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Abstract: Over half of patients with type 2 diabetes (T2D) are unable to achieve blood glucose
targets despite therapeutic compliance, significantly increasing their risk of long-term complica-
tions. Discovering ways to identify and properly treat these individuals is a critical problem in
the field. The arachidonic acid metabolite, prostaglandin E2 (PGE2), has shown great promise as a
biomarker of β-cell dysfunction in T2D. PGE2 synthesis, secretion, and downstream signaling are
all upregulated in pancreatic islets isolated from T2D mice and human organ donors. In these islets,
preventing β-cell PGE2 signaling via a prostaglandin EP3 receptor antagonist significantly improves
their glucose-stimulated and hormone-potentiated insulin secretion response. In this clinical cohort
study, 167 participants, 35 non-diabetic, and 132 with T2D, were recruited from the University of
Wisconsin Hospital and Clinics. At enrollment, a standard set of demographic, biometric, and clinical
measurements were performed to quantify obesity status and glucose control. C reactive protein was
measured to exclude acute inflammation/illness, and white cell count (WBC), erythrocyte sedimen-
tation rate (ESR), and fasting triglycerides were used as markers of systemic inflammation. Finally,
a plasma sample for research was used to determine circulating PGE2 metabolite (PGEM) levels.
At baseline, PGEM levels were not correlated with WBC and triglycerides, only weakly correlated
with ESR, and were the strongest predictor of T2D disease status. One year after enrollment, blood
glucose management was assessed by chart review, with a clinically-relevant change in hemoglobin
A1c (HbA1c) defined as ≥0.5%. PGEM levels were strongly predictive of therapeutic response,
independent of age, obesity, glucose control, and systemic inflammation at enrollment. Our results
provide strong support for future research in this area.

Keywords: type 2 diabetes; prostaglandin E2; inflammation; diabetes control; biomarker; HbA1c;
plasma metabolites; clinical study

1. Introduction

Pre-diabetes and diabetes directly affect over 100 million people in the United States.
Type 2 diabetes (T2D), which is strongly associated with obesity and inflammation, ac-
counts for 95% of these diagnoses [1]. Current standards of care include diet and lifestyle
modifications, oral and injectable anti-diabetic drugs, and insulin. Yet, despite therapeutic
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compliance, over 50% of T2D patients are unable to achieve blood glucose targets, as
defined by a hemoglobin A1C (HbA1c) value of less than 7% [2]. Being able to determine
which patients are at risk for therapeutic failure remains a significant problem in the field.
A precision (i.e., personalized) medicine approach that recognizes and incorporates the
many individual differences noted in practice is a significant focus of current research in
the field [3–8].

PGE2 is an arachidonic acid metabolite, and its formation is catalyzed by a series of
enzymes, with cyclooxygenase (COX) 1 or 2 catalyzing the rate-limiting step. COX-2 expression
is inducible and its activity and/or expression is significantly elevated in the hyperglycemic,
dyslipidemic, and/or inflammatory conditions associated with T2D [9–17]. In preclinical work
using mouse models of T2D and/or pancreatic islets obtained from human organ donors with
T2D, prostaglandin E2 (PGE2) limits expected insulin secretion in response to both glucose
and incretin hormones such as glucagon-like peptide 1 (GLP-1), actively contributing to β-cell
dysfunction [9–11]. Furthermore, arachidonic acid, its precursors, and/or its metabolites have
been shown to be elevated in biofluids (e.g., plasma, serum, urine) from both animals and
human subjects with T2D [18–22]. Taken together, these preclinical data provide strong support
for pursuing PGE2 as a potential biomarker for T2D status and, potentially, therapeutic response.

In this work, we conducted a cross-sectional analysis of adults with T2D to deter-
mine if plasma levels of PGE2 metabolite (PGEM) correlated with T2D status, comparing
PGEM to other established markers of glucose control and inflammation. Finally, baseline
PGEM levels were compared to longitudinal glycemic control (as measured by percent
change in HbA1c over 1 year), thus providing insight into the relevance of PGE2 to T2D
therapeutic response.

2. Materials and Methods
2.1. Study Design, Intake Appointment, and Plasma Sample Collection

Study design and participant recruitment have been previously described [21]. In
brief, 132 individuals with T2D and 35 non-diabetic individuals were enrolled between
June 2014 and August 2015 at UW Health Hospitals and Clinics (UWHC). Inclusion criteria
were ages 18–74, not pregnant or lactating, no anemia or grossly abnormal kidney or liver
function tests, no known autoimmune diseases or inflammatory disorders, and no diagnosis
of diabetes besides T2D. Exclusion criteria included the history of transplant, chronic
steroid use, or the use of COX inhibitors other than low-dose aspirin for cardiovascular
health more than twice per week during the past 90 days. Subjects were instructed to
fast for 10 h prior to an upcoming diabetes standard-of-care care appointment, where
biometric measurements and clinical laboratory tests were performed. Height and weight
(to calculate BMI), blood pressure, and pulse were measured, and daily prophylactic low-
dose aspirin and omega-3/fish oil supplement use were noted. Current T2D medications
were confirmed and recorded. Diabetes standard-of-care laboratory tests, including HgA1c,
complete metabolic panel (CMP), and fasting lipid panel, were coordinated with the
patient’s provider. Additional clinical laboratory tests performed for research included
white blood cell count (WBC), C reactive protein (CRP), and erythrocyte sedimentation rate
(ESR). A plasma sample for research was collected in an 8.5 mL BD P800 blood collection
tube coated with potassium EDTA and a proprietary mix of protease and esterase inhibitors
(BD Biosciences, Franklin Lakes, NJ, USA, cat. No. 366421) for downstream analysis of
PGEM levels.

2.2. Prostaglandin E Metabolite (PGEM) Assay

Plasma PGE2 levels were quantified using a Prostaglandin E Metabolite (PGEM)
enzyme-linked immunosorbent assay (ELISA) kit (Cayman Chemical Company, Ann
Arbor, MI, USA, cat. No. 514531), which converts 13,14-dihydro-15-keto PGE2 and
13,14-dihydro-15-keto PGE2 to a single, stable derivative. The assay was conducted accord-
ing to the manufacturer’s protocol, as previously described [21]. Briefly, after samples were
purified by acetone precipitation, they were dried under a nitrogen stream. Samples were
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then resuspended in ELISA buffer and derivatized overnight. A 1:5 sample dilution was
assayed in duplicate.

2.3. Statistical Analysis

Logistic regression analysis was used to determine the relationship between plasma
PGEM levels and T2D status. SAS software was used with a Probit procedure for this
analysis (SAS/STAT, Cary, NC, USA). All other statistical analyses were performed using
GraphPad Prism version 9 (GraphPad Software, San Diego, CA, USA), and data were
compared by one- or two-way analysis of variance or Student t-test as appropriate, as
described in the figure legends. A p-value < 0.05 was considered statistically significant.

3. Results
3.1. Plasma PGEM Is Increased Specifically in Subjects with T2D

Demographic information for the non-diabetic (ND) control group (n = 35) and T2D
group (n = 132) are listed in Table 1. Most subjects were white/non-Hispanic, and approxi-
mately equal numbers of male and female subjects were represented (Table 1).

Table 1. Demographic and clinical parameters of the patient cohort. Unless otherwise indicated, data
are presented as mean ± standard deviation. BMI, body mass index; HbA1c, glycated hemoglobin;
WBC, white blood cell count; ESR, erythrocyte sedimentation rate; PGEM, PGE2 metabolite.

Groups ND vs. T2D Linear Regression vs.
PGEM (T2D Only)

Baseline Demographics

All Non-Diabetic T2D p-Value p-Value R2

Subjects (n) 167 35 132 - - -

Male (n; %) 85; 51% 13; 37% 72; 55% - - -

Female (n; %) 82; 49% 22; 63% 60; 45% - - -

Race/Ethnicity =
White/Non-Hispanic (n; %) 153; 92% 32; 91% 121; 92% - - -

Age (years ± SD; range) 54.1 ± 10.5; 29–73 47.8 ± 11.5; 29–70 55.8 ± 9.6; 29–73 <0.0001 0.84 0.0003

Baseline Biometric and Laboratory Parameters

BMI (kg/m2 ± SD; range)
35.2 ± 8.3;
19.5–61.9

29.9 ± 6.5;
19.5–50.5

36.8 ± 7.7;
21.8–61.9 <0.0001 0.79 0.0005

HbA1c (% ± SD; range) 7.6 ± 1.6 5.4 ± 0.2 8.2 ± 1.2 <0.0001 0.79 0.0006

WBC (109/L ± SD) 7.2 ± 2.1 5.5 ± 1.4 7.7 ± 2.0 <0.0001 0.25 0.01

ESR, mm/h (mm/h ± SD) 14.2 ± 12.5 7.5 ± 5.4 16.0 ± 13.2 0.0003 0.035 0.034

Triglycerides (mg/dL ± SD) 179.6 ± 121.3 131.2 ± 90.8 191.1 ± 125.5 0.009 0.79 0.007

Plasma PGEM, (pg/mL ± SD) 91.0 ± 42.5 51.6 ± 30.4 101.5 ± 39.1 <0.0001 - -

Subject age range was similar for both groups (29–70 years, ND vs. 29–73 years,
T2D), although the means were statistically different (47.8 ± 11.5, ND vs. 55.8 ± 9.6 T2D;
p < 0.0001) (Table 1 and Figure 1A). Like age, the BMI range was similar between groups
(19.48–50.51, ND vs. 21.79–61.85), although the difference in mean BMI was statistically
significant (29.89 ± 6.52, ND vs. 36.79 ± 7.72, T2D; p < 0.0001) (Table 1 and Figure 1B).
The mean HbA1c for the T2D group was significantly higher than that of the ND group, as
expected (5.4 ± 0.2, ND vs. 8.2 ± 1.2, T2D; p < 0.0001) (Table 1 and Figure 1C).



Metabolites 2022, 12, 1234 4 of 11

Metabolites 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 

Subject age range was similar for both groups (29–70 years, ND vs. 29–73 years, T2D), 

although the means were statistically different (47.8 ± 11.5, ND vs. 55.8 ± 9.6 T2D; p < 

0.0001) (Table 1 and Figure 1A). Like age, the BMI range was similar between groups 

(19.48–50.51, ND vs. 21.79–61.85), although the difference in mean BMI was statistically 

significant (29.89 ± 6.52, ND vs. 36.79 ± 7.72, T2D; p < 0.0001) (Table 1 and Figure 1B). The 

mean HbA1c for the T2D group was significantly higher than that of the ND group, as 

expected (5.4 ± 0.2, ND vs. 8.2 ± 1.2, T2D; p < 0.0001) (Table 1 and Figure 1C). 

 

Figure 1. Baseline BMI, age, and HbA1c of ND and T2D subjects at enrollment. (A) Body mass index 

(BMI); (B) age in years; (C) glycated hemoglobin (HbA1c) for non-diabetic group (black circle) and 

T2D group (red circle). Data are presented as mean ± standard deviation. *, p < 0.05; ****, p < 0.0001. 

Black. 

3.2. In T2D Subjects, Plasma PGEM Is Only Weakly Correlated with Systemic Inflammation 

WBC and ESR are clinical tests for systemic inflammation that have both been vali-

dated as markers of disease risk and progression in pre-diabetic and T2D populations [23–

35]. No T2D subjects (0%) and 8 T2D subjects (6.1%) had elevated WBC (Table 1), and 

mean WBC was statistically higher in T2D subjects as compared to ND (Table 1 and Figure 

2A). One ND subject (2.9%) and 27 T2D subjects (20.5%) had elevated ESR for age and sex 

(Table 1), and the mean ESR was also significantly higher in T2D subjects (16 mm/h vs. 7.5 

mm/h, respectively) (Table 1 and Figure 2B). Elevated triglycerides are known to be asso-

ciated with inflammation, metabolic syndrome, and T2D status and risk [36–38], and tri-

glyceride levels were elevated in T2D subjects as compared to ND (Table 1 and Figure 

2C). No subjects had CRP levels over 10, the baseline for moderate inflammation, confirm-

ing the absence of acute infection or injury (data not shown). 

 

Figure 2. Relationship between T2D diagnosis and markers of inflammation. (A) White blood cell 

count (WBC); (B) erythrocyte sedimentation rate (ESR); (C) plasma triglycerides for non-diabetic 

group (black circle) and T2D group (red circle). Data are presented as mean ± standard deviation. 

**, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 

ND T2D
0

20

40

60

80

B
M

I 
(k

g
/m

2
)

ND T2D
0

20

40

60

80

100

A
g

e
 (

y
)

A B C

ND T2D
4

6

8

10

12

14

H
b

A
1
c
 (

%
)

* **** ****

ND T2D
0

5

10

15

20

W
B

C
 (

1
0

9
/l

)

A

ND T2D

0

25

50

75

100

E
S

R
 (

m
m

/h
)

B

ND T2D

0

200

400

600

800

1000

T
ri

g
ly

c
e
ri

d
e
s
 (

m
g

/d
l)

C

**** ***
**

Figure 1. Baseline BMI, age, and HbA1c of ND and T2D subjects at enrollment. (A) Body mass
index (BMI); (B) age in years; (C) glycated hemoglobin (HbA1c) for non-diabetic group (black
circle) and T2D group (red circle). Data are presented as mean ± standard deviation. *, p < 0.05;
****, p < 0.0001. Black.

3.2. In T2D Subjects, Plasma PGEM Is Only Weakly Correlated with Systemic Inflammation

WBC and ESR are clinical tests for systemic inflammation that have both been validated
as markers of disease risk and progression in pre-diabetic and T2D populations [23–35]. No
T2D subjects (0%) and 8 T2D subjects (6.1%) had elevated WBC (Table 1), and mean WBC
was statistically higher in T2D subjects as compared to ND (Table 1 and Figure 2A). One
ND subject (2.9%) and 27 T2D subjects (20.5%) had elevated ESR for age and sex (Table 1),
and the mean ESR was also significantly higher in T2D subjects (16 mm/h vs. 7.5 mm/h,
respectively) (Table 1 and Figure 2B). Elevated triglycerides are known to be associated with
inflammation, metabolic syndrome, and T2D status and risk [36–38], and triglyceride levels
were elevated in T2D subjects as compared to ND (Table 1 and Figure 2C). No subjects
had CRP levels over 10, the baseline for moderate inflammation, confirming the absence of
acute infection or injury (data not shown).
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Figure 2. Relationship between T2D diagnosis and markers of inflammation. (A) White blood cell
count (WBC); (B) erythrocyte sedimentation rate (ESR); (C) plasma triglycerides for non-diabetic
group (black circle) and T2D group (red circle). Data are presented as mean ± standard deviation.
**, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

3.3. Plasma PGEM Is a Strong Predictor of T2D Disease Status

Plasma PGEM levels were, on average, two-fold higher in the T2D group as compared
to ND controls (51.6 ± 30.4, ND vs. 101.5 ± 39.1, T2D; p < 0.0001) (Table 1 and Figure 3A).
There were no statistically significant correlations between plasma PGEM and BMI, HbA1c,
WBC, and triglycerides, and only a weak correlation with ESR (Table 1). The rate-limiting
step in PGE2 production is catalyzed by cyclooxygenase (COX) enzymes, and aspirin is a
COX-1 inhibitor [39]. We found no difference in mean PGEM levels between those in the
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T2D group who reported low-dose daily aspirin use (n = 54) and those who did not (n = 71)
(Figure 3B). Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid that
competes with arachidonic acid for the same site in plasma membrane phospholipids [10].
We found no difference in mean PGEM between those in the T2D group who reported
omega-3/fish oil supplement use (n = 37) and those who did not (n = 95) (Figure 3C). A
logistic regression analysis including age, sex, BMI, WBC, triglycerides, aspirin use, and
PGEM revealed PGEM as the strongest predictor of T2D diagnosis (p < 0.0001) (Figure 3D
and Table 2) (ESR was not included in this analysis as it was strongly associated with WBC
(p < 0.0001; R2 = 0.12).
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Figure 3. Plasma PGEM is elevated in T2D subjects and is a strong predictor of T2D diagnosis. (A)
Plasma PGEM levels of ND and T2D subjects at enrollment; (B) plasma PGEM levels of T2D subjects
based on daily prophylactic aspirin use; (C) plasma PGEM levels at enrollment of T2D subjects
based on daily omega-3/fish oil supplement use. In (A–C), data are presented as mean ± standard
deviation. ****, p < 0.0001. (D) Predictive probability of plasma PGEM of T2D diagnosis generated by
the SAS Probit process.

Table 2. Logistic regression analysis of PGEM and other baseline parameters reveals plasma PGEM
as the strongest predictor of T2D diagnosis. The SAS Probit procedure was used.

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate Std. Error 95% CI ChiSq Pr > ChiSq

Intercept 1 −15.8799 3.3533 −22.4522 to −9.3076 22.43 <0.0001

PGEM 1 0.0593 0.0141 −0.0317 to 0.0869 17.70 <0.0001

Age 1 0.1001 0.0375 0.0265 to 0.1737 7.71 0.0076

BMI 1 0.0765 0.0449 −0.0166 to 0.1746 2.90 0.0886

WBC 1 0.7225 0.2341 0.2635 to 1.1814 9.52 0.0020

Triglycerides 1 0.0064 0.0042 −0.0019 to 0.0147 2.25 0.1332

Sex 1 −0.9199 0.6979 −2.2878 to 0.4480 1.74 0.1875

Aspirin use 1 −23.689 180, 132.4 −353,077 to 353,023 0.00 0.9999
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3.4. T2D Patients with High Plasma PGEM Levels Have Significantly Worse Blood Glucose
Control One-Year Post-Enrollment

T2D subjects were assessed by chart review one year following the study enrollment,
and their percent change in HbA1c was calculated. Seven subjects were lost to follow-up,
and three additional subjects whose HbA1c increased more than 4% were excluded due
to non-compliance. The final analysis included 45 subjects with a clinically significant
reduction in HbA1c (≥0.5%) one-year post-enrollment and 77 without (n = 122).

As there is no clinical threshold for plasma PGEM, the median PGEM level from all
132 T2D patients (92.96 pg/mL) was used to classify T2D subjects in either a “low” or
“high” PGEM group for follow-up analyses (Figure 4A). On average, T2D subjects with
low plasma PGEM exhibited a 0.6% decrease in HbA1c: a statistically significant difference
from those in the high PGEM group, where no change in mean HbA1c was observed (p =
0.0019) (Figure 4B). In total, 47.5% of T2D patients with low plasma PGEM levels achieved a
clinically significant reduction in HbA1c (≥0.5%) over 1 year (Figure 4C). Conversely, only
25.8% of T2D patients with high plasma PGEM were able to achieve a clinically significant
reduction in HbA1c over 1 year (Figure 4C).
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Figure 4. Subjects with high plasma PGEM have worse T2D therapeutic control one-year after
enrollment. (A) Plasma PGEM levels of T2D subjects at enrollment below and above the median
of 92.96 pg/mL; (B) percent change in HbA1c for the subjects shown in (A). (C) Percent of subjects
in “low” and “high” PGEM groups with or without a clinically meaningful reduction in HbA1c
of ≥ 0.5% (white and hatched bars, respectively).

4. Discussion

In this study, we demonstrate that plasma PGEM shows promise as a circulating
biomarker to assess the risk of T2D diagnosis and the efficacy of blood glucose management
in individuals with T2D. Plasma levels of a stable metabolite of PGE2 were significantly
higher in individuals living with T2D when compared to a control group. This finding is
consistent with recent work from our group and others using small numbers of biosamples
from obese, ND, and T2D subjects [18,20–22]. These results with a larger clinical cohort both
validate the previous findings, as well as reveal PGEM as a strong predictor of T2D disease
status: even more so than validated clinical tests of systemic inflammation. Finally, for the
first time, we discovered plasma PGEM was a strong predictor of T2D therapeutic response
over the following year. Our findings provide strong evidence for further investigations
into the role of PGE2 metabolites in diabetes pathogenesis and treatment response.

The expression and/or activity of COX enzymes, which catalyze the rate-limiting step in
PGE2 production, are significantly upregulated by pro-inflammatory cytokines [9–18,40–45].
T2D is a pathophysiological state strongly associated with adipose meta-inflammation and
insulin resistance [46–49], with a number of validated clinical tests of systemic inflammation
correlating with T2D disease risk and status [23–35]. Outside of its canonical role as an
inflammatory signaling molecule, though, PGE2 has been shown to play an important role in
the β-cell’s function and survival [9,10,15–17,21,50,51]. These findings suggest PGE2 signaling
may contribute to all three of the primary underlying defects in the progression to and
development of T2D—insulin resistance, elevated fasting glucose, and glucose intolerance—
and is worthy of future study.
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The gut microbiome is well-known to be associated with obesity and T2D [52–54].
The composition of the gut microbiome strongly influences circulating metabolites and has
also been shown to influence incretin sensitivity in pre-diabetes and T2D [55–57]. In previ-
ous work using a mouse model of T2D, we found the composition of the gut microbiome
was associated with systemic metabolomic changes, including elevated arachidonic acid,
that correlated with islet-level PGE2 production and responsiveness to a PGE2 receptor
agonist [14]. While outside of the scope of this study, future work studying the relationship
between the gut microbiome and plasma PGEM levels with T2D outcomes is warranted.

While obesity is a driver of T2D pathology, and changes in plasma PGEM could
indicate glucolipotoxic metabolic and inflammatory dysfunction, we demonstrated no
biologically relevant correlations to other biomarkers of obesity, inflammation, or insulin
resistance, including BMI, WBC, ESR, and triglyceride levels (Table 1, Figures 1 and 2).
Logistic regression analysis of the data set, including age, sex, BMI, WBC, triglycerides,
and aspirin use indicated the most significant predictor of T2D status was plasma PGEM,
and subjects having plasma PGEM levels greater than 101.5 pg/mL had a 99% probability
of a T2D diagnosis (Figure 3D and Table 2).

Currently, recommendations by the American Diabetes Association (ADA) suggest
that testing to assess risk for future diabetes in asymptomatic people should be considered
in adults of any age who are overweight or obese and have one or more additional risk
factors, including physical inactivity, first-degree relative with diabetes, women with gesta-
tional diabetes mellitus, hypertension, women with polycystic ovary syndrome, history of
cardiovascular disease, and others [58]. However, current diagnostic tests are imperfect
and prone to misclassification errors. HbA1c has not been validated for all populations [59]
and can be confounded by structural variants in the hemoglobin molecule or alterations
in red blood cell turnover. The use of plasma PGEM as an additional measure of T2D
status could act as a secondary means of quantifying T2D risk assessment. The inclusion
of plasma PGEM in this list of risk factors may capture high-risk individuals who may be
otherwise go undiagnosed.

Historically, clinical values including HbA1c, intact proinsulin, adiponectin, and high
sensitivity C-reactive protein have been suggested as biomarkers of β-cell failure and insulin
resistance, although their overall useability is limited, as both specificity and context need
to be considered [60]. Individualized treatments based on the precision understanding of an
individual’s disease process have garnered much enthusiasm. Ahlqvist et al., used cluster
analysis to define five subgroups of individuals based on their diabetes characteristics and
risk for developing diabetic kidney disease using six parameters (BMI, HbA1c, glutamic
acid decarboxylase antibodies, and homeostatic model assessment of insulin resistance
(HOMA-IR) and insulin secretion (HOMA-B) [61]. The results of this study suggested the
need to identify additional biomarkers to improve sensitivity and precision in stratifying
individuals with pre-diabetes and T2D. Recently, dihydroceramides have been shown to
act as a potential biomarker for T2D [7]. In addition to predicting T2D disease status,
PGEM is one of a few putative biomarkers that may also provide functional insight into
β-cell health relevant to the present therapeutic landscape. Specifically, the expression of
PGE2 synthetic and signaling enzymes is higher in pancreatic islets isolated from T2D mice
and human organ donors than in non-diabetic controls [9,10,14,21,41,51,62–64], resulting
in significantly elevated PGE2 release [9,10]. In the β-cell, PGE2 binds to the Gz-coupled
prostaglandin E2 EP3 receptor (EP3) [13,40,65–67], which, when activated, limits insulin
secretion in response to glucose and glucagon-like peptide 1 receptor (GLP1R) agonists: a
mechanism that actively contributes to the β-cell dysfunction of the disease [9,67]. GLP1-
RAs are currently in wide use as first- or second-line T2D therapeutics, yet, despite the
popularity of these drugs in the clinic, they do not have the same efficacy in all patients.
With the known inhibitory effect of PGE2 receptor antagonists on the efficacy of GLP1-RAs
in preclinical models, this finding may be of great importance in clinical decision-making.
One limitation is that we did not directly measure β-cell function by methods such as
quantifying stimulated C-peptide levels; therefore, this possibility remains only theoretical.
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Another limitation of the current observational study is it was neither adequately powered
nor designed to assess the specific impact of PGEM levels on GLP1-RA efficacy. Future
work must include trials of drug-naïve patients with T2D randomized to different classes
based on plasma PGEM levels to determine if these could be used to help providers choose
the drug that will work best for each patient.

We acknowledge several other limitations of this study. The population in the UWHC
catchment area is primarily white/non-Hispanic; therefore, our results may not be represen-
tative of more diverse populations. This is an important limitation, as recent studies have
found the appropriateness of common biomarkers of T2D risks differ, based on an individ-
ual’s racial and ethnic background [68]. Second, as this was an observational study with
the primary outcome being plasma PGEM, we did not control for time since T2D diagnosis
or current T2D therapeutics. The ongoing management of the subjects’ T2D during the 1
year follow-up period was not influenced in any way by this research study and, therefore,
was based on “real-world” standard clinical care. Third, diet quantity/composition and
physical activity can impact diabetes control, and in the current study, we did not have
participants keep diet or exercise logs to quantify this potential confounder. Finally, as
plasma PGEM in a T2D clinical cohort has not previously been studied, it will be necessary
to identify and validate an appropriate clinical threshold if it is to be used as a biomarker
for T2D therapeutic response. These additional considerations are important to note but
fall outside the scope of this study.

5. Conclusions

In this clinical cohort study, we find plasma PGEM levels are an excellent predic-
tor of T2D status and one-year therapeutic response, independent of known markers of
inflammation, obesity, and T2D disease control. These findings were surprising, as hyper-
glycemia, dyslipidemia, and pro-inflammatory cytokines have all been shown to upregulate
enzymes in the PGE2 production pathway. Our results provide strong support for future
research into plasma PGEM as an independent biomarker for T2D status and long-term
disease control.
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