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Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases,
along with steatosis and non-alcoholic steatohepatitis (NASH), and is associated with cirrhosis and
hepatocellular carcinoma. Candidate gene and genome-wide association studies have validated the
relationships between NAFLD, NASH, PNPLA3, TM6SF2, and HFE. The present study utilized five
polymorphisms in three genes: PNPLA3 (I148M and K434E) TM6SF2 (E167K), and HFE (H63D and
C282Y), based on undocumented case–control studies in the Saudi Arabian population. A total of
95 patients with NAFLD and 78 non-NAFLD subjects were recruited. Genomic DNA was isolated,
and polymerase chain reaction and Sanger sequencing were performed using specific primers for the
I148M, K434E, E167K, H63D, and C282Y. NAFLD subjects were older when compared to controls and
showed the significant association (p = 0.0001). Non-significant association was found between gender
(p = 0.26). However, both weight and BMI were found to be associated. Hardy–Weinberg equilibrium
analysis confirmed that H63D, I148M, and K434E polymorphisms were associated. Genotype analysis
showed only K434E variant was associated with NAFLD and non-NAFLD (OR-2.16; 95% CI: 1.08–4.31;
p = 0.02). However, other polymorphisms performed with NAFLD and NASH were not associated
(p > 0.05), and similar analysis was found when ANOVA was performed (p > 0.05). In conclusion, we
confirmed that K434E polymorphism showed a positive association in the Saudi population.

Keywords: NAFLD; NASH; non-NAFLD; PNPLA3; TM6SF2; HFE; Saudi population

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous disorder with multiple
metabolic and genetic factors implicated in its pathophysiology, all of which contribute
to its progression and development of adverse effects [1]. NAFLD encompasses diseases
ranging from simple steatosis to steatohepatitis and is a primary cause of chronic liver dam-
age [2]. In 1986, Schaffner discovered steatosis (triglyceride buildup) within hepatocytes,
which progresses to inflammation in non-alcoholic steatohepatitis (NASH). If untreated, it
progresses to liver fibrosis, cirrhosis, and possibly hepatocellular carcinoma (HCC) [3,4].
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NAFLD is histologically classified as NASH and non-alcoholic fatty liver (NAFL).
NASH is defined as the presence of hepatic steatosis and lobular inflammation associated
with hepatocyte damage and/or fibrosis [5], whereas NAFL is defined as the presence
of 5% hepatic steatosis without evidence of hepatocyte damage. The global prevalence
of NAFLD increased from 15% to 25% between 2005 and 2018. The Middle East (32%),
South America (31%), and Asia (27%) are the most affected regions worldwide [6]. NAFLD
is associated not only with liver damage, morbidity, and mortality, but also with type
2 diabetes mellitus (T2DM), chronic kidney disease (CKD), cardiovascular disease (CVD),
and cardiac diseases [7]. It has also been associated with other metabolic disorders, such
as obesity, hypertension, and dyslipidemia [8]. NAFLD is a major risk factor for insulin
resistance, as evidenced by the increasing prevalence of obesity and T2DM [9]. Obesity is
the leading cause of several non-communicable diseases, including NAFLD, and has been
identified as a major global threat to public health. However, the vast majority of patients
with NAFLD are not obese or even overweight [10–12].

Previous studies have highlighted the role of both environmental and genetic factors
in the onset and progression of NAFLD [13]. Obesity, T2DM, CVD, and NAFLD are chronic
metabolic disorders with a heritable component of vulnerability, accounting for 30–50%
of the relative risk. These complex traits are the products of environmental exposures
operating on a sensitive polygenic background and are influenced by a number of inde-
pendent modifiers [14]. Despite the non-genetic factors influencing NAFLD prognosis,
evidence suggests a genetic link in the form of genetic risk variants, as evidenced by familial
aggregation [15–17], twin studies [18], and susceptibility within different ethnicities [19–21].
Furthermore, increasing evidence has indicated a significant genetic influence on the forma-
tion and development of NAFLD. Genetics holds great potential for risk classification and
may lead to future therapeutic intervention [22]. Genome-wide association studies (GWAS)
using patatin-like phospholipase domain-containing 3 (PNPLA3), and transmembrane
6 superfamily member 2 genes, both related to NAFLD, have shown unique genetic media-
tors [23,24]. Additionally, candidate genes, such as hereditary hemochromatosis protein or
high iron (HFE) gene in NAFLD, which causes hereditary hemochromatosis, have been
identified [25].

The prevalence of NAFLD in the general population of Saudi Arabia is 16.6%, 8% of
liver donors exhibit steatosis, and 24.9% are obese or have T2DM, leading to rejection of
donors. Meanwhile, the prevalence of NAFLD in Saudi Arabian patients with diabetes has
been reported to be 55% [26,27]. Many case–control disease-association studies have been
conducted to assess the relationship between a variety of genetic variations and NAFLD
characteristics. However, conflicting findings on its potential correlation with NAFLD are
observed, and the genetic risk factors for NAFLD may differ between populations. To
date, no study on five polymorphisms (rs738409, rs2294918, rs58542926, rs1799945, and
rs1800562) in PNPLA3, TM6SF2, and HFE associated with NAFLD has been conducted in
the Saudi Arabian population. The current study was carried out using Sanger sequencing
analysis with PNPLA3 (rs738409, rs2294918), TM6SF2 (rs58542926), and HFE (rs1799945
and rs1800562) gene polymorphisms in a Saudi population diagnosed with NAFLD.

2. Materials and Methods
2.1. Ethical Statement

The study protocol was approved by the Institutional Review Board of the College
of Medicine at King Saud University (E-17-2654). Additionally, signed informed consent
was obtained from 173 Saudi Arabian participants involved in this study. All methods
were performed in accordance with the relevant guidelines and regulations (Declaration
of Helsinki).

2.2. Study Design

In this case–control study, we enrolled 95 patients diagnosed with NAFLD and 78 pa-
tients without NAFLD, all subjects recruited from the Division of Gastroenterology, King
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Saud University (KSU). Adult Saudi Arabian patients with obesity, T2DM, insulin resis-
tance, and ultrasound results demonstrating enlarged/fatty liver were included in this
study, while patients diagnosed with viral hepatitis, alcoholic hepatitis, drug-induced hep-
atitis, alpha-1 antitrypsin deficiency, or Wilson’s disease were excluded. Patients without
NAFLD and without any complications were also enrolled in this study, with the inclusion
and exclusion criteria for NAFLD subjects.

2.3. Anthropometric Measurements

Anthropometric measurements such as age, sex, height, and weight, which were
recorded using standardized techniques, were documented. Body mass index (BMI) was
calculated as weight in kilograms divided by height in square meters. BMI was categorized
as normal (<24.9 kg/m2), overweight (25.0–29.9 kg/m2), obesity-I (30–34.9 kg/m2), obesity-
II (35–39.9 kg/m2), and obesity-III (>40 kg/m2). Additionally, we documented NASH
analysis in patients with NAFLD. NASH represents the presence of inflammation and liver
damage in addition to fat.

2.4. Histological Specimen

A total of 173 liver biopsy specimens were collected based on the histopathological
NAFLD assessment score (NAS) from patients with and without NAFLD. The specimens
were then fixed in formalin solution, embedded in paraffin blocks, and stained with
hematoxylin–eosin and Masson’s trichrome. Patients with NAFLD were classified using
the NASH Clinical Research Network Classification based on the liver histology data.

2.5. Molecular Screening

Genomic DNA from a liver biopsy specimen was extracted using a Qiagen DNA
mini-set, as described previously [28]. The concentration and purity of the extracted DNA
were measured using a NanoDrop spectrophotometer. Genotyping was performed using
polymerase chain reaction (PCR) with a total of 50 µL reaction containing 24.0 µL of ABI
master mix, 5.0 µL of 100 ng the genomic DNA, 1.0 µL of both forward and reverse primers,
and 19.0 µL of distilled water. Details for rs738409, rs2294918, rs58542926, rs1799945,
and rs1800562 SNPs are found in Table 1. The PCR conditions were as follows: initial
denaturation at 95 ◦C for 5 min, followed by 35 cycles of denaturation for 30 min, annealing
at 50–60 ◦C for 45 s, extension at 72 ◦C for 45 s, and a final extension at 72 ◦C for 5 min.
The amplified product was electrophoresed using a 2% agarose gel stained with ethidium
bromide and visualized via UV transillumination.

Table 1. SNPs in the NAFLD and non-NAFLD groups involved in this study.

S. No Gene SNP Rsnumber Mutation Amino Acid Substitution

1 HFE H63D rs1799945 C-G Histidine-63-Aspartic acid

2 HFE C282Y rs1800562 G-A Cysteine-282-Tyrosine

3 PNPLA3 I148M rs738409 C-G Isoleucine-148-Methionine

4 PNPLA3 K434E rs2294918 G-A Lysine-434-Glutamic acid

5 TM6SF2 E167K rs58542926 G-A Glutamic acid-167-Lysine

2.6. Sanger Sequencing Analysis

Sanger sequencing analysis was performed based on, purified amplified products
were sequence amplified using the BigDye terminator, and then purified again before
bidirectional sequencing using the ABI 3730xl Genetic Analyzer. Analysis was performed
using the Sequence Analysis Software version 5.4 and SeqScape version 3.



Metabolites 2022, 12, 1240 4 of 13

2.7. Statistical Analysis

Continuous variables are presented as mean ± standard deviation, whereas categorical
variables are presented as percentages and frequencies. The SPSS software (version 23.0)
was used for clinical analysis. The Pearson’s chi-squared test or Fisher’s exact test was
used to compare data between the groups. The Pearson’s correlation coefficient was used
to calculate the relationships between continuous variables. The chi-squared test was used
to compare the Hardy–Weinberg equilibrium (HWE) with one degree of freedom. The
Openepi software (version 3.01) was used to calculate genotype and allele frequencies. In
addition, Yate’s correction was applied in this study.

3. Results
3.1. HWE Analysis

The genotype distributions of the five investigated polymorphisms (HFE-H63D and
C282Y, PNPLA3-I148M and K434E, and TM6SF2-E167K) were both compatible and in-
compatible with the controls. H63D (χ2 = 0.27; p = 0.59), I148M (χ2 = 0.05; p = 0.81), and
K434E (χ2 = 1.29; p = 0.25) were consistent, whereas C282Y (χ2 = 1.00; p = 1.00) and E167K
(χ2 = 7.33; p = 0.06) were not consistent.

3.2. Clinical Characteristics between NAFLD and Non-NAFLD Subjects

Table 2 shows the anthropometric characteristics of patients with NAFLD and non-
NAFLD. The age groups for NAFLD (43.6 ± 11.67) and non-NAFLD (34.9 ± 11.05) were not
similar and exhibited a significant association (p = 0.0001). In the NAFLD group, 31.7% were
males, while 65.3% were females. In the non-NAFLD group, 19.2% were males, while 80.8%
were females, which showed a distinct association (p = 0.26). However, a non-significant
correlation (p = 0.46) was observed, with the mean height being practically similar in both
cases (153.2 ± 0.08) and controls (151.9 ± 0.09). Both weight and BMI showed significant
difference (p < 0.05) between the NAFLD (83.9 ± 15.35 and 32.5 ± 6.01, respectively) and
non-NAFLD groups (75.7 ± 15.79 and 30.0 ± 5.79, respectively).

Table 2. Anthropometric measurements of NAFLD and non-NAFLD subjects involved in this study.

Anthropometric NAFLD (n = 95) Non-NAFLD (n = 78) p Value

Age (Years) 43.6 ± 11.67 34.9 ± 11.05 0.0001

Gender (Male; Female) 31 (31.7%): 64 (65.3%) 15 (19.2%): 63 (80.8%) 0.26

Weight (Kgs) 83.9 ± 15.35 75.7 ± 15.79 0.0007

Height (Cms) 153.2 ± 0.08 151.9 ± 0.09 0.46

BMI (kg/m2) 32.5 ± 6.01 30.0 ± 5.79 0.006

3.3. Genotyping of the Five SNPs in Patients with and without NAFLD

Table 3 shows the genotypes, genetic modes of inheritance, and allele frequencies
of each of the five SNPs. Among the 98 NAFLD cases, the frequencies of the CC, CG,
and GG genotypes of SNP I148M were 47.4%, 41.0%, and 11.6%, respectively, whereas in
non-NAFLD subjects, the frequencies were 57.7%, 35.9%, and 6.4%, respectively. A positive
correlation was not observed in the heterozygous (CG; p = 0.309) or variant genotypes (GG;
p = 0.166). Genetic models such as dominant (OR: 1.515, 95% CI: 0.828–2.770, p = 0.176),
co-dominant (OR: 1.244, 95% CI: 0.670–2.306, p = 0.488), and recessive (OR: 1.912, 95%
CI: 0.634–5.759, p = 0.243) were carried between cases and controls. The minor allele
frequencies of the G allele in the NAFLD and non-NAFLD group were 32.2% and 24.4%,
respectively, whereas those of the C allele were 67.8% and 75.6%, respectively. The allele
frequency of the I148M variant was not associated with NAFLD incidence (G vs. C, OR:
1.468, 95% CI: 0.912–2.363, p = 0.112).
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Table 3. Genotype and allele distribution in the NAFLD and non-NAFLD groups.

Genes Rsnumber Genotype/Alleles NAFLD (%) Non-NAFLD (%) OR 95% CIs p Value

PNPLA3 (I148M) rs738409 CC 45 (47.4%) 45 (57.7%) Reference Reference Reference

CG 39 (41.0%) 28 (35.9%) 1.393 0.733–2.649 0.309

GG 11 (11.6%) 05 (6.4%) 2.200 0.707–6.844 0.166

CG + GG vs. CC 45 (47.4%) 45 (57.7%) 1.515 0.828–2.770 0.176

CG vs. CC + GG 56 (59.0%) 51 (64.1%) 1.244 0.670–2.306 0.488

CC + CG vs. GG 84 (88.4%) 73 (93.6%) 1.912 0.634–5.759 0.243

C 129 (67.8%) 118 (75.6%) Reference Reference Reference

G 61 (32.2%) 38 (24.4%) 1.468 0.912–2.363 0.112

PNPLA3(K434E) rs2294918 GG 21 (22.1%) 18 (23.1%) Reference Reference Reference

GA 40 (42.1%) 44 (56.4%) 0.779 0.363–1.668 0.520

AA 34 (35.8%) 16 (20.5%) 1.821 0.766–4.329 0.179

AA vs. GA + AA 21 (22.1%) 18 (23.1%) 1.057 0.516–2.162 0.870

GA vs. GG + AA 55 (57.9%) 34 (43.6%) 0.562 0.306–1.029 0.061

GG + GA vs. AA 61 (64.2%) 62 (79.5%) 2.160 1.082–4.312 0.027

G 82 (43.1%) 80 (51.2%) Reference Reference Reference

A 108 (56.9%) 76 (48.8%) 1.386 0.906–2.121 0.131

TM6SF2 (E167K) rs58542926 GG 89 (93.7%) 73 (93.6%) Reference Reference Reference

GA 06 (6.3%) 04 (5.1%) 1.230 0.334–4.525 0.754

AA 00 (0%) 01 (1.3%) 0.273 0.010–6.819 0.398 *

GA + AA vs. GG 89 (93.7%) 73 (93.6%) 0.984 0.288–3.355 0.979

GA vs. GG + AA 89 (93.7%) 74 (94.9%) 1.202 0.347–4.157 0.770 *

GG + GA vs. AA 95 (100%) 77 (98.7%) 0.270 0.010–6.733 0.393 *

G 184 (96.8%) 150 (96.1%) Reference Reference Reference

A 06 (3.2%) 06 (3.9%) 0.81 0.257–2.579 0.72

HFE (H63D) rs1799945 CC 73 (76.8%) 54 (69.2%) Reference Reference Reference

CG 20 (21.1%) 21 (26.9%) 0.704 0.347–1.427 0.329

GG 02 (2.10%) 03 (3.90%) 0.493 0.079–3.054 0.438

CG + GG vs. CC 73 (76.8%) 54 (69.2%) 0.671 0.344–1.334 0.260

CG vs. CC + GG 75 (78.9%) 57 (73.1%) 0.723 0.358–1.461 0.366

CC + CG vs. GG 93 (97.9%) 75 (96.1%) 0.537 0.087–3.301 0.496

C 166 (87.3%) 129 (82.6%) Reference Reference Reference

G 24 (12.7%) 27 (17.4%) 0.690 0.380–1.254 0.222

HFE (C282Y) rs1800562 GG 95 (100%) 78 (100%) Reference Reference Reference

GA 00 (0%) 00 (0%) 3.697 0.148–92.01 0.393 *

AA 00 (0%) 00 (0%) 3.697 0.148–92.01 0.393 *

G 190 (100%) 156 (100%) Reference Reference Reference

A 00 (0%) 00 (0%) 0.781 0.015–39.79 0.901 *

* indicates Yate’s correction.

In the NAFLD group, the frequencies of GG, GA, and AA genotypes in K434E were
22.1%, 42.1%, and 35.8%, respectively, whereas in the non-NAFLD group, the frequencies
were 23.1%, 56.4%, and 20.5%, respectively. Among the genetic models, only the recessive
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model (GG + GA vs. AA, OR: 2.160, 95% CI: 1.082–4.312, p = 0.027) showed a significant
association, while the dominant (GG vs. GA + AA, OR: 1.057, 95% CI: 0.516–2.162, p = 0.870)
and co-dominant models (GG + AA vs. GA, OR: 0.562, 95% CI: 0.306–1.029, p = 0.061)
were not associated. The percentages of A and G alleles in the NAFLD group were 56.9%
and 43.1%, respectively, whereas in the non-NAFLD groups, the percentages were 48.8%
and 51.2%, respectively. A positive association between the allele frequencies and K434E
polymorphism was not observed (G vs. A, OR: 1.386, 95% CI: 0.906–2.121, p = 0.131).

Genotype and allele frequencies of the E167K polymorphism in TM6SF2 in the NAFLD
and non-NAFLD groups did not show any significant association with any mode of inheri-
tance. The GG genotype frequencies were almost similar in both groups (93.7% vs. 93.6%),
while the GA genotypes were varied (6.3% in NAFLD and 5.1% in non-NAFLD). However,
in the NAFLD group, the AA genotype was absent, while its frequency was 1.3% in the
non-NAFLD group. Dominant (OR: 0.984, 95% CI: 0.288–3.355, p = 0.979) and co-dominant
models (OR: 1.202, 95% CI: 0.347–4.157, p = 0.770) showed similar results; however, in the
co-dominant and recessive models, Yates’ correction was applied. The recessive model (OR:
0.270, 95% CI: 0.010–6.733, p = 0.393) did not show a statistical association between the cases
and controls of NAFLD. The A and G alleles of MAF were 3.2% and 96.8% in the NAFLD
group, and 3.9% and 96.1% in the non-NAFLD group, respectively. Finally, allele frequency
failed to show a significant association (A vs. G, OR: 0.810, 95% CI: 0.257–2.579, p = 0.72).

In the NAFLD group, the genotype frequencies of CC, CG, and GG in H63D were
76.8%, 21.1%, and 2.1%, respectively, whereas in non-NAFLD subjects, the frequencies
were 69.2%, 26.9%, and 3.9%, respectively. Differences in the proportion of the genetic
models were similar with negative associations (CC vs. GG + GC, OR: 0.671, 95% CI:
0.344–1.344, p = 0.260; CC + GG vs. CG, OR: 0.723, 95% CI: 0.358–1.461, p = 0.366; CC + GC
vs. GG, OR: 0.537, 95% CI: 0.087–3.301, p = 0.496). The frequency of the G allele in the
NAFLD group was 12.7%, which was lower than that in the non-NAFLD group (17.4%
(OR: 0.690, 95% CI: 0.380–1.252, p = 0.22). All GG genotypes for the C282Y polymorphism
in both cases and controls showed 100% frequency. None of the heterozygous or variants
showed any genotype for both groups (GA vs. GG or AA vs. GG, OR: 3.697, 95% CI:
0.148–92.01, p = 0.393). Allele frequency was also negatively associated (A vs. G, OR: 0.781,
95% CI: 0.015–39.79, p = 0.901). Furthermore, a positive or statistical association between the
H63D polymorphism in HFE and NAFLD was not observed. Yates correction was applied
for both E167K (rs58542926) and C282Y (rs1800562) polymorphisms. Figure 1 shows the
chromatograms of the SNPs examined in this study.
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3.4. Clinical Characteristics of Patients with NASH and without NAFLD

Using the Kleiner score, 26.3% (n = 25) of patients with NAFLD were classified as
having NASH, while 73.7% (n = 70) were classified as having NAFLD without NASH. The
age and sex distributions of NASH and non-NAFLD showed a significant correlation with
age (47.42 ± 10.95 vs. 34.9 ± 11.05; p = 0.0003) but not with sex (p = 0.24). The height
of patients in both groups showed similar results and were not significantly associated
(p = 0.06). The weight and BMI of patients with NASH and those without NAFLD differed
significantly (p < 0.05). Table 4 lists the clinical characteristics of both groups.

Table 4. Anthropometric measurements of the NASH and non-NAFLD subjects involved in this study.

Anthropometric NASH (n = 25) Non-NAFLD (n = 78) p Value

Age (Years) 47.42 ± 10.95 34.9 ± 11.05 0.0003

Gender (Male; Female) 19 (76%): 06 (24%) 15 (19.2%): 63 (80.8%) 0.24

Weight (Kgs) 85.57 ± 17.23 75.7 ± 15.79 0.009

Height (Cms) 152.8 ± 0.08 151.9 ± 0.09 0.06

BMI (kg/m2) 33.48 ± 6.12 30.0 ± 5.79 0.01

3.5. Genotyping in Patients with NASH and without NAFLD

None of the genotyping analyses of the I148M, K434E, E167K, H63D, and C282Y
polymorphisms showed a positive association between the NASH and non-NAFLD groups.
Table 5 shows the genotyping, allele frequencies, and genetic modes of inheritance, such as
the dominant, co-dominant, and recessive models.

Table 5. Genotype frequencies with various modes of inheritance in the NASH and non-NAFLD groups.

Genes Rsnumber Genotype/Alleles NASH (%) Non-NAFLD (%) OR 95% CIs p Value

PNPLA3 (I148M) rs738409 CC 12 (48%) 45 (57.7%) Reference Reference Reference

CG 10 (40%) 28 (35.9%) 0.730 0.301–1.768 0.485

GG 03 (12%) 05 (6.4%) 1.227 0.268–5.608 0.791

CG + GG vs. CC 12 (48%) 45 (57.7%) 1.477 0.598–3.648 0.396

CG vs. CC + GG 15 (60%) 51 (64.1%) 1.190 0.472–3.000 0.711

CC + CG vs. GG 22 (88%) 73 (93.6%) 1.991 0.440–8.999 0.363

C 34 (68%) 118 (75.6%) Reference Reference Reference

G 16 (32%) 38 (24.4%) 1.461 0.727–2.936 0.286

PNPLA3(K434E) rs2294918 GG 09 (36%) 18 (23.1%) Reference Reference Reference

GA 13 (52%) 44 (56.4%) 0.590 0.214–1.625 0.307

AA 03 (12%) 16 (20.5%) 0.375 0.086–1.631 0.182

GA + AA vs. GG 09 (36%) 18 (23.1%) 0.533 0.201–1.409 0.201

GA vs. GG + AA 12 (48%) 34 (43.6%) 0.837 0.339–2.066 0.699

GG + GA vs. AA 22 (88%) 62 (79.5%) 0.528 0.140–1.989 0.339

G 31 (62%) 80 (51.2%) Reference Reference Reference

A 19 (38%) 76 (48.8%) 0.645 0.336–1.238 0.186

TM6SF2 (E167K) rs58542926 GG 24 (96%) 73 (93.6%) Reference Reference Reference

GA 01 (04%) 04 (5.1%) 0.760 0.081–7.137 0.810

AA 00 (00%) 01 (1.3%) 1.000 0.039–25.35 0.999 *
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Table 5. Cont.

Genes Rsnumber Genotype/Alleles NASH (%) Non-NAFLD (%) OR 95% CIs p Value

GA + AA vs. GG 24 (96%) 73 (93.6%) 0.608 0.067–5.468 0.654

GA vs. GG + AA 24 (96%) 74 (94.9%) 0.770 0.082–7.234 0.819

GG + GA vs. AA 25 (100%) 77 (98.7%) 1.013 0.040–25.65 0.993 *

G 49 (98%) 150 (96.1%) Reference Reference Reference

A 01 (02%) 06 (3.9%) 0.510 0.059–4.342 0.530

HFE (H63D) rs1799945 CC 24 (96%) 54 (69.2%) Reference Reference Reference

CG 00 (00%) 21 (26.9%) 0.051 0.003–0.889 0.005 *

GG 01 (04%) 03 (3.90%) 0.750 0.074–7.583 0.806

CG + GG vs. CC 24 (96%) 54 (69.2%) 0.093 0.011–0.733 0.006

CG vs. CC + GG 25 (100%) 57 (73.1%) 0.052 0.003–0.899 0.005 *

CC + CG vs. GG 24 (06%) 75 (96.1%) 1.042 0.103–10.49 0.972

C 48 (96%) 129 (82.6%) Reference Reference Reference

G 02 (04%) 27 (17.4%) 0.199 0.045–0.869 0.01

HFE (C282Y) rs1800562 GG 25 (100%) 78 (100%) Reference Reference Reference

GA 00 (0%) 00 (0%) 3.078 0.059–159.1 0.556 *

AA 00 (0%) 00 (0%) 3.078 0.059–159.1 0.556 *

G 50 (100%) 156 (100%) Reference Reference Reference

A 00 (0%) 00 (0%) 3.099 0.060–158.2 0.552 *

* indicates Yate’s correction.

4. Discussion

In this hospital-based case–control study, we have shown that the K434E polymor-
phism is associated with NAFLD and non-NAFLD in the Saudi Arabian population. None
of the variants, including K434E, showed positive association with NAFLD or NASH. Ad-
ditionally, statistical analysis showed a positive association only with obesity and NAFLD
(p = 0.001).

NAFLD is defined as having fat accumulation in the liver or observing hepatic steatosis
via imaging or liver histology when other sources of fat build-up in the liver have been
ruled out. Histological examination is essential for the diagnosis of NAFLD [29]. NAFLD
and NASH can be confirmed with a liver biopsy. NASH is an advanced stage of NAFLD,
a common comorbidity of obesity and T2DM [30]. The prevalence of obesity and T2DM
in the Saudi Arabian population is high [31,32], and obesity, T2DM, and NAFLD-NASH
are clinically and pathophysiologically connected. Local studies in the Saudi Arabian
population have documented various prevalence frequencies of NAFLD. Females are more
affected by chronic liver disease than males, which may be due to the expression of sex
hormones, which is projected to diminish after menopause [27].

Unfortunately, no medications are allowed for NAFLD treatment; nevertheless, lifestyle
changes, including diet and exercise, are effective in managing it [33]. Genes affecting
hepatic fat storage, mobilization, and development of NAFLD as variations of transcrip-
tion factors that control lipid metabolism in the liver and adipose tissue are thus viable
candidates for treatment [34]. The major emphasis of investigations has been to identify
associations between advanced disease stages and selected SNPs in genes encoding dif-
ferent proteins implicated in disease pathology. Candidate gene association studies are
commonly used to examine disease-causing genes in human diseases, and the frequency of
candidate genes in one or more known SNPs in patients and controls is evaluated in the
quest for a statistical association with NAFLD [35].
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Although PNPLA3 and TM6SF2 appear to be the most prominent hepatic steatosis de-
terminants across the population, additional genetic deficiencies, which have been relatively
infrequent or less significant, have been shown to produce fatty liver metabolism. Genes
that control hepatic treatment and VLDL secretion mutations are involved in familial causes
of NAFLD [36], Romeo et al. [23] reported that NAFLD is associated with the rs738409
polymorphism in PNPLA3. The link between PNPLA3 and liver histology was validated
in patients with NAFLD using GWAS. It was encoded by an isoleucine to methionine
substitution variation at protein position 148 (I148M). The I148M polymorphism has been
linked to increased hepatic fat accumulation in Europeans regardless of body weight. In a
cohort study on the Finnish population, I148M increased the risk of hepatic steatosis [37].
PNPLA3 harbors both triacylglycerol lipase and acylglycerol O-acyltransferase activity, as
well as retinyl ester activity in lipid-stellate cells [38]. The interaction between rs2294918
and PNPLA3 mRNA was upregulated, and the protein may be associated with direct effects
of PNPLA3 mRNA regulation or PNPLA3 locus methylation on mRNA stability or linkages
with other noncoding variants. In 434E allele carriers, PNPLA3 was upregulated [39]. In
2014, Kozlitina et al. [24] validated the relationship between hepatic steatosis and PNPLA3
SNPs and identified polymorphisms in the hepatic triglyceride content gene of TM6SF2.
PNPLA3 polymorphisms have been interlinked since 2008 with the risk and severity of
NAFLD. Variants of TM6SF2 were also involved in these results [40].

The C-T rs58542926 variant in the TM6SF2 locus codes for an E to K substitution at
position 167, resulting in loss of function, is associated with lower hepatic TM6SF2 mRNA
and protein expression. In other tissues, TM6SF2 is mostly expressed in the liver and small
intestine [41,42]. Giovanni et al. showed that TM6SF2 rs58542926 can impact the nutrient
oxidation, glucose homeostasis, and postprandial lipoprotein of adipokines in patients
with NAFLD [43]. Although TM6SF2 does not have a specific function, it affects cholesterol
synthesis and lipoprotein secretion [38].

In 1996, Feder et al. initially identified HFE on the petite arm of chromosome 6 at
6p21.3, encompassing a 343-amino acid long glycoprotein [44]. Excess iron absorption
in the liver hastens the progression of NAFLD to NASH owing to oxidative stress. Iron
and heme catalyze oxidation processes caused by reactive oxygen species emitted during
Fenton reactions, contributing to oxidative stress [45]. HFE has many genetic variants,
including two missense mutations: an amino acid replacement from cysteine to tyrosine
(C282Y) and a histidine to aspartate substitution (H63D) [46].

Previous studies have reported an association of I148M and K434E polymorphisms
in PNPLA3 with NAFLD in the global population [47–53]. However, our study was not
associated with the I148M polymorphism, but was associated with the K434E variant in
PNPLA3. Our study is in agreement with previous studies [39,54]. Additionally, limited
studies have been performed on the meta-analysis of I148M and K434E polymorphisms in
PNPLA3 [55–57]. Furthermore, in our study, the E167K polymorphism was not associated
with NAFLD or NASH. However, previous studies have reported positive and negative
associations between NAFLD and NASH [24,47,58–61]. A meta-analysis study on the E167K
variant in preventing CAD and conferring risk for NAFLD revealed that the rs58542926
polymorphism is a key regulator of blood lipid characteristics in global studies [62]. Meta-
analysis studies have also shown the E167K (rs58542926) polymorphism in TM6SF2 in
NAFLD and other human diseases, such as carcinoma and liver fibrosis [42,62–64]. For
the H63D polymorphism, 21% of heterozygotes and 2.1% of homozygous variants were
present in NAFLD cases in the present study. None of the genotypes was heterozygous
or homozygous for variants of the C282Y polymorphism, and no statistical association
between the H63D and C282Y polymorphisms in NAFLD was observed. Previous studies
showed both associations in NAFLD subjects [65–67]. Our study was not in agreement
with the documented studies with positive association may be due to the lack of high
sample size, or ethnicity playing a major role. The major limitation of our study is the small
sample size. We recruited only 95 patients with NAFLD and 78 patients without NAFLD.
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Nevertheless, recruiting native Saudi Arabian patients and direct sequencing were the
strengths of our study.

5. Conclusions

In conclusion, we confirmed that K434E polymorphism showed a positive association
in the Saudi Arabian population. Further study on the multiple genetic variants associated
with NAFLD using a larger sample size is recommended.
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