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Abstract: Recent developments in molecular networking have expanded our ability to characterize
the metabolome of diverse samples that contain a significant proportion of ion features with no mass
spectral match to known compounds. Manual and tool-assisted natural annotation propagation is
readily used to classify molecular networks; however, currently no annotation propagation tools
leverage consensus confidence strategies enabled by hierarchical chemical ontologies or enable the
use of new in silico tools without significant modification. Herein we present ConCISE (Consensus
Classifications of In Silico Elucidations) which is the first tool to fuse molecular networking, spectral
library matching and in silico class predictions to establish accurate putative classifications for entire
subnetworks. By limiting annotation propagation to only structural classes which are identical for the
majority of ion features within a subnetwork, ConCISE maintains a true positive rate greater than 95%
across all levels of the ChemOnt hierarchical ontology used by the ClassyFire annotation software
(superclass, class, subclass). The ConCISE framework expanded the proportion of reliable and
consistent ion feature annotation up to 76%, allowing for improved assessment of the chemo-diversity
of dissolved organic matter pools from three complex marine metabolomics datasets comprising
dominant reef primary producers, five species of the diatom genus Pseudo-nitzchia, and stromatolite
sediment samples.

Keywords: annotation propagation; CANOPUS; metabolomics; dissolved organic matter

1. Introduction

High-throughput metabolomics has enabled the screening of hundreds of thousands
of metabolites which have the potential to define biological and ecological samples more
thoroughly than has previously ever been possible [1]. One of the most promising ap-
plications of these emerging tools is understanding the composition and transformation
of the hyper-diverse samples such as dissolved organic matter, which comprises a com-
plex mixture of carbon-based molecules ubiquitous in aquatic and terrestrial habitats [2,3].
Characterizing the chemical diversity of these dissolved organic matter (DOM) pools is
vital for understanding how changes in metabolite availability can select for certain mi-
crobial communities [4]. Untargeted liquid chromatography tandem mass spectrometry
(LC-MS/MS) and the development of new techniques to extract molecules from complex
samples has enabled high-throughput detection of tens of thousands of molecular features
from individual samples across diverse ecosystems [1,5–7]. These ecosystem metabolomes
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can be characterized through spectral matching to reference libraries (e.g., GNPS, mass-
Bank, HMDB, ReSpect, NIST14, NIST17) [8–11] combined with molecular networking
which are both available within the Global Natural Products Social Molecular Networking
(GNPS) platform [11,12]. Molecular networking expands the interpretability of untargeted
metabolomic samples as compositionally similar ion features are networked together using
spectra cosine score similarity. In more complex samples, these spectral library matches
might identify fewer than 10% of features in the dataset. To facilitate structural identification
of unknown metabolites, multiple in silico annotation tools have been recently developed,
which assign putative annotations across untargeted mass spectrometry experiments (e.g.,
SIRIUS, ZODIAC, CSI:FingerID, CANOPUS, Metfrag) [13–17].

One approach for expanding the number of annotated features is by manually prop-
agating annotations of neighboring features in molecular networks containing database
spectral library matches or in silico annotations. However, manual annotation propagation
is limited by inherent bias and becomes increasingly time consuming with untargeted
metabolomic studies, especially complex and diverse datasets such as DOM [2]. There
are currently two tools available which automate the propagation of spectral features
within molecular networks [6,18]; however, these tools do not allow for implementation of
new in silico annotation tools such as CANOPUS [17], nor rely upon annotation consensus
within molecular subnetworks. To address these limitations, we present ConCISE: Consen-
sus Classifications of in silico Elucidations, a new chemoinformatic tool which leverages
spectral library database matches and in silico class prediction by establishing network spe-
cific consensus classifications from chemical ontologies (ChemOnt, [19]). To illustrate the
application of ConCISE we utilized CANOPUS in silico class predictions to expand putative
annotations between 465% and 1244% in three untargeted metabolomics datasets, while
also increasing confidence in those annotations through cross-validation within molecular
subnetworks and classification hierarchy.

2. Materials and Methods
2.1. Availability

ConCISE is available on github (github.com/zquinlan/concise; 10.5281/zenodo.7377913;
accessed on 29 November 2022) and can be run on a local machine through a command
line interface (CLI) or graphical user interface (GUI) by downloading the source files or
executable files. Alternatively, the command line interface can also be run on a virtual
machine through myBinder [20] which is maintained within the same github repository.

2.2. ConCISE Workflow

ConCISE requires a connection to the internet, even when run locally, to access the
Global Natural Product Social Molecular Networking (GNPS) spectral library matches.
The ConCISE workflow requires three main inputs: (1) the GNPS task ID of the molecular
networking job. (2) The in silico summary file which can either be the CANOPUS summary
tab separated values (tsv) file exported directly from SIRIUS or a tsv with ion feature
annotations from any other in silico tool using a three-level hierarchical ontology. In the
latter scenario the feature number, superclass, class, and subclass columns must be named
‘featureNumber’, ‘superclass’, ‘class’, ‘subclass’. (3) The networking info tsv from the
clusterinfo_summary subdirectory in the Cytoscape download from GNPS. The networking
tsv may be replaced by any tsv which has a column with feature number and subnetwork
number with the columns are named ‘cluster index’ and ‘componentindex’, respectively.
Example summary files are available from github.com/zquinlan/concise/exampleFiles
(accessed on 29 November 2022).

First, all sub-networks with at least one library annotation from GNPS are identified
(Figure 1a). The ChemOnt ontology for all ion features with a library annotation that has
structural information (e.g., SMILES or InChI [21,22]) within each subnetwork will be com-
pared at each taxonomic level (superclass, class, and subclass). For a consensus annotation
to be selected at the superclass level at least 50% of the nodes within that sub-network

github.com/zquinlan/concise
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must have the same superclass annotation. To ensure the authenticity of the narrower
classifications levels of class and subclass a stricter cutoff of 70% consensus between nodes
is required (Figure 1b). These two thresholds were empirically selected using case study
one to ensure both high annotation and true positive rates. These default thresholds may be
modified by the user in all iterations of the workflow (CLI, GUI, myBinder). The ConCISE
consensus annotation will select the lowest level (most granular) annotation which passes
the cutoff criteria for that classification level and all higher classification levels within
the respective annotation taxonomy. The in silico consensus annotations follow the same
schema as that of the spectral library matches. Ion features not linked in subnetworks
(so-called “singleton nodes”) are only given the corresponding library annotation and in the
absence of any library match do not receive an in silico annotation to reduce the occurrence
of false positives.
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Figure 1. ConCISE consensus annotation pipeline. (a) Assignment hierarchy; identification of
annotation sources within each molecular subnetwork. Spectral library matches are utilized prior
to annotations from in silico annotation tools. (b) Consensus derivation decision tree used for either
library spectral matches or in silico matches. Nodes with annotations must have consensus (>50%,
>70%, >70%) at each classification level, respectively, (superclass, class and subclass) to receive the
higher classification. If the nodes within the subnetworks cannot find a consensus above 50% at the
superclass level, then ConCISE returns “No Consensus Reached” for that subnetwork.

2.3. Running ConCISE

Add the library, GNPS Task ID, CANOPUS summary table and Networking Infor-
mation table to the required fields (Figure S1). Thresholds will default to 50%, 70% and
70% unless modified by the user in the appropriate field. If running locally, there is an
optional field to select where the ConCISE summary file will be written. All dependencies
are bundled within the GUI; however, running ConCISE from the command line will re-
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quire the installation of python (https://www.python.org/ accessed on 29 November 2022;
ConCISE was written in python3), as well as the following libraries: “requests” (https:
//pypi.org/project/requests/ accessed on 29 November 2022), “Pandas” [23]; 10.5281/zen-
odo.6702671, and “NumPy” [24].

2.4. ConCISE Export

ConCISE creates a single csv file into the working directory (or selected directory if in-
cluded) called ConCISEConsensus.csv. This csv file contains a row for every feature within
the molecular networking job, a ConCISE consensus annotation with the full chemical
hierarchy of the consensus annotation, a score (percent consensus of annotations within the
subnetwork), an ontology level at which ConCISE was able to find a consensus annotation,
the number of nodes which were used to build the consensus, and the source for which
the annotation classification was derived (library or in silico). An example export of Con-
CISE is available from the github repository (github.com/zquinlan/concise/exampleFiles/
accessed on 29 November 2022).

3. Results
3.1. Manual Validation of ConCISE Consensus Annotations

ConCISE was tested using three publicly available independent datasets using CANO-
PUS predicted ClassyFire ontologies described below as Case Studies (MassIVE IDs:
MSV000082083, MSV000081731, MSV000083729). These datasets include exometabolites
from the environment, microbial cultures, and sediment metabolite samples with molecular
feature counts ranging from 9904 to 21991 (from 3112 to 7293 molecular subnetworks). In
total, 1789 individual library spectral matches from the three datasets were evaluated. To
estimate the true positive rate of in silico consensus annotations, ConCISE was run without
any library matches for each of the test datasets. The resultant consensus annotations from
each test were then manually verified against the spectral library match compound identi-
ties reported from GNPS. ConCISE consensus annotations from spectral library matches
had a true positive rate (TPR) of 98.88% ± 1.62% (Figure 2a) while in silico consensus
annotations had a TPR of 96.1% ± 4.96% across the ClassyFire hierarchies (Superclass,
Class, Subclass). Compared to spectral library matches alone without any prior annotation
propagation, ConCISE consensus annotations expanded the subnetwork annotation rate by
up to 1244% with 58.6%, 56.3%, and 76.5% of ion features receiving a ConCISE consensus
annotation in the three datasets, respectively (Figure 2b).
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(b) Example network (MassIVE ID: MSV000082083) illustrating annotation rates from spectral library
matches (left) and ConCISE (right) with putative annotations colored in light blue. Ranges in
annotation rate were given for the three datasets used to verify ConCISE. Network annotation rates
calculated without single-loop nodes.

3.2. Case Study 1—Characterization of the Dissolved Organic Matter Pools from Dominant Coral
Reef Primary Producers

Coral reefs are regarded as one of the most important ecosystems both ecologically and
economically; touted as cradles of biodiversity, producing the most biodiversity per unit
area of any marine-environment [25] and representing one the most productive systems
in the world [26–29]. However, many coral reefs are shifting to fleshy algal dominated
systems as the microbial community functions shift towards increased microbial loads and
copiotrophic feeding strategies [30–33]. This shift in reef metabolism is hypothesized to be
the result of shifts in the composition of the dissolved organic matter exuded into the water
by the benthic primary producers of coral reefs [34]. Understanding the composition of the
exuded dissolved organic matter is vital to understanding the drivers of coral reef phase
shifts. Untargeted metabolomics allows for the analysis of these dissolved organic matter
pools; however, the spectral annotation rate remains too low to characterize chemical class
variability between coral reef primary producers [1–3,7].

Using the ConCISE workflow, we were able to annotate 61.09% of all molecular subnet-
works produced by coral reef primary producers (Figure 2b). These annotations (spectral
library match or in silico) had an average subnetwork consensus of 87.4% (Figure 3a). In-
deed, even in subnetworks with many annotated features, such as in subnetwork 131
(n = 43 annotated ion features), had a consensus of 95.3%. This was true for the narrower
subclassifications as well including fatty amides (subnetwork 2263) which still had a
72.0% consensus. Moreover, even at the superclass level differences between fleshy algae
(Dictyota ceylanica and turfing algae) and coral (Pocillopora verrucosa and Porites lobata) were
apparent (Figure 3b). At the subnetwork level, both species of coral produced relatively
higher amounts of organic acids while the turfing algae released relatively high amounts of
organoheterocyclic compounds. Deeper analysis into the classes and subclasses of these ex-
udates will greatly expand our understanding of the driving forces behind microbial-driven
phase shifts which would not possible without ConCISE.

3.3. Case Study 2—Differentiating the Exometabolites of Five Pseudo-nitzschia Species

Pseudo-nitzschia is a genus of marine diatoms, which can form harmful algal blooms
through the production of domoic acid, a neurotoxin that bioaccumulates in aquatic
food webs endangering wildlife and human health. Though present worldwide, the
specific conditions which promote Pseudo-nitzschia blooms and domoic acid production
are poorly understood. Previous studies have shown that microbiomes of different
Pseudo-nitzschia are species-specific [35,36] and microbial interactions mediated by metabo-
lites can promote Pseudo-nitzschia growth [37]. A study by Koester et al. (2022) revealed
that metabolomes are also species-specific and that nitrogen-containing compounds differ-
entiated the Pseudo-nitzschia-microbiome cultures [38]. The prior study used both spectral
matches and CANOPUS probabilities to illuminate the metabolomes of Pseudo-nitzschia
cultures, however, propagation was limited to manual inspection. Using the ConCISE
framework, we were able to demonstrate which compound classes are most specific to each
of the five Pseudo-nitzschia cultures (Figure 4). The two toxic species of Pseudo-nitzschia clus-
tered together when incorporating the relative production of each ConCISE classification,
which agrees with the findings on feature level [38]. Within this case study, 56.3% of ion
features received a putative consensus annotation with a mean consensus of 87.8%.
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Figure 3. Putative identification of exometabolites released by coral reef primary producers. Dis-
solved organic matter chemo-diversity from flow-through organism incubations in Mo’orea, French
Polynesia of crustose coralline algae (CCA), Dictyota ceylanica, turf algae, Pocillopora verrucosa, and
Porites lobata. (a) The molecular network of ConCISE classified subnetworks from the incubations with
nodes colored by superclass annotation. Three representative subnetworks have been highlighted
to illustrate the narrower chemical classification which can be derived from ConCISE annotations
along with the consensus score for the annotation within the molecular network. (b) Stacked bar
chart illustrating the percent of classified extracted ion chromatogram (xic) which falls into each
superclassification from each organismal incubation.

3.4. Case Study 3—Chemical Surey of Schoenmakerskop in the Eastern Cape of South Africa

Stromatolites, or sediments formed by the metabolism of microbial communities rich
in cyanobacteria, exist as fossils but also as modern life forms found across the globe. While
the microbial makeup of modern sites has been described, studies characterizing the small
molecule metabolites produced in the stromatolite barrage pools are limited. We performed
a molecular survey of a stromatolite barrage pool found at Schoenmakerskop in the Eastern
Cape of South Africa to better understand the small molecule metabolites present in the
pool. Furthermore, we were particularly interested in any bioactive molecules produced
by cyanobacteria. This case study received the greatest coverage of putative annotations
(76.5%) and highest mean consensus of 89.7%.



Metabolites 2022, 12, 1275 7 of 10Metabolites 2022, 12, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 4. Species-specific exometabolite production from five Psuedo-nitzchia species. Cluster 
dendrogram of total production of the ConCISE classifications which were most variable across 
the species within the experiment (>1.5 standard deviations from the mean in one treatment). 
Average classification production for each species was standardized across treatments using a z-
score and represented in the color gradient. 

3.4. Case Study 3—Chemical Surey of Schoenmakerskop in the Eastern Cape of South Africa 
 Stromatolites, or sediments formed by the metabolism of microbial communities 

rich in cyanobacteria, exist as fossils but also as modern life forms found across the 
globe. While the microbial makeup of modern sites has been described, studies 
characterizing the small molecule metabolites produced in the stromatolite barrage 
pools are limited. We performed a molecular survey of a stromatolite barrage pool 
found at Schoenmakerskop in the Eastern Cape of South Africa to better understand the 
small molecule metabolites present in the pool. Furthermore, we were particularly 
interested in any bioactive molecules produced by cyanobacteria. This case study 
received the greatest coverage of putative annotations (76.5%) and highest mean 
consensus of 89.7%. 

4. Discussion 
Untargeted mass spectrometry has the potential to revolutionize our ability to 

characterize diverse pools of compounds. Low annotation rates hinder the application of 
untargeted metabolomic approaches [1,5]. Several tools have been developed to improve 
annotation rates by assigning putative chemical classifications [15,16], which can then be 
propagated across molecular subnetworks [6,18]. Machine learning approaches such as 
CANOPUS are able to predict molecular structures on compound class level de novo at 
both higher annotation and true positive rates than other tools [17]. Currently no 
annotation propagation tools allow for incorporation of newly developed structural 
prediction tools nor contribute to annotation validation. ConCISE was developed with a 

Figure 4. Species-specific exometabolite production from five Psuedo-nitzchia species. Cluster den-
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represented in the color gradient.

4. Discussion

Untargeted mass spectrometry has the potential to revolutionize our ability to char-
acterize diverse pools of compounds. Low annotation rates hinder the application of
untargeted metabolomic approaches [1,5]. Several tools have been developed to improve
annotation rates by assigning putative chemical classifications [15,16], which can then be
propagated across molecular subnetworks [6,18]. Machine learning approaches such as
CANOPUS are able to predict molecular structures on compound class level de novo at
both higher annotation and true positive rates than other tools [17]. Currently no annota-
tion propagation tools allow for incorporation of newly developed structural prediction
tools nor contribute to annotation validation. ConCISE was developed with a modular
capacity to leverage the advancement of in silico annotations, combined with the precision
of spectral matches to database libraries, to elevate the proportion of classified chemical
features. Moreover, ConCISE incorporates consensus annotation propagation as a method
to cross-validate structural predictions in conjunction with chemical hierarchy. Here, we
illustrate the potential of ConCISE to leverage spectral matches and CANOPUS annotations
to characterize metabolite diversity across molecular networks, identify exometabolites
from coral, algae and diatom-microbiome associations as well as fossilized stromatolite
pools. ConCISE was able to increase subnetwork putative annotations up to 76% in one of
the test datasets (58.6%, 56.3%, and 76.5% in our three case studies), while maintaining an
average subnetwork annotation consensus above 87%. This convergence of high annotation
rate with feature annotation agreement allows for more thorough analysis of molecular
diversity in non-targeted experiments.
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One caveat to the manual verification of ConCISE consensus annotations against
spectral library matches is that these features represent a subset of spectra which have
previously been well characterized and could therefore skew the true positive rate as these
spectral libraries are often used in development of in silico prediction tools. However,
CANOPUS has shown to have very high precision across molecular classifications, out-
competing currently available in silico annotation tools including CSI Kernel, CSI:FingerID
and MetFrag, alluding to its ability to predict previously unclassified ion features [17].
Currently, ConCISE is limited to chemical ontology for consensus classifications which
may not be useful in all circumstances and more precise annotations are needed for ion
identification. As more spectra are characterized, and in silico structural prediction tools
continue to be developed, these annotations will only become more accurate with the
potential to allow consensus annotations to be assigned from more narrow annotations.
Additionally, the active and open-source development will allow for continual maintenance
of ConCISE alongside the development of mass spectrometry techniques and in silico tools.

5. Conclusions

ConCISE is a unique annotation propagation tool as it provides cross-validation of
in silico predicted structures with the derivation of consensus annotations along with a mod-
ular design which will be able to incorporate future structural prediction tools. ConCISE is
available as an open-source graphical user interface, command line interface and virtual
machine-run jupyter notebook. We have illustrated that through expansion of robust anno-
tations across molecular network through the ConCISE framework enhances our under-
standing of complex metabolite pools, microbial-mediated interactions, and dissolved or-
ganic matter cycling. The ability to characterize these complex molecular networks alludes
to this tool’s broad applicability across a myriad untargeted metabolomics experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12121275/s1, Figure S1. Running ConCISE. The graphical
user interface (left) downloaded from GitHub and available for both Mac and Windows. The online
interface provided through myBinder (right) is also available through a link in the GitHub readMe
repository. Both interfaces and not-picture command line interface all have a mandatory three
arguments: (1) GNPS task ID, (2) Canopus summary file (tsv downloaded from SIRIUS 4/5) (3)
Network information tsv which can be downloaded from GNPS, (4) Optional argument to select
an export directory for the CONCISE summary file, (5) Superclass threshold, (6) class threshold, (7)
subclass threshold. If no option is input then the ConCISE summary will be written into the current
working directory; this argument is only available for the command line a graphical user interfaces.
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