, 5 amino acids and their metabolites, 2 quinones, and 1 tannin.
It can be seen that the changes in alkaloids, phenolic acids, and flavonoids were significantly
and predominantly upregulated at all three stages; thus, it is suggested that NOR-like1 has
a notable influence on these three metabolites during the ripening period of tomato.
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Figure 2. (A) Cluster heat map of differential-metabolite content; horizontal is the sample name,
vertical is the metabolite information, Group is the grouping, Class is the substance classification, and
different colors are the values obtained after normalization of the relative content (red represents high
content, green represents low content). (B) K-means clustering diagram of differential metabolites;
the horizontal coordinate indicates the sample name, the vertical coordinate indicates the normalized
relative metabolite content, Sub Class represents the metabolite class number with the same trend of
change, and total represents the number of metabolites in the class as.
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The metabolome was analyzed for KEGG-pathway enrichment, and the top 20 path-
ways with the most significant enrichment were also analyzed by forming differential-
enrichment bubble plots (Figure 4). The number of metabolites annotated by KEGG during
the GR was 326, mainly distributed in 49 metabolic pathways and significantly enriched in
flavonoid biosynthesis, isoflavone biosynthesis, phenylpropanoid biosynthesis, flavonoid
and flavonol biosynthesis, tyrosine metabolism, etc. The number of metabolites anno-
tated by KEGG during the BR+3 was 340, mainly distributed in 53 metabolic pathways
and significantly enriched in sulfur metabolism, tyrosine metabolism, purine metabolism,
propionate metabolism, carbapenem metabolism, etc. The number of KEGG annotated
metabolites in the BR+9 was 340, distributed mainly in 36 metabolic pathways, with signifi-
cant enrichment in isoflavone biosynthesis, flavonoid and flavonol biosynthesis, flavonoid
biosynthesis, phenylpropanoid biosynthesis, purine metabolism, etc. It was observed that
the flavonoid and phenylpropanoid pathways were significantly enriched particularly in
GR and BR+9.
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Figure 4. Statistics of metabolomic KEGG enrichment in (A) GR, (B) BR+3, and (C) BR+9. The
horizontal coordinate indicates the rich factor of each pathway, the vertical coordinate is the name
of the pathway, the color of the dot reflects the p-value size, and the redder the color, the more
significant the enrichment. The size of the dots represents the number of differential metabolites
enriched. Enrichment is significant in the pathway labeled yellow.
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3.3. An Overview of RNA-Seq Data

High-quality libraries reflecting transcripts expressed in three developmental stages
of wild-type and CR-NOR-like1 tomato (six strains, each with three biological replicates,
with a total of 18 samples) were analyzed by RNA-seq on the Illumina HiSeq platform.
Clean reads for follow-up analysis were derived by filtering the raw data and checking the
sequencing rate of error, as well as the GC content profile (Table S1). A, B, and C represent
GR, BR+3, and BR+9 of wild-type tomatoes, respectively; D, E, and F represent GR, BR+3,
and BR+9 of CR-NOR-like1 tomatoes, respectively.

3.4. Differentially Expressed Gene (DEG) Identification

To identify DEGs in different tomato-ripening processes (the reference genome was
from the NCBI database), we first investigated gene-expression patterns under different
treatment conditions, centered and normalized the FPKM of differential genes, and then
extracted the centralized and normalized FPKM values of the differential genes and ana-
lyzed them by hierarchical clustering (Figure 5A), which showed differential expression of
a multitude of genes among samples. Furthermore, to find DEGs between samples and to
analyze them for other functions, |log2Fold Change| ≥ 1 and FDR < 0.05 were taken as
conditions for screening DEGs (Figure 5B). In A vs. D, 736 genes were upregulated and
346 genes were downregulated; in B vs. E, 1984 genes were upregulated and 511 genes
were downregulated; and in C vs. F, 577 genes were upregulated and 158 genes were
downregulated. To further identify the metabolic pathways participating in DEGs, we
performed a KEGG-pathway enrichment analysis (Figure 6), and metabolic pathways and
signal transduction pathways were identified in which DEGs were significantly enriched.
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indicates low expression. (B) Numbers of differentially expressed genes.

The DEGs in WT-GR vs. CR-NOR-like1-GR mapped to 111 KEGG pathways, enriched
primarily in metabolic pathways (201, 54.92%) and secondary metabolite biosynthesis
(129, 35.25%). In addition to these two pathways, it was also significantly enriched in plant–
pathogen interaction, MAPK signaling pathway–plant, phenylpropanoid biosynthesis,
fatty-acid metabolism, and flavonoid biosynthesis. The DEGs in WT-BR+3 vs. CR-NOR-
like1-BR+3 mapped to 132 KEGG pathways. The representative pathways were also
metabolic pathways (445, 53.36%) and biosynthesis of secondary metabolites (247, 29.62%);
the rest of the significantly enriched pathways were photosynthesis, photosynthesis-
antenna proteins, valine, leucine and isoleucine degradation, glycerolipid metabolism,
and glyoxylate and dicarboxylate metabolism. The DEGs in WT-BR+9 vs. CR-NOR-
like1-BR+9 mapped to 117 KEGG pathways and were similarly enriched mainly in the
biosynthesis of secondary metabolites (159, 61.87%) and metabolic pathways (100, 38.91%).
Other significant enrichment pathways were carbon metabolism, photosynthesis, gly-
colysis/gluconeogenesis, flavonoid biosynthesis, and nitrogen metabolism. The results
illustrate that NOR-like1 significantly influences expression levels at different develop-
mental stages involving metabolism, organic systems, and environmental-information
processing, with a particularly pronounced effect on metabolism. Flavonoid biosynthe-
sis and phenylpropanoid biosynthesis were more significantly enriched in GR and BR+9
compared to BR+3.
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Figure 6. Statistics of transcriptomic KEGG enrichment in the (A) GR, (B) BR+3, and (C) BR+9. The
vertical coordinate represents the KEGG pathway. The horizontal coordinate indicates the rich factor;
the larger the rich factor, the greater the enrichment. The larger the dot, the greater the number of
differential genes enriched in the pathway. The redder the color of the dot, the more significant the
enrichment. Enrichment is significant in the pathway labeled yellow.
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3.5. Effect of NOR-like1 on Alkaloids

A total of 83 distinct alkaloids were identified in the three developmental stages
of wild-type and CR-NOR-like1 tomatoes (Table S2), and the content of alkaloids was
BR9 > BR3 > GR. In CR-NOR-like1 tomatoes, there were 40 increases and 1 decrease during
the GR period, 47 increases and 3 decreases during the BR+3 period, and 53 increases
and 2 decreases during the BR+9 period. A total of 19 were significantly different in all
three ripening stages. Two of these alkaloids (N-acetylputrescine, agmatine) and three
phenolamines (p-coumaroylputrescine, N-feruloylputrescine, N-feruloylagmatine) were
annotated to the arginine- and proline-metabolism (ko0330) pathways.

There were 16 DEGs identified in the arginine- and proline-metabolism pathways
(Table 1). Compared to wild-type tomatoes, CR-NOR-like1 tomatoes had five upregulated
and three downregulated DEGs during GR, six upregulated and two downregulated
DEGs during BG+3, and three upregulated and three downregulated DEGs during BR+9.
Among them, Ami, ODC, adc1, and P5CS were remarkable changes only in GR; PDH was
significantly changed in BR+3 only; and AST was significantly changed in BR+9 alone,
whereas 1 ALDH and 1 CPA were significantly different in all three ripening stages.

Table 1. List of DEGs related to alkaloids.

Gene Name Gene ID
WT-GR vs. CR-NOR-like1-GR WT-BR+3 vs.

CR-NOR-like1-BR+3
WT-BR+9 vs.

CR-NOR-like1-BR+9

Log2FC p-Value Type Log2FC p-Value Type Log2FC p-Value Type

Aldehyde dehydrogenase (ALDH)

LOC104645747 −1.03 3.59 × 10−3 Down 2.50 9.62 × 10−13 Up 2.58 1.38 × 10−4 Up
SlADH2B7d −1.64 2.12 × 10−26 Down – – – – – –
LOC101250474 – – – −2.10 8.19 × 10−10 Down −1.77 5.66 × 10−6 Down
SlADH2B7d – – – 2.35 5.23 × 10−13 Up – – –
SlADH3F1a – – – −1.57 1.62 × 10−13 Down – – –
SlALDH2B7a – – – 3.03 4.59 × 10−14 Up 1.45 5.86 × 10−6 Up
SlALD3H1 – – – – – – −1.11 4.09 × 10−7 Down

Amidase (Ami) LOC101257218 −1.57 5.71 × 10−4 Down – – – – – –
LOC101260379 1.97 1.72 × 10−3 Up – – – – – –

Arginase (ARG2) ARG2 2.27 4.39 × 10−4 Up 3.75 1.25 × 10−3 Up – – –
Ornithine decarboxylase (ODC) ODC 1.90 1.19 × 10−3 Up – – – – – –
Arginine decarboxylase (adc1) adc1 1.98 5.37 × 10−6 Up – – – – – –

N-carbamoylputrescine amidase (CPA) LOC101268110 9.02 1.53 × 10−12 Up 9.39 4.97 × 10−14 Up 7.65 1.61 × 10−9 Up
Delta-1-pyrroline-5-carboxylate

synthetase (P5CS) LOC101244293 −1.16 2.50 × 10−10 Down – – – – – –

Proline dehydrogenase (PDH) PDH – – – 2.33 8.58 × 10−15 Up – – –
Aspartate aminotransferase (AST) LOC101244012 – – – – – – −1.15 4.13 × 10−6 Down

3.6. Effect of NOR-like1 on Phenolic Acids

In total, 85 separate phenolic acids in wild-type tomatoes and CR-NOR-like1 toma-
toes at three developmental stages were identified (Table S3), and the relative content
of phenolic acid was GR > BR3 > BR9. The CR-NOR-like1 tomatoes had 40 increases
and 8 decreases in the GR period, 24 increases and 33 decreases in the BR+3 period, and
19 increases and 16 decreases in the BR+9 period. A total of 17 of these phenolic acids
changed significantly at all three ripening stages, and 10 of these were increased in CR-
NOR-like1 tomatoes, including 4-aminosalicylic acid, isoferulic acid, ferulic acid, methyl
caffeate, p-hydroxycinnamic acid p-hydroxyphenethylamine, gallic acid-4-o-glucoside,1-
o-feruloylquinic acid, 5-o-feruloylquinic acid, benzyl-(2”-o-xylosyl) glucoside, and os-
manthuside H [2-(4-hydroxyphenyl) ethyl-β-D-apiosyl-(1→ 6)-β-D-glucoside]. Of these,
18 showed significant variation only in the GR, 25 only in the BR+3, 4 only in the BR+9,
and 18 in all three periods. The major differential metabolic pathway involved in phenolic
acids was phenylpropanoid biosynthesis (ko0940), with 12 phenolic acids annotated in this
pathway. All seven of the DEMs involved in the GR were significantly upregulated. BR+3
had 5 DEMs, with two upregulated and three downregulated. BR+9 contained eight DEMs,
including five upregulated and three downregulated.

There were 60 related DEGs characterized in the phenylpropanoid biosynthesis pathway
(Table 2). Compared to wild-type tomatoes, CR-NOR-like1 tomatoes had 19 upregulated
and 11 downregulated during GR, 28 upregulated and 5 downregulated during BR+3, and
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9 up-regulated and 3 downregulated during BR. The 1CCR and 1HCT were significantly
differentially expressed at all three ripening stages, REF1 and COMT were DEGs only at the
GR period, and CAGT was differentially expressed in the BR+3 period only.

Table 2. List of DEGs related to phenolic acids.

Gene Name Gene ID
WT-GR vs. CR-NOR-like1-GR WT-BR+3 vs.

CR-NOR-like1-BR+3
WT-BR+9 vs.

CR-NOR-like1-BR+9

Log2FC p-Value Type Log2FC p-Value Type Log2FC p-Value Type

Phenylalanine ammonia-lyase (PAL)
PAL5 2.71 2.75 × 10−4 Up – – – 2.52 1.50 × 10−6 Up

LOC101243631 – – – – – – 1.18 1.62 × 10−4 Up
PAL3 – – – – – – 1.27 2.20 × 10−6 Up

Trans-cinnamate 4-monooxygenase (C4H) LOC101262919 3.28 2.83 × 10−6 Up – – – −2.45 1.56 × 10−6 Down
LOC101244496 – – – – – – 1.15 1.52 × 10−3 Up

4-coumarate—CoA ligase (4CL) LOC101251197 −4.24 1.46 × 10−4 Down – – – – – –
LOC101251363 – – – 1.06 1.75 × 10−3 Up 1.71 1.65 × 10−3 Up

Cinnamoyl-CoA reductase (CCR)

CCR2 −1.86 1.39 × 10−6 Down – – – – – –
LOC101246651 −1.59 1.55 × 10−5 Down 1.47 6.13 × 10−5 Up 2.11 4.65 × 10−5 Up
LOC101264879 −2.04 1.23 × 10−4 Down – – – 1.71 2.82 × 10−6 Up
LOC101250958 – – – 1.16 3.84 × 10−3 Up – – –
LOC101262601 – – – 2.71 8.51 × 10−14 Up – – –
LOC101265652 – – – 1.32 9.78 × 10−5 Up – – –

PAR2 – – – 1.17 2.15 × 10−3 Up – – –

Cinnamyl-alcohol dehydrogenase (CAD)

LOC112940682 6.67 7.36 × 10−5 Up – – – – – –
LOC101253340 −3.12 1.84 × 10−3 Down 2.51 4.30 × 10−3 Up – – –
LOC101250635 – – – 1.45 4.30 × 10−4 Up – – –
LOC101265606 – – – – – – −2.27 3.28 × 10−3 Down

Peroxidase (POD)

LOC101244376 −7.59 8.55 × 10−7 Down – – – – – –
LOC101251503 5.18 4.85 × 10−13 Up – – – – – –
LOC101253377 1.34 2.53 × 10−3 Up – – – – – –
LOC101257228 4.96 5.63 × 10−11 Up – – – – – –
LOC101263035 −1.25 3.36 × 10−3 Down – – – – – –
LOC101258529 – – – 2.72 1.18 × 10−3 Up – – –
LOC101267754 – – – 2.18 3.45 × 10−3 Up – – –
LOC101268153 – – – 2.58 4.52 × 10−4 Up – – –

TAP2 – – – 1.82 2.65 × 10−3 Up – – –
TMP1 – – – 2.76 4.28 × 10−18 Up – – –

LOC101253648 – – – – – – −1.45 6.78 × 10−5 Down
Caffeoyl-CoA O-methyltransferase

(CCoAOMT)
LOC101253032 2.12 8.52 × 10−10 Up – – – – – –
LOC101252203 – – – 2.70 1.47 × 10−6 Up – – –

Beta-glucosidase (BGL)

LOC101249847 3.83 4.29 × 10−7 Up – – – – – –
LOC101246223 −2.81 2.96 × 10−4 Down – – – – – –
LOC101251735 – – – −1.51 2.27 × 10−5 Down – – –
LOC101256510 – – – 1.66 3.21 × 10−4 Up – – –
LOC101256717 – – – 1.37 1.00 × 10−4 Up – – –
LOC101265077 – – – 1.24 2.71 × 10−8 Up – – –
LOC101260057 – – – 2.59 1.60 × 10−6 Up – – –
LOC101266643 – – – 2.57 1.65 × 10−6 Up – – –

Feruloyl-CoA ortho-hydroxylase (FC2′H) LOC101252918 2.75 8.03 × 10−6 Up 2.05 1.39 × 10−3 Up – – –
Coumaroylquinate(coumaroylshikimate)

3′-monooxygenase (C3′H) LOC101246092 1.77 3.55 × 10−3 Up 1.17 3.53 × 10−3 Up – – –

Coniferyl-aldehyde dehydrogenase (REF1) LOC101247788 1.27 1.63 × 10−3 Up – – – – – –

Shikimate
O-hydroxycinnamoyltransferase (HCT)

LOC101245886 −2.20 3.09 × 10−6 Down 2.30 3.42 × 10−10 Up 2.18 3.96 × 10−5 Up
LOC101247305 7.39 1.06 × 10−4 Up – – – – – –
LOC101248087 5.05 3.14 × 10−8 Up – – – – – –
LOC101252161 −2.31 2.14 × 10−3 Down – – – 2.28 7.77 × 10−4 Up
LOC101253556 5.90 5.02 × 10−12 Up – – – – – –
LOC101256271 1.60 1.93 × 10−3 Up – – – – – –
LOC101260610 5.16 1.78 × 10−4 Up – – – – – –
LOC101244961 – – – −1.58 1.04 × 10−3 Down – – –
LOC101246106 – – – −1.24 3.17 × 10−3 Down – – –
LOC101266953 – – – 1.62 5.32 × 10−3 Up – – –

Caffeic acid 3-O-methyltransferase (COMT) LOC101251452 1.49 5.89 × 10−4 Up – – – – – –

Scopoletin glucosyltransferase (TOGT1)

LOC101253350 3.07 6.84 × 10−8 Up – – – – – –
LOC101259704 −1.92 1.37 × 10−16 Down – – – – – –

twi1 1.31 2.54 × 10−3 Up – – – – – –
GAME1 – – – 2.32 1.34 × 10−2 Up – – –

LOC101258702 – – – −1.36 3.72 × 10−4 Down – – –
LOC101260915 – – – 5.63 1.64 × 10−10 Up – – –

Coniferyl-alcohol glucosyltransferase (CAGT) LOC101256157 – – – −3.10 2.92 × 10−17 Down – – –

3.7. Effect of NOR-like1 on Flavonoids

In total, 96 different flavonoids were identified as a result of the three developmental
stages in wild-type and CR-NOR-like1 tomatoes (Table S4), and the relative content of
flavonoids was BR+9 > GR > BR+3; therefore, it could be concluded that BR+9 may
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be a critical stage for tomato-flavonoid biosynthesis. The CR-NOR-like1 tomatoes had
41 increases and 7 decreases in the GR, 18 increases and 12 decreases in CR-NOR-like1
tomatoes in the BR+3, and 58 increases and 2 decreases in the BR+9. Eight of them were
significantly different at all three developmental stages, including glycitin, calycosin-7-
O-glucoside, sieboldin, dihydromarein, chrysoeriol-6,8-di-C-glucoside, chrysoeriol-6-C-
glucoside-7-oglucoside, and chrysin,6-C-glucosyl-2 hydroxynaringenin. Combined with
the KEGG-pathway enrichment analysis, the flavonoid DEMs were distributed mainly in
flavonoid biosynthesis (ko0941), isoflavone biosynthesis pathway (ko0943), and flavonoid
and flavonol biosynthesis (ko0944).

The three ripening stages identified 30 DEGs of enzymes associated with flavonoid
biosynthesis. (Table 3). Compared to wild-type tomatoes, CR-NOR-like1 tomatoes had nine
significantly upregulated and two downregulated during GR, nine were significantly upreg-
ulated and four downregulated during BR+3, and 11 upregulated and one downregulated
during BR+9. Among them, the HIDH and VR genes were only significantly different in the
BR+3 period, whereas the F3H and CHS genes were only significantly different in BR+9.

Table 3. List of DEGs related to flavonoids.

Gene Name Gene ID
WT-GR vs. CR-NOR-like1-GR WT-BR3 vs.

CR-NOR-like1-BR+3
WT-BR9 vs.

CR-NOR-like1-BR+9

Log2FC p-Value Type Log2FC p-Value Type Log2FC p-Value Type

Shikimate
O-hydroxycinnamoyltransferase (HCT)

LOC101253556 5.90 5.02 × 10−12 Up – – – – – –
LOC101248087 5.05 3.14 × 10−8 Up – – – – – –
LOC101245886 −2.20 3.09 × 10−6 Down 2.30 3.42 × 10−10 Up 2.18 3.96 × 10−5 Up
LOC101247305 7.39 1.06 × 10−4 Up – – – – – –
LOC101260610 5.16 1.78 × 10−4 Up – – – – – –
LOC101256271 1.60 1.93 × 10−3 Up – – – – – –
LOC101252161 −2.31 2.14 × 10−3 Down – – – 2.28 7.77 × 10−4 Up
LOC101244961 – – – −1.58 1.04 × 10−3 Down – – –
LOC101246106 – – – −1.24 3.17 × 10−3 Down – – –
LOC101266953 – – – 1.62 5.32 × 10−3 Up – – –

Caffeoyl-CoA
O-methyltransferase (CCoAOMT)

LOC101253032 2.12 8.52 × 10−10 Up – – – – – –
LOC101252203 – – – 2.70 1.47 × 10−6 Up – – –

Trans-cinnamate 4-monooxygenase
(C4H)

LOC101262919 3.28 2.83 × 10−6 Up – – – −2.45 1.56 × 10−6 Down
LOC101244496 – – – – – – 1.15 1.52 × 10−3 Up

Flavonol synthase (FLS)
LOC101260801 3.70 7.56 × 10−4 Up −1.51 4.18 × 10−3 Down – – –
LOC101260380 – – – – – – 9.94 2.70 × 10−16 Up
LOC101249699 – – – – – – 1.73 2.63 × 10−5 Up

Chalcone isomerase (CHI) CHI1 −1.14 1.42 × 10−3 Down – – – – – –
LOC101266223 – – – – – – 2.84 3.54 × 10−9 Up

Coumaroylquinate(coumaroylshikimate)
3′-monooxygenase (C3H) LOC101246092 1.77 3.55 × 10−3 Up 1.17 3.53 × 10−3 Up – – –

Leucoanthocyanidin dioxygenase
(LDOX) LOC101248628 – – – −3.34 1.70 × 10−6 Down – – –

Naringenin 3-dioxygenase (F3H) F3H – – – – – – 2.51 6.12 × 10−10 Up
Flavonoid 3′-monooxygenase (F3′H) LOC101266618 – – – – – – 2.31 2.27 × 10−9 Up

Chalcone synthase (CHS) CHS1 – – – – – – 3.13 5.24 × 10−5 Up
CHS2 – – – – – – 1.19 8.59 × 10−4 Up

2-hydroxyisoflavanone dehydratase
(HIDH) ASH1 – – – 2.65 9.81 × 10−8 Up – – –

Vestitone reductase (VR) LOC101264524 – – – 4.15 2.20 × 10−4 Up – – –
Isoflavone/4′-methoxyisoflavone

2’-hydroxylase(I2′H) LOC101250559 – – – 1.68 9.19 × 10−3 Up 1.81 2.91 × 10−3 Up

Flavonol-3-O-glucoside/galactoside
glucosyltransferase (FG3)

LOC104649610 – – – 1.73 1.05 × 10−5 Up – – –
LOC101244316 – – – 1.25 1.07 × 10−3 Up 4.20 5.14 × 10−6 Up

3.8. Correlation Network Analysis

To investigate the effect of NOR-like1 on the regulatory network of alkaloid, phenolic
acid, and flavonoid biosynthesis in tomatoes, these three differential metabolites were tested
for correlation with differentially expressed genes in three developmental periods, screening
DEGs and DEMs with high correlation-coefficient values (r > 0.8) for correlation analysis.

The Ami (LOC101257218) in the metabolic pathway related to alkaloid synthesis showed
a high negative correlation with p-coumaroylputrescine (r = −0.832) in the GR period.

According to the results of DEGs and DEMs of phenolic-acid-relevant metabolic path-
ways, a total of 18 genes were found to show a highly significant correlation with six phenolic
acids and one lignan (Table 4). In the GR period, six genes were highly correlated with
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two phenolic acids, sinapinaldehyde and 5-O-p-coumaroylquinic acid were reduced, and
the expression of all six DEGs was upregulated, with BGL (gene-LOC101262919) positively
correlated with sinapinaldehyde as well as C4H, HCT, and CAD, which differentially and neg-
atively acted on these two differential metabolites. The BR+3 period contained 15 DEGs highly
associated with four phenolic acids, with reduced levels of p-coumaraldehyde, coniferin, and
sinapyl alcohol as well as increased levels of ferulic acid. P-coumaraldehyde and coniferin
were influenced by CCR, HCT, and TOGT1. Among them, ferulic acid and coniferin were pos-
itively regulated by two TOGT1s (LOC101258702, LOC101260915, respectively) and sinapyl
alcohol was positively regulated by both HCT (LOC101244961) and BGL (LOC101251735).
The remaining DEGs all negatively affected these DEMs to varying degrees. Three genes
of BR+9 were highly associated with two phenolic acids and one lignan, and the content
of 5-O-p-coumaroylquinic acid and p-coumaraldehyde was reduced in both and negatively
correlated with POD, HCT, and 4CL.

Table 4. Result of phenolic-acid correlation network analysis.

Gene Name Gene ID Compounds PCC

HCT LOC101252161
Sinapinaldehyde −0.85

5-O-p-Coumaroylquinic acid −0.81
LOC101244961 p-Coumaraldehyde 0.945

BGL

LOC101246223
Sinapinaldehyde −0.82

5-O-p-Coumaroylquinic acid −0.83

LOC101251735
Sinapyl alcohol 0.837

p-Coumaraldehyde 0.879

LOC101265077
p-Coumaraldehyde −0.89

Coniferin −0.84

LOC101256717
p-Coumaraldehyde −0.92

Coniferin −0.82
C4H LOC101262919 Sinapinaldehyde 0.881

TOGT1

LOC101259704
Sinapinaldehyde −0.86

5-O-p-Coumaroylquinic acid −0.82

GAME1
Coniferin −0.89

p-Coumaraldehyde −0.87

LOC101258702
Coniferin 0.916

p-Coumaraldehyde 0.897
LOC101260915 Ferulic acid * 0.803

CAD
LOC101253340 5-O-p-Coumaroylquinic acid −0.85

LOC101250635
Coniferin −0.81

p-Coumaraldehyde −0.88

POD

LOC101244376 Sinapinaldehyde −0.97

TMP1
p-Coumaraldehyde −0.94

Coniferin −0.93

TAP2
Coniferin −0.86

p-Coumaraldehyde −0.9

LOC101253648
7-Hydroxycoumarin −0.86
p-Coumaraldehyde −0.84

CCR

LOC101250958
Coniferin −0.9

p-Coumaraldehyde −0.9
LOC101265652 p-Coumaraldehyde −0.85

PAR2
Coniferin −0.81

p-Coumaraldehyde −0.84

4CL LOC101251363
Coniferin −0.82

5-O-p-Coumaroylquinic acid −0.84

NOTE: * indicates the presence of an isomer of the substance in the test result.

Based on the findings of DEGs and DEMs of flavonoid-relevant biosynthesis pathways,
a total of eight genes showed a high correlation with 15 flavonoids (Table 5). Six structural
genes showed a higher correlation with 10 flavonoids and two phenolic acids in the GR pe-
riod, and all 12 DEMs were upregulated (5 flavanones, 3 chalcones, 2 flavanonols, 1 flavone,
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1 phenolic acid)—hesperetin, homoeriodictyol, phloretin, butin, aromadendrin, naringenin
chalcone, hesperetin-7-O-glucoside, chrysin, trans-5-O-(p-coumaroyl) shikimate, eriodic-
tyol, luteolin, and phlorizin—and were highly correlated with six DEGs. Among them,
C4H (LOC101262919) was positively associated with luteolin, hesperetin, homoeriodictyol,
phloretin, butin, aromadendrin, naringenin chalcone, and pinobanksin. The remaining
genes—CCOAOMT, CHI, and HCT—all negatively interacted with each of the DEMs in the
network to varying degrees. The BR+3 period had one gene showing a higher correlation
with three flavonoids, all three DEMs were reduced (3 flavanones), and hesperetin, homo-
eriodictyo, and isosakuranetin were all positively associated with HCT (LOC101244961).
Three genes of BR+9 showed a high correlation with three flavonoids (1 flavones, 1 chal-
cones, 1 flavanones) and one phenolic acid. HCT (LOC101252161) was negatively correlated
with 5-O-p-coumaroylquinic acid, whereas luteolin, isoliquiritigenin, and eriodictyol were
positively correlated with CHS (CHS1) and all upregulated. Luteolin was also correlated
positively with C4H (LOC101262919).

Table 5. Result of flavonoid correlation network analysis.

Gene Name Gene ID Compounds PCC

HCT

LOC101252161

Naringenin chalcone −0.816
Pinobanksin −0.803
Hesperetin −0.862

5-O-p-Coumaroylquinic acid −0.813
Phloretin −0.815

Butin −0.821
Aromadendrin (dihydrokaempferol) −0.808

Homoeriodictyol −0.859
LOC101253556 Phloretin-2′-O-glucoside (phlorizin) −0.868
LOC101247305 Phloretin-2′-O-glucoside (phlorizin) −0.902

LOC101244961
Homoeriodictyol 0.832

Hesperetin 0.818
Isosakuranetin (5,7-dihydroxy-4′-methoxyflavanone) 0.925

CHI CHI1

Eriodictyol (5,7,3′,4′-tetrahydroxyflavanone) −0.846
Homoeriodictyol −0.834

Pinobanksin −0.823
Naringenin (5,7,4′-trihydroxyflavanone) −0.832

Hesperetin −0.825
Aromadendrin (dihydrokaempferol) −0.82

C4H LOC101262919

Luteolin (5,7,3′,4′-tetrahydroxyflavone) 0.832
Naringenin (5,7,4′-trihydroxyflavanone) 0.807

Naringenin chalcone 0.849
Phloretin 0.854

Butin 0.85
Hesperetin 0.839

Aromadendrin (dihydrokaempferol) 0.841
Homoeriodictyol 0.84

Pinobanksin 0.84
CCOMT LOC101253032 Phloretin-2′-O-glucoside (Pplorizin) −0.815

CHS CHS1
Eriodictyol (5,7,3′,4′-tetrahydroxyflavanone) 0.865

Isoliquiritigenin 0.832
Luteolin (5,7,3′,4′-tetrahydroxyflavone) 0.848

4. Discussion

Within the present study, we integrated widely targeted metabolomic and transcriptomic
analyses revealing significant effects of NOR-like1 gene editing on alkaloids, phenolic acids,
and flavonoids in tomato and identified relevant genes engaged in these different metabolites.
To understand the effects of NOR-like1 gene editing, the pathways associated with these
substances were screened for DEMs and DEGs based on the findings of KEGG enrichment
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analysis, and correlations were performed for DEMs and DEGs in pathways with correlations
higher than 0.8 (a correlation coefficient higher than 0.8 indicates high correlation).

Steroid alkaloids were the major alkaloid types in the tomatoes, with 27 in total, and
all of them were upregulated. The most significantly upregulated alkaloids were γ-solanine
(Log2FC = 13.07) in BR+3 and β2-tomatine (Log2FC = 12.35) in BR+9; these two alkaloids
increased much more than the rest, and they all belonged to steroid alkaloids. Research
related to Solanaceae has mainly focused on α-tomatine and α-kynurenine, with few reports
on γ-solanine and β2-tomatine, both of which aid plants to defend themselves against
pathogens and herbivores via their bitterness and toxicity, and are enriched significantly
in leaves, roots, and immature green tomatoes [16]. However, NOR-like1 gene editing
produced a very significant positive effect on the late-ripening (BR+3, BR+9) tomatine. A
total of five alkaloids were annotated to arginine and proline metabolism. Agmatine is a
metabolite associated with arginine and proline metabolism, whereas n-acetylputrescine, p-
coumarinylputrescine, ferulic putrescine, and n-ferulic agmatine are related derivatives [32].
Analyses of correlation revealed that only Ami (LOC101257218) was highly negatively
associated with p-coumaroylputrescine and that p-coumaroylputrescine was increased in
tomatoes (Log2FC = 3.20). Ami is an important enzyme in arginine and proline metabolism,
and the downregulation of Ami facilitated the accumulation of arginine and proline [33].
Consequently, these alkaloids associated with arginine and proline metabolic pathways
were also accumulated. Based on these results, we came to the conclusion that NOR-like1
positively affects alkaloid synthesis in tomatoes, especially late ripening. Therefore, we
hypothesize that the changes in arginine and proline metabolic pathways as also part of
plant defense mechanisms.

Changes in the gene-expression levels of the phenylpropanoid biosynthesis pathway
correlated with variation in lignin, phenolic acids, and flavonoids, whereas changes in the
phenylpropanoid biosynthesis in CR-NOR-like1 tomatoes mainly involved alterations in
phenolic acids. These substances are initially converted from phenylalanine to cinnamic
acid by deamination under the action of PAL, followed by hydroxylation to p-coumaric
acid catalyzed by C4H, and eventually converted to p-coumaroyl CoA by the addition of
a CoA to p-coumaric acid catalyzed by 4CL, finally entering the phenolic-acid pathway
to produce p-coumaroyl quinic acid, caffeic acid, ferulic acid, etc., which exist in the plant
in a free state and combined with esters or glycosides [14,34–36]. POD, CCR, and BGL
were shown to be important enzymes in the plant-defense response [37], and all three
enzymes were predominantly upregulated in CR-NOR-like1 tomatoes. Sinapinaldehyde
was the most upregulated of all alkaloids in the GR period (Log2FC = 9.84) and it was the
precursor of sinapyl-alcohol synthesis in all three periods; however, sinapyl alcohol was
reduced in BR+3 under the negative regulation of BGL (LOC101251735) (Log2FC = −2.35).
Because CAD is the enzyme capable of reducing sinapinaldehyde to the corresponding
sinapyl alcohol [38], we presumed that the decrease in sinapyl-alcohol content could have
been due to significant negative regulation of sinapinaldehyde by CAD (LOC101253340).
Ferulic acid is a key metabolite annotated to the phenylpropanoid biosynthesis and is
positively regulated at BR+3 by TOGT1 (LOC101260915). A natural production most
commonly found in tomatoes, ferulic acid is widespread in the cell wall and has free radical
scavenging and antiviral functions [39]. NOR-like1 significantly affects key enzymes in the
phenylpropanoid biosynthesis pathway, positively influencing phenolic-acid components.

Among all the flavonoids that were significantly changed, flavonols (28), flavones (18),
and flavanones (16) accounted for more than half of all flavonoid differential metabolites.
In the GR period, chrysin, naringenin chalcone, luteolin, etc.; chrysin in BR+3; and acacetin,
chrysin, wogonin, etc. in BR+9 were where the flavonoids increased most obviously. Of
these, chrysin was upregulated extremely significantly in all three periods (Log2FC = 12.17,
GR; Log2FC = 13.81, BR+3; Log2FC = 8.07, BR+9). Chrysin has been shown to have antioxi-
dant capacity and can scavenge free radicals, is anti-inflammatory, and has demonstrated
other activities [40], but it has been less studied in tomatoes. The genes associated with
flavonoid biosynthesis are mainly classified into structural and regulatory genes [41]—
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for instance, CHS, FLS, F3H, F3′H, C4H, etc. C4H plays an important role in flavonoid
biosynthesis [42–44]. Correlation analysis showed that C4H at all three ripening stages
positively regulated flavonoids including luteolin, hesperetin, homoeriodictyol, phloretin,
butin, aromadendrin, naringenin chalcone, and pinobanksin. CHS, FLS, and CHI are key
enzymes in flavonoid biosynthesis. The first key speed-limiting enzyme in the flavonoid
biosynthetic is CHS [45], whereas CHS and FLS can synergistically upregulate the biosyn-
thesis of flavonols in tomatoes [46]. Both genes were mainly expressed as upregulated in
BR+9, whereas the content of flavonols in BR+9 was significantly increased (20 increased
and 1 decreased). CHI is the second key speed-limiting enzyme in flavonoid biosynthe-
sis [47]. Naringin chalcone can be isomerized in the presence of CHI to produce naringin, a
procedure that may alternatively occur spontaneously in the absence of active CHI [16].
In the present study, CHI was down-regulated in GR, whereas naringenin chalcone and
naringenin were very significantly upregulated in GR. Apart from that, F3H, or F3′H, is also
a critical enzyme in flavonoid biosynthesis. F3H acts on naringin and eriodictyol, resulting
in the substitution of the C3 position with a hydroxyl group. This leads to the formation
of the corresponding dihydroflavonols, i.e., dihydrokaempferol (DHK), dihydroquercetin
(DHQ), and DHQ, which can be obtained by catalyzing DHK in the presence of F3′H [14].
Naringenin, eriodictyol, and DHK for GR as well as eriodictyol and DHQ for BR+9 were
significantly up-regulated, as shown in Table S4. NOR-like1 gene editing greatly affected
the critical enzymes for flavonoid biosynthesis, and the variation in flavonoid metabolites
was most obvious from the data.

The present results indicate that NOR-like1 dramatically affected gene-expression lev-
els involved in metabolism, organic systems, and environmental-information processing in
the different developmental stages, especially on alkaloids, phenolic acids, and flavonoids,
with flavonoids being the most dramatic change. Highly relevant key metabolites and key
regulatory genes were further screened by correlation analysis. Ami in the arginine and
proline metabolic pathways; PAL, C4H, 4CL, and CAD in the phenylpropane biosynthesis;
and CHS, FLS, F3H, F3′H, and C4H in the flavonoid pathway all had significant regulatory
effects on the accumulation of alkaloids, phenolic acids, and flavonoid metabolites. It was
demonstrated that under the same inherited background it is possible to store fruits with
higher overall antioxidant capacity longer than those of lower antioxidant capacity, that
tomato fruits with higher antioxidant ability show slower overripening [48], and that phe-
nolics and alkaloids also have a significant effect on biotic–biotic resistance. Accordingly,
we hypothesized that NOR-like1 gene editing would enhance antioxidant capacity and
cause delayed ripening by upregulating alkaloid, phenolic acid, and flavonoid accumu-
lation during tomato ripening. The present study lays the foundation for extending fruit
longevity and shelf life as well as cultivating stress-resistant plants, and also provides
directions for further studies on the mechanisms of NOR-like1 transcription-factor effects
on metabolites in tomatoes. Furthermore, it enriched the study of NAC gene function
and regulation in tomatoes and initially revealed the effect of NOR-like1 gene editing on
the accumulation of alkaloids, phenolic acids, and flavonoid metabolites in tomato. The
effect of NOR-like1 on the metabolism of alkaloids, phenolic acids, and flavonoids during
tomato ripening needs to be further investigated—for instance, with antioxidant assays or
combined with proteomic approaches—to enrich our studies and explore more deeply the
regulatory mechanism of NOR-like1 transcription factor.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12121296/s1, Table S1: An overview of the RNA-Seq data;
Table S2: Differential metabolites of alkaloids; Table S3: Differential metabolites of phenolic acids; Table
S4: Differential metabolites of flavonoids.
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