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Abstract: Background: In the US in 2021, 76,080 kidney cancers are expected and >80% are renal cell
carcinomas (RCCs). Along with excess fat, metabolic dysfunction is implicated in RCC etiology. To
identify RCC-associated metabolites, we conducted a 1:1 matched case–control study nested within
the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Methods: We measured
522 serum metabolites in 267 cases/control pairs. Cases were followed for a median 7.1 years
from blood draw to diagnosis. Using conditional logistic regression, we computed adjusted odds
ratios (ORs) and 95% confidence intervals (CIs) comparing risk between 90th and 10th percentiles
of log metabolite intensity, with the significance threshold at a false discovery rate <0.20. Results:
Four metabolites were inversely associated with risk of RCC during follow-up—C38:4 PI, C34:0 PC,
C14:0 SM, and C16:1 SM (ORs ranging from 0.33–0.44). Two were positively associated with RCC
risk—C3-DC-CH3 carnitine and C5 carnitine (ORs = 2.84 and 2.83, respectively). These results were
robust when further adjusted for metabolic risk factors (body mass index (BMI), physical activity,
diabetes/hypertension history). Metabolites associated with RCC had weak correlations (|r| < 0.2)
with risk factors of BMI, physical activity, smoking, alcohol, and diabetes/hypertension history. In
mutually adjusted models, three metabolites (C38:4 PI, C14:0 SM, and C3-DC-CH3 carnitine) were
independently associated with RCC risk. Conclusions: Serum concentrations of six metabolites were
associated with RCC risk, and three of these had independent associations from the mutually adjusted
model. These metabolites may point toward new biological pathways of relevance to this malignancy.

Keywords: metabolomics; kidney cancer; renal cell carcinoma

1. Introduction

An estimated 79,000 new cases of kidney cancer are expected in the United States (US)
in 2022, making it the eighth most commonly diagnosed primary cancer [1]. Approximately
80–90% of kidney cancers are renal cell carcinomas (RCC) [2].

A hallmark of RCC is the major role played by perturbed metabolism in its etiology.
Metabolic risk factors such as excess body fatness and hypertension have strong, well-
established associations with the development of RCC (i.e., RCC risk) [3–5]. Heritable
conditions that increase RCC risk often have a metabolic component, such as the change in
hypoxia response in Von Hippel–Landau disease [6] and the production of fumarase (part
of the TCA cycle) in hereditary leiomyomatosis [7]. In RCC tumors, metabolism is shifted to-
ward increased glucose and lactate production, consistent with Warburg metabolism [8–10].
Metabolic flux through glycolysis also appears to be “partitioned”, with a high production
of early glycolysis intermediates accompanied by low production of late-stage metabo-
lites [10,11]. The early-stage intermediates are diverted toward the pentose phosphate
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pathway, which promotes anabolic reactions and redox homeostasis, while later-stage
phosphates are diverted toward TCA and one-carbon metabolism [8,10,11]. Numerous
changes in TCA metabolism suggest that mitochondrial bioenergetics and oxidative phos-
phorylation processes are also impaired in RCC, and an intracellular accumulation of fatty
acids suggests an enhanced uptake and synthesis of fatty acids [10–12]. These changes in
lipid metabolism may in turn relate to increased levels of acylcarnitines [13] and changes
in glycerol enzymes [14].

Whether changes in systemic circulating metabolism can be observed prior to RCC
carcinogenesis and/or diagnosis is not yet established. Non-prospective studies have
used metabolomics to identify associations of RCC risk with levels of metabolites in
blood [15–18], urine [19–23], and tumor tissue [11,13,24]. Their findings suggest that
RCC patients have systemic increases in glycolysis and acylcarnitine production and a
decrease in TCA oxidative metabolisms in [22,25]. However, only one prospective study, by
Guida et al. has been conducted to date, primarily finding changes in glycerophospholipid
metabolism [26].

Identifying prospective changes in metabolism is an important next step that can
help to establish the sequence of RCC pathogenesis, clarify its etiology, and provide
clues about why risk factors such as obesity are linked with risk. Regarding obesity,
evidence points toward several possible explanations for its association with RCC risk,
including oxidative stress [27], hypertension-induced injury to the renal tubules [28,29],
renal atherosclerosis [30], disruption of normal endocrine activity [31–34], and chronic
inflammation [35] but direct assessment of the metabolites that may mediate the obesity–
RCC association have been uncommon. Prospective designs also help eliminate prodromal
effects of undiagnosed tumors, as well as biases related to case–control selection and
sample handling [36]. The Guida et al. study has provided strong initial leads regarding
prospective metabolic risk factors for RCC, but further studies are needed to replicate these
results and to explore additional metabolites using different platforms.

We, therefore, conducted metabolic profiling of pre-diagnostic sera from a nested
case–control study of 267 RCC cases and 267 controls in the Prostate, Lung, Colorectal, and
Ovarian (PLCO) Cancer Screening Trial. Our hypothesis was that biomarkers associated
with RCC risk can be detected in serum before the overt presentation of the disease.
Identification of such biomarkers may help clarify how metabolic factors contribute to the
etiology of RCC.

2. Methods
2.1. Study Population

The PLCO Cancer Screening Trial is a population-based, multi-center, randomized
screening trial of >150,000 US men and women aged 55–74 with no history of prostate,
lung, colorectal, or ovarian cancers. Participants were assigned to a screening arm or a
control arm. The PLCO Cancer Screening Trial was approved by the Institutional Review
Boards at the National Cancer Institute and the study centers, and all participants provided
informed consent.

PLCO participants included in this nested case–control study were all from the screen-
ing arm of the trial. Eligible cases were those with a histologically confirmed incident
first primary diagnosis of RCC (International Classification of Disease for Oncology code:
ICD-0-3 C64.9) ascertained by medical record review. Cases were followed for a median of
7.1 years (interquartile range (IQR): 4.3–9.7), measured from blood sample collection to date
of diagnosis. Controls had no history of RCC and were individually matched to cases by
age at baseline, sex, recruitment site, menopausal status (for women), and season and year
of blood draw. A total of 267 RCC cases and 267 controls were identified for our analyses.

2.2. Metabolomic Profiling

A total of 531 metabolites were measured in non-fasting serum samples collected at
the first PLCO screening arm follow-up visit. The samples had been processed within
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two hours of collection and stored at −70 ◦C. Serum vials never previously thawed were
selected for this project. The metabolomics data were generated by the lab of Clary Clish
at the Broad Institute and the lab of Dr. Robert Gerszten, then at Massachusetts Gen-
eral Hospital. Methodologies for both the Broad Institute [37] and the Gerszten lab [38]
have been published previously and are described in brief below (full detail available in
Supplementary Table S1).

From the lab of Dr. Clish, metabolites were measured with two liquid chromatography
(LC)–mass spectroscopy (MS) methods. Lipids were analyzed using a Nexera X2 U-HPLC
(Shimadzu, Marlborough, MA, USA) coupled with an Exactive Plus Orbitrap mass spec-
trometer (Thermo Fisher Scientific, Waltham, MA, USA). Hydrophilic interaction liquid
chromatography analyses of water-soluble metabolites were conducted in the positive-ion
mode using a Nexera X2 U-HPLC (Shimadzu, Marlborough, MA, USA)-Q Exactive Orbi-
trap (Thermo Fisher Scientific; Waltham, MA, USA) LC–MS instrument. From the lab of
Dr. Gerszten, metabolites were measured using the high sensitivity Agilent 6490 QQQ MS
(Agilent Technologies, Inc., Santa Clara, CA, USA) in the negative ion mode via multiple
reaction monitoring scanning. The Clish lab quantified levels of 462 metabolites and the
Gerszten lab 69 metabolites. Nine metabolites were measured by both labs (allantoin, biliru-
bin, citrulline, hypoxanthine, inosine, kynurenic acid, taurine, xanthine, and xanthosine),
and we retained the Clish lab metabolite levels for those nine overlapping metabolites.

Metabolite levels with values below the limit of detection were assigned half the mini-
mum observed value for that metabolite. Metabolite levels were natural log-normalized
for analyses. Intraclass correlation coefficients (ICCs) were determined from 40 quality
control samples interspersed across batches. The median (IQR) ICC across the 522 included
metabolites was 0.97 (0.92–0.99).

2.3. Covariate Assessment

Covariate information, including established and suspected RCC risk factors, was
obtained through questionnaires completed by participants at trial baseline. Potential
covariates included: age (years), sex (male, female), race/ethnicity (self-reported non-
Hispanic White, non-Hispanic Black, other race/ethnicity), body mass index (BMI; kg/m2),
physical activity (none, <1 h/week, 1 h/week, 2 h/week, 3 h/week, 4+ h/week), history
of diabetes (yes, no), history of hypertension (yes, no), cigarette smoking status (never,
former, current), alcohol consumption (g/day), and family history of renal cancer (yes, no,
unsure). For alcohol consumption, 26 participants had missing values. In order to retain
these observations, we imputed the median alcohol intake value, completed separately
for cases and controls. Similarly, for physical activity, we modeled the non-response using
missing indicator variables.

2.4. Statistical Analyses

Conditional logistic regression models were used to estimate odds ratios (ORs) and
95% confidence intervals (CIs) for the associations between metabolites and RCC risk during
follow-up, where the ORs correspond to risk at the 90th percentile compared to the 10th
percentile of log metabolite intensity. Models were sequentially adjusted for the following
factors: (1) age, sex, race/ethnicity, cigarette smoking status, alcohol consumption, and
family history of renal cancer, and (2) BMI, physical activity, history of diabetes, and history
of hypertension. The threshold for statistical significance was set at a false discovery rate of
0.20, the threshold used in several prior prospective metabolomics analyses [39–41].

In order to examine potential independence of observed associations, we used a
forward selection approach to create a mutually adjusted model. Specifically, we modeled
each metabolite in relation to RCC, retained the metabolite with the lowest p-value, and
modeled the remaining metabolites, repeating this process until reaching the false discovery
threshold. To assess whether metabolite–RCC associations may relate to other RCC risk
factors, we estimated correlations between significant metabolites and covariates included
in our model 2.
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We evaluated if the relationships between metabolites that were significant in model 2
and RCC risk were non-linear using restricted cubic splines. For each metabolite–RCC asso-
ciation, the p for curvature exceeded 0.05 (Supplementary Table S2), suggesting associations
are linear. Consequently, the results presented are based on linear functions.

In exploratory mediation analyses, we decomposed the total effect of BMI on RCC
into an indirect effect through metabolites and a direct effect through other pathways [42].
We estimated the total effect of BMI on RCC (ORtotal effect) using conditional logistic mod-
els adjusted for age, sex, race/ethnicity, cigarette smoking status, alcohol consumption,
family history of renal cancer, history of diabetes, and history of hypertension. The
direct effect of BMI on RCC through non-metabolite pathways (ORdirect effect) was esti-
mated using conditional logistic models adjusted for the covariates mentioned above
along with metabolites. We estimated the indirect effect of BMI on RCC through metabo-
lites (ORindirect effect) as ORtotal effect/ORdirect effect. The attenuation of ORs was defined as
[log(ORtotal effect)−log(ORdirect effect)]/log(ORtotal effect).

We also conducted two sets of sensitivity analyses. The first was removing cases
diagnosed within the first two years of study (n = 29) to assess if any of the associations
observed could have been influenced by those potentially latent RCCs. The second sen-
sitivity analysis was examining metabolite–RCC associations stratified by time between
blood draw and diagnosis. For these analyses we cut at the median time on the study
for cases, which was 7.10 years (IQR = 4.34–9.68). We then calculated p-values for the
interactions between metabolites and median time on study, using the Bonferroni-adjusted
p-value = 9.58 × 10−5 (=0.05/522).

Analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

3. Results

The Sociodemographic, lifestyle, and medical history characteristics of the
534 participants are presented by case–control status in Table 1. The participants were, on
average, 63 years old, and primarily male and White. BMI was the only characteristic that
had a statistically significant difference (p < 0.05) between cases and controls, with a higher
proportion of cases classified as obese.

When adjusting for non-metabolic RCC risk factors, 82 metabolites were significantly
associated with RCC risk at the false discovery rate < 0.20 (Supplementary Table S3). Further
adjustment for metabolic risk factors (BMI, physical activity, history of diabetes, and history
of hypertension) reduced the number of metabolites significantly associated with RCC
to six (Table 2). These six metabolites included two glycerophospholipids (C38:4 PI and
C34:0 PC) inversely associated with risk, two acylcarnitines (C3-DC-CH3 carnitine and C5
carnitine) positively associated with risk, one sphingolipid inversely associated with risk
(C14:0 SM) and one organic nitrogen compound inversely associated with risk (C16:1 SM).
The respective odds ratios comparing risk at the 90th vs. 10th percentiles for these were
0.32 (95%CI: 0.18–0.58), 0.43 (0.26–0.74), 2.61 (1.53–4.47), 2.31 (1.36–3.93), 0.40 (0.24–0.68),
0.34 (0.19–0.63).

Because we were primarily interested in identifying mediators, we prioritized metabo-
lites with independent effects on RCC risk. Correlations between metabolites and RCC risk
factors were weak, with |r| < 0.20 (excluding metabolite–metabolite correlations of similar
pathways; Supplementary Table S4), suggesting these associations were independent of
other risk factors. In our mutual adjustment model (Table 3), three of the metabolites were
retained (C38:4 PI, C14:0 SM, C3-DC-CH3 carnitine) with slight attenuation of ORs.

The effect of BMI was not meaningfully changed when adding metabolites as potential
mediators (Table 4). The OR for BMI was strengthened when adding four of the metabolites
(ranging from −3.8% to −15.7%) and was attenuated when adding the two acylcarnitines
(19.7% and 22.4%). Similarly, adding BMI to the models had a minor effect on metabolites–
RCC associations (Table 5); carnitine associations were attenuated (12.3% and 16.8%),
while the other metabolite classes’ associations were strengthened (ranging from −5.6% to
−21.0%).
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Table 1. Sociodemographic, lifestyle, and medical history characteristics of the renal cell carcinoma
case–control study nested within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.

Characteristic Cases (n = 267) Controls (n = 267) p-Value

Age (years), mean ± SD 63.0 ± 4.98 63.0 ± 4.97 Matched
Sex, % Matched
Male 65.9 65.9

Female 34.1 34.1
Race/ethnicity, % 0.82

White, non-Hispanic 89.1 89.1
Black, non-Hispanic 6.4 6.4

Other * 4.5 4.5
Body mass index (kg/m2),

mean ± SD 28.9 ± 5.10 27.4 ± 4.20 <0.0001

Body mass index category, % 0.001
0–18.5 kg/m2 0.8 0.8
18.5–25 kg/m2 21.0 28.6
25–30 kg/m2 41.2 48.5
30+ kg/m2 37.1 22.2

Physical activity, % 0.33
None 15.0 13.0

<1 h/week 23.6 21.0
1 h/week 13.4 13.4
2 h/week 15.8 12.7
3 h/week 10.6 17.4

4+ h/week 21.7 22.5
History of diabetes, %

No 88.8 90.9 0.41
Yes 11.2 9.1

History of hypertension, % 0.08
No 54.5 62.0
Yes 45.5 38.0

Cigarette smoking status, % 0.94
Never 46.1 47.6

Former 43.8 42.3
Current 10.1 10.1

Alcohol consumption (g/day), mean ± SD 9.2 ± 21.17 13.2 ± 29.32 0.07
Family history of renal cancer, % 0.46

No 93.2 95.5
Yes 1.5 1.5

Unsure 5.3 3.0

Percentages may not sum to 100% due to rounding. * Other includes Hispanic, Asian, Pacific Islander, and
American Indian. Missing: age (0), sex (0), race (0), body mass index (continuous; 1), body mass index (categorical;
1), physical activity (27), history of diabetes (2), history of hypertension (2), cigarette smoking status (0), alcohol
consumption (0), family history of renal cancer (1).

Table 2. Odds ratios (ORs) and 95% confidence intervals (CIs) for renal cell carcinoma when compar-
ing the 90th with the 10th percentile levels of metabolites *.

Metabolite Model 1 †

OR (95% CI)
Model 2 ‡

OR (95% CI)

Glycerophospholipids

C38:4 PI 0.35
(0.21–0.61)

0.32
(0.18–0.58)

C34:0 PC 0.43
(0.26–0.72)

0.43
(0.26–0.74)

Fatty acyls (acylcarnitines)

C3-DC-CH3 Carnitine 2.83
(1.73–4.64)

2.61
(1.53–4.47)

C5 Carnitine 2.88
(1.74–4.76)

2.31
(1.36–3.93)

Sphingolipids

C14:0 SM 0.45
(0.26–0.73)

0.40
(0.24–0.68)

Organic nitrogen compounds

C16:1 SM 0.40
(0.23–0.70)

0.34
(0.19–0.63)

* ORs based on conditional logistic regression models with metabolite percentiles based on the distribution in
controls on the log metabolite intensity scale; table includes only metabolites for which the false discovery rate
was <0.20. † Model was adjusted for age, sex, race, cigarette smoking status, alcohol consumption, and family
history of renal cancer. ‡ Model was adjusted for model 1 covariates, plus body mass index, physical activity,
history of diabetes, and history of hypertension.
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Table 3. Odds ratios (ORs) and 95% confidence intervals (CIs) for renal cell carcinoma when compar-
ing the 90th with the 10th percentile levels of metabolites in forward selection models.

Metabolite Chemical
Class Order Entered Model Entry p *

Mutually Adjusted
OR †

(95% CI)
Mutually Adjusted p *

C38:4 PI Glycerophospholipids 1 <0.0001 0.49
(0.26–0.95) 0.03

C3-DC-CH3
Carnitine

Fatty acyls
(acylcarnitine) 2 0.002 2.39

(1.39–4.13) 0.002

C14:0 SM Sphingolipids 3 0.02 0.52
(0.29–0.92) 0.02

* p-value for χ2 test obtained from conditional logistic regression model for a given metabolite (modeled on a
continuous basis); all tests were two-sided. † ORs correspond to RCC risk at the 90th percentile compared to
the 10th of log metabolite intensity; model was adjusted for age, sex, race, body mass index, cigarette smoking
status, alcohol consumption, physical activity, family history of renal cancer, history of diabetes, and history of
hypertension, and simultaneously adjusted for other listed metabolites (C38:4 PI, C14:0 SM, and C3-DC-CH3
Carnitine only).

Table 4. Attenuation of the odds ratio for the BMI-renal cell carcinoma association with the addition
(one at a time) of each of the six identified metabolites to the adjustment set.

Metabolite BMI
OR (95% CI) * Attenuation of Log (OR)

None 1.44
(1.19–1.74) -

C38:4 PI 1.51
(1.23–1.85) −13.3%

C34:0 PC 1.46
(1.20–1.77) −3.8%

C3-DC-CH3 Carnitine 1.34
(1.09–1.64) 19.7%

C5 Carnitine 1.33
(1.08–1.62) 22.4%

C14:0 SM 1.52
(1.24–1.86) −15.7%

C16:1 SM 1.52
(1.24–1.85) −14.8%

* ORs correspond to RCC risk with each 5 kg/m2 increase in BMI. Model was adjusted for age, sex, race, cigarette
smoking status, alcohol consumption, and family history of renal cancer, and for listed metabolite

Table 5. Attenuation of the odds ratios for the metabolite–renal cell carcinoma association with the
addition of BMI to the adjustment set.

Metabolite Metabolite OR (95% CI) *
Not BMI-Adjusted

Metabolite OR (95% CI) *
BMI-Adjusted

Attenuation of Log
(Metabolite OR)

C38:4 PI 0.35
(0.21–0.61)

0.31
(0.18–0.56) −11.6%

C34:0 PC 0.43
(0.26–0.72)

0.41
(0.24–0.69) −5.6%

C3-DC-CH3 Carnitine 2.83
(1.73–4.64)

2.49
(1.49–4.17) 12.3%

C5 Carnitine 2.88
(1.74–4.76)

2.41
(1.44–4.05) 16.8%

C14:0 SM 0.45
(0.27–0.73)

0.39
(0.23–0.65) −14.7%

C16:1 SM 0.40
(0.23–0.71)

0.33
(0.18–0.60) −21.0%

* ORs correspond to RCC risk of 90th percentile of metabolite level compared to the 10th percentile. Model was
adjusted for age, sex, race, cigarette smoking status, alcohol consumption, and family history of renal cancer.

Regarding our sensitivity analyses, removing cases diagnosed within the first two
years of the study negligibly changed metabolite–RCC associations (Supplementary Data).
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Similarly, there was no evidence of interaction between metabolites and median time in the
study as no p-values were <9.58 × 10−5 (Supplementary Data).

4. Discussion

In this nested case–control study from the PLCO Cancer Screening Trial, 82 metabolites
were associated with risk of RCC (at the false discovery rate <0.20) in initial models, and six
of these were associated with RCC even after adjusting for BMI, physical activity, history
of diabetes, and history of hypertension. We further found that, in mutually adjusted
models, three of the metabolites were independently associated with RCC. These three
associations have never before been reported in relation to RCC (C38:4 PI, C3-DC-CH3
carnitine, C14:0 SM), and thus constitute novel findings. Because the study is prospective,
the associations likely reflect an etiologic role in RCC, rather than prodromal effects of
the tumor itself, and are less likely to be influenced by selection and/or sample handling
biases than associations from non-prospective studies. We also examined the potential
for these metabolites to mediate the obesity–RCC association but found little evidence
for such mediation at present. These findings related to specific glycerophospholipids,
acylcarnitines, sphingolipids, and organic nitrogen compounds point toward potentially
important pathways in the etiology of RCC.

To our knowledge, ours is the second prospective metabolomics analysis of RCC,
the first being an analysis by Guida et al. of 1305 case–control pairs in a European and
Australian consortium [26]. This analysis identified 25 metabolites associated with RCC
risk, most of which were glycerophospholipids (n = 14) and amino acids (n = 9). Guida et al.
used different platforms than did our study and so only eight RCC-associated metabolites
were measured in common between them. Associations for these eight metabolites did
not replicate between studies at the multiple testing threshold of statistical significance.
Associations did, however, replicate at the nominal level of significance (p < 0.05) for five of
eight metabolites (C32:2 PC, C38:6 PC, C5 carnitine, C16:1 SM, glutamate), and the direction
of effect was the same for all eight (Figure 1). This consistency of findings suggests a reason-
ably high level of replicability. Non-prospective studies have also examined associations
with RCC risk [11,13,15–24] and some results parallel our own, particularly results related
to glycerophospholipids [16,17,20], sphingolipids [16,20], and acylcarnitines [13,16,19].

The exact biology underlying these associations is not fully understood, though basic
research suggests several possibilities. Glycerophospholipids are the primary constituent
of cell membranes and are key regulators of cell signaling. Prior studies suggest that clear
cell RCC cells exhibit increased uptake of glycerophospholipids from circulation, possibly
to support growth needs [10,11]. Possibly, increased uptake of glycerophospholipids by
incipient tumors during the preclinical stage could explain the low circulating levels we
observed. Acylcarnitines are required for the transport of fatty acids into mitochondria and
elevated levels in circulation parallel elevated acylcarnitine levels observed in tumors them-
selves [19]. Increased levels may occur in response to metabolic changes that accompany
carcinogenesis, such as reduced fatty acid β-oxidation [19] and/or impaired mitochondrial
bioenergetics [10–12]. Sphingolipids are structural molecules of cell membranes and sig-
naling molecules that help regulate cell growth, proliferation, migration, and senescence,
among other functions. Sphingolipids are a heterogeneous class with respect to their
postulated role in carcinogenesis [43], and the role that C14:0 specifically may play is not
well-studied or understood. Finally, little is known about the organic nitrogen compound
organic C16:1 SM and its role in carcinogenesis therefore remains speculative. Additionally,
various sphingolipids, acylcarnitines, and C16:1 SM have been associated with the risk
of type 2 diabetes [44–46], which may constitute part of the mechanistic pathway linking
these metabolites with RCC risk.
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Figure 1. Odds ratios and 95% confidence intervals for RCC per 1 standard deviation (natural log
scale) increment in metabolite level, comparing results from PLCO and Guida et al. [24]. Black-filled
circles correspond to the PLCO, and gray-filled circles correspond to Guida et al. For reference,
the metabolite name abbreviations used above correspond to the abbreviations of PC ae C34:0,
isovalerylcarnitine (C5), SM C16:1, glutamate, lysoPC a C18:2, PC ae C32:2, PC ae C36:3, PC ae 38:6
in Guida et al. For the first three metabolites, Guida et al. results are based on crude models in
the supplement (only these results were available), while the remainder are based on BMI-adjusted
models in the main results.

Our study has several limitations. First, the PLCO cohort had a limited number of
RCC cases, and thus we could only detect associations of a moderate or strong magnitude.
Due to the observational nature of this study, we cannot rule out residual confounding
by unknown or inadequately measured risk factors. Additionally, PLCO consists predom-
inantly of White US participants whose incidence rates of RCC are lower than those of
other demographic groups, such as Black Americans. These associations could be further
explored for potential etiological and/or histological subtype differences between White
and other racial/ethnic groups in a more diverse study population, for example evidence
of Black individuals’ higher incidence of papillary RCC [47]. Future studies should aim
to replicate our findings and assess whether they generalize to other at-risk populations
and to specific histological subtypes (which could not examine due to limited sample size).
Another potential residual confounder of interest are occupational exposures (such as ben-
zene [48], trichloroethylene [49], etc.), which we were not able to assess in our study. Our
analysis did not assess all human metabolites, of which there are more than 100,000 [50], but
rather the 522 metabolites measured by the Clish and Gerszten platforms. As the sensitivity
of MS technologies improves, future studies will be able to examine many more metabolites.
Lastly, while we used a false discovery rate <0.20 to control for multiple testing, some
findings nevertheless could be due to chance.

There were several strengths to our study. This study is, to our knowledge, the first
prospective study to use metabolomics to evaluate serum metabolites in relation to RCC
risk. Our use of pre-diagnostic samples should eliminate, or at least minimize, bias resulting
from differential sample handling between cases and controls—a problem that can induce
false positives in case–control studies [36]. In addition, since cases were diagnosed a
median of seven years after sample collection, the associations we observed are unlikely
to reflect the effects of preclinical or undiagnosed disease on metabolite levels, especially
given that associations were materially unchanged when removing the cases diagnosed
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closest to sample collection (i.e., within the first two years of follow-up). We used highly
reliable metabolomics platforms that measured >500 metabolites in total. Finally, we used
mutually adjusted models which allowed us to potentially identify the metabolites most
informative about RCC risk.

5. Conclusions

In sum, our results show that pre-diagnostic serum levels of six metabolites were
associated with RCC risk and three of these (C38:4 PI, C3-DC-CH3 carnitine, and C14:0 SM)
remained significantly associated with RCC in mutually adjusted models. These metabolites
may point toward new biological pathways of relevance to RCC risk; particularly findings
related to specific glycerophospholipids, acylcarnitines, sphingolipids, and organic nitrogen
compounds and their potential implications on the etiology of RCC. Further investigations
in larger, more diverse cohorts would help establish these findings, while potentially
uncovering further novel metabolite–RCC associations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12121189/s1, Table S1: Full description of metabolomics
lab methodologies, Table S2: Results for assessing non-linearity of the association between renal cell
carcinoma and metabolite levels, for metabolites where false discovery rate < 0.20 from conditional
logistic regression; Table S3: Odds ratios (ORs) and 95% confidence intervals (CIs) for renal cell
carcinoma comparing the 90th and 10th percentiles, based on the distribution in controls; Table S4:
Correlations between metabolites associated with renal cell carcinoma risk and other renal cell
carcinoma risk factors; Supplemental Data.
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