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Abstract: Metabolomics is a promising technology for the application of translational medicine to
cardiovascular risk. Here, we applied a liquid chromatography/tandem mass spectrometry ap-
proach to explore the associations between plasma concentrations of amino acids, methylarginines,
acylcarnitines, and tryptophan catabolism metabolites and cardiometabolic risk factors in patients
diagnosed with arterial hypertension (HTA) (n = 61), coronary artery disease (CAD) (n = 48), and
non-cardiovascular disease (CVD) individuals (n = 27). In total, almost all significantly different acyl-
carnitines, amino acids, methylarginines, and intermediates of the kynurenic and indolic tryptophan
conversion pathways presented increased (p < 0.05) in concentration levels during the progression of
CVD, indicating an association of inflammation, mitochondrial imbalance, and oxidative stress with
early stages of CVD. Additionally, the random forest algorithm was found to have the highest predic-
tion power in multiclass and binary classification patients with CAD, HTA, and non-CVD individuals
and globally between CVD and non-CVD individuals (accuracy equal to 0.80 and 0.91, respectively).
Thus, the present study provided a complex approach for the risk stratification of patients with CAD,
patients with HTA, and non-CVD individuals using targeted metabolomics profiling.

Keywords: metabolites; amino acids; acylcarnitines; tryptophan catabolism; methylarginines; cardiovascular
disorders; hypertension; coronary heart disease; translational medicine; machine learning

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally and are re-
sponsible for approximately 18 million deaths each year [1]. Conditions such as hyperten-
sion, hypercholesterolemia, and type 2 diabetes mellitus are well known as risk factors
for cardiovascular diseases [2]. Cardiometabolic alterations occur in association with
asymptomatic metabolic perturbations [3,4]. These include, for example, an imbalance
in general metabolism, signaling pathways, or alterations in macronutrient biosynthesis
and degradation. Improving the understanding of these metabolic changes and identi-
fying biomarkers that reflect these alterations may provide a deeper understanding of
the underlying pathophysiological processes and for translation of this knowledge to
elucidate early-stage development of CVDs, especially when standard clinical methods
are limited because these alterations occur at subclinical, asymptomatic levels [5]. Omics

Metabolites 2022, 12, 1185. https://doi.org/10.3390/metabo12121185 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12121185
https://doi.org/10.3390/metabo12121185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-7309-8913
https://orcid.org/0000-0003-4778-7755
https://orcid.org/0000-0003-2873-704X
https://orcid.org/0000-0001-8716-1672
https://orcid.org/0000-0001-8860-5853
https://orcid.org/0000-0002-4180-5417
https://orcid.org/0000-0002-9032-1558
https://doi.org/10.3390/metabo12121185
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12121185?type=check_update&version=2


Metabolites 2022, 12, 1185 2 of 22

technologies such as metabolomics profiling offer an opportunity to recognize subtle
alterations in the metabolome that occur before the appearance of phenotypic changes
common for the disease [6]. Plasma is one of the most common biofluids typically utilized
in metabolomics profiling due to its stability and the relatively noninvasive sampling
techniques involved [7–9].

Characterization of differences among altered metabolic pathways may provide in-
sights into the pathology, prognosis, and early diagnosis of CVDs [10]. The level of
understanding of metabolic alterations occurring in organs and tissues associated with the
development of cardiovascular pathologies is relatively high. At present, multiple studies
have connected alterations in the concentration levels of cholesterol and triglycerides,
phosphatidylcholines, and several amino acids, including branched-chain amino acids,
unsaturated lipids, choline, and trimethylamine-N-oxide, with CVD [11–15].

However, there is no clarity on the most highly specific and sensitive biomarkers for
early coronary artery disease (CAD) diagnosis. Moreover, the prediction of the progression
and adverse outcomes in asymptomatic stages of CAD are unclear. The cardiovascular
disease continuum (CVDC) is a sequence of cardiovascular events that start from a cluster
of cardiometabolic risk factors, including dyslipidemia, smoking, and excessive visceral
adiposity, among others. This pathogenic process, if not treated properly at an early stage,
often progresses into atherosclerosis, myocardial remodeling, increased vascular pressure,
cardiac overload, myocardial wall remodeling, heart dilation, and heart failure [16]. Early
elucidation of metabolic alterations underlying metabolic syndrome, arterial hypertension
(HTA) and CAD are crucial for the prevention of further cardiovascular complications. It
has been described that both HTA and CAD are characterized by endothelial dysfunction,
instability of atherosclerotic plaques, and an increase in myocardial oxygen demand [17].
Moreover, application of metabolomics profiling from the view of personalized medicine
may support the accurate measurement of the patient’s phenotypes [18] as well as the
further introduction of the obtained information into clinical practice.

From the view of metabolomics studies, it has been reported that cardiometabolic
alterations are accompanied by changes in the concentration levels of several plasma
amino acids [19,20], acylcarnitines [21], and biodegradation products related to tryptophan
metabolism [22]. However, the mechanisms and diagnostic biomarkers at different stages
of CVDC remain unclear.

Prediction of the clinical outcome based on metabolomics profiles is a relatively
complicated task due to the complexity and nonlinear representation of the data. Artificial
intelligence tools based on supervised machine learning (ML) classification algorithms
may serve for the preliminary prediction of CVD as well as its progression. Based on the
developed ML-derived models, it becomes possible to perform quantitative predictions as
well as to identify meaningful potential biomarkers through the selection of informative
features, facilitating preliminary hypothesis-driven research.

Therefore, the application of metabolomics profiling with the aim of distinguishing
patients at different stages of CVDC represents an opportunity for translational medicine
to systematically identify potential early clinical markers of CVD. The goal of the present
study was to explore the association between plasma concentrations of amino acids, methy-
larginines, acylcarnitines, and tryptophan catabolism metabolism with cardiometabolic
risk factors in adults diagnosed with HTA and CAD compared to non-CVD individuals.

2. Materials and Methods
2.1. Study Design and Participants

This cross-sectional study was conducted in 136 adults. The main group comprised
109 patients diagnosed with CVD (CVD group): 61 had HTA (HTA subgroup), and 48 were
patients with CAD (CAD subgroup). A non-CVD group comprised 27 participants without
clinical and laboratory signs of CVD. All participants were recruited from Cardiology De-
partment No. 1, Clinical Hospital No. 1 at Sechenov University, Moscow, Russia, between
2018 and 2020. Adults with hypertension were patients diagnosed with systolic blood
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pressure (SBP) above 140 mmHg and/or diastolic blood pressure (DBP) above 90 mmHg.
Patients were defined as those with CAD in case of stress-induced myocardial ischemia,
available stenosis of the coronary arteries (CAs) which was diagnosed using coronary
angiography or computed tomography (CT) or with history of myocardial infarction. The
non-CVD group comprised 27 adults without clinical and laboratory signs of CVD (the
absence of cardiovascular pathologies including HTA, CAD, congenital and acquired heart
defects, left ventricular hypertrophy, cardiomyopathy, infiltrative heart disease, heart fail-
ure, rhythm disturbances (atrial fibrillation/flutter, ventricular arrhythmias), and cardiac
conduction disorders. Ten of them were defined as healthy, and seventeen of them had
metabolic disorders (body mass index (BMI) ≥ 25 kg/; dyslipidemia). All patients were
recommended a balanced diet. Acetaminophen, all vitamins, minerals, amino acids, and
dietary supplements, including sports drinks and energy drinks, were excluded 4 days
before blood sampling. Creatinine, alpha-ketoglutarate, supplements containing malic acid,
as well as a salt of citric acid, maleic, or any salts of orotic acid were stopped 4 days before
blood sampling. Sweeteners (aspartate, among others) and monosodium glutamate were
excluded 24 h before inclusion.

2.2. Exclusion Criteria

Secondary hypertension, cerebrovascular disorders (dementia, at least 6 months apart
from stroke), acute and chronic kidney failure, chronic pulmonary heart disease, signs
and symptoms of liver disease (without cytolysis syndrome and liver failure), portal
hypertension, asthma, chronic obstructive pulmonary disease, gastric or duodenal ulcer
in the acute phase, chronic pancreatitis in the acute phase, malignant neoplasms, thyroid
diseases (hypothyroidism and hyperthyroidism), Cushing syndrome, type 1 diabetes,
type 2 diabetes mellitus decompensation, thrombocytopenia, hemorrhagic syndrome,
autoimmune diseases, mental illness or disability, alcoholism, drug addiction, substance
abuse, pregnancy, and breast-feeding were the exclusion criteria. The non-CVD group
included patients without hypertension, CD, congenital and acquired heart defects, left
ventricular hypertrophy, cardiomyopathy, infiltrative heart diseases, heart failure, rhythm
disorders (atrial fibrillation/flutter, ventricular arrhythmias), and cardiac conduction, in
addition to the abovementioned disorders. Anthropometric measurements, complete blood
count and biochemical analysis, electrocardiography (ECG), echocardiography (Echo), renal
ultrasonography and carotid ultrasound investigation, 24 h ambulatory blood pressure
monitoring, 24 h ECG monitoring, and metabolomics profiling were measured in all
participants.

2.3. Ethical Considerations

All experiments were approved by the Ethics Committee of I. M Sechenov First
Moscow State Medical University, Moscow, Russia (Document #05-17, April 2017) in
conformity with the ethical principles for medical research involving humans stated in the
Declaration of Helsinki. Written informed consent was signed by all the participants before
the beginning of the study.

2.4. Anthropometric Measurements

Weight was measured to the nearest 0.1 kg using an electronic scale (Seca Ltd., Ham-
burg, Germany). Height was measured using a stadiometer to the nearest 0.1 cm (Seca
Ltd., Hamburg, Germany). Body mass index (BMI) was computed using the following
formula: (weight in kg divided by height in meters)2 to classify nutritional status as
underweight or normal (BMI ≤ 25 kg/m2), overweight (BMI = 25–30 kg/m2), or obese
(BMI ≥ 30 kg/m2) [23].

2.5. Echocardiographic Examination

A two-dimensional echocardiography technique on modes M and B and using pulse-
wave and continuous-wave Doppler in the supine position using a Vivid7 Dimension/Vivid
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7 PRO echocardiograph version 6.0.x, Germany, was performed. Abnormal posterior and
septal wall thickness were defined as <10 mm [24], and abnormal left ventricular ejection
fraction (LVEF) was defined as <50% [24]. Abnormal diastolic function was defined as a
mitral E/A ratio ≤0.8 to ≥2 [22]. Twenty-four-hour ambulatory blood pressure assessment
monitoring SBP and DBP were determined in twenty-four-hour cycles (day/night) using
Spacelabs Medical portable equipment (Nuremberg, Germany) [25].

2.6. Smoking and Daily Drug Use

Smoking categorized as “yes” or “no” at the time of the medical evaluation was
defined as “yes” if smoking at least one cigarette per day. The daily use of drugs was
defined as yes or no based on the daily self-reported use of angiotensin-converting enzyme
(ACE) inhibitors, statins, and beta-blockers.

2.7. Biochemical Analyses

Blood samples were collected using ethylenediaminetetraacetic acid (EDTA) tubes
after overnight fasting. Samples were centrifuged (2000 rpm, 4 ◦C) for 20 min to sepa-
rate plasma and were stored at −80 ◦C. Blood samples were shipped to the Interclinical
Biochemical Laboratory at Sechenov University for biochemical analyses, including the
measurements of circulating glucose, creatinine, uric acid, total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),
plasma triglycerides (TGs), and thyroid hormones. Elevated glucose concentrations were
categorized as >100 mg/dL [26]. Total cholesterol, LDL-C, VLDL-C, and TG were abnormal
if >200 mg/dL, >100 mg/dL, >30 mg/dL, and >150 mg/dL, respectively [27]. Abnormal
HDL-C was defined as <40 mg/dL in men and <50 mg/dL in women [27]. Abnormal serum
creatinine was defined as >110 µmol/L for men and <45 or >90 µmol/L for women [28].
Abnormal uric acid was defined as >6.99 mg/dL and >5.6 mg/L in men and women,
respectively [27]. Glucose, serum lipids, creatinine and uric acid were determined using an
ABX Pentra 400 analyzer (Horiba ABX SAS, Montpellier, France). Extra plasma aliquots
were shipped to the Laboratory of Pharmacokinetics and Metabolomics Analysis, Institute
of Translational Medicine and Biotechnology at Sechenov University for metabolomics
profiling.

2.8. Chemicals and Reagents

Standard solutions for acylcarnitine and amino acid profiling, methanol, formic acid,
bovine serum albumin (BSA), sodium chloride, 6-hydroxynicotinic acid, 3-indole acrylic
acid, neopterin, biopterin, l-tryptophan, and ascorbic acid were received from Sigma–
Aldrich (USA). Acetonitrile was obtained from Chromasolv® (Sigma-Aldrich Chemie
GmbH, Buchs, Switzerland). Ultra-pure water was obtained from a Millipore Milli-Q
water purification system (Millipore Corporation, Billerica, MA, USA). Isotope-labeled
standard solutions of metabolites related to tryptophan catabolism were received from
Toronto Research Chemicals (Toronto, ON, Canada). Isotope-labeled standard solutions for
acylcarnitine and amino acid profiling were purchased from MassChrom Amino Acids and
Acylcarnitines Non-Derivatised 57,000 Kit (Chromsystems, Germany).

2.9. Amino Acid Determination

A quantification method for 19 amino acids was developed. Stock amino acid solutions
were prepared in a 100 mM 10% methanol–water solution. Preparation of working solutions
was performed by serial dilution of standards with 10% methanol in water. Calibration
solutions and QC samples were prepared from a surrogate matrix consisting of 2% bovine
serum albumin in PBS buffer. The sample preparation procedure was as follows: a 10 µL
aliquot of each plasma sample (calibrator or QC sample) was mixed with 50 µL of ISTD mix
solution and 40 µL of methanol for protein precipitation. Following 10 min of incubation,
the samples were centrifuged for 5 min at 13,000× g. After that, 40 µL of the received
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supernatant was transferred into an LC–MS vial and diluted with 40 µL of water for the
subsequent LC–MS/MS analysis.

Instrumental analysis was performed using a Waters Acquity I high-performance
liquid chromatography (HPLC) system coupled to a Waters TQ-S-micro triple quadruple
mass spectrometer (Waters Corp, Milford, CT, USA). Chromatographic separation was
achieved using a Waters ACQUITY BEH C18 column 1.7 µm, 100 mm × 2.1 mm (Waters,
USA). The mobile phases consisted of LC–MS-grade water with 0.1% formic acid (phase A)
and acetonitrile containing 0.1% formic acid (phase B) with a flow rate set at 0.3 mL/min.
The gradient program was as follows: 1 min: 1% B; 3 min: 20% B; 5 min: 90% B; 8 min: 90%
B; 8.1 min: 1% B; 12 min: 1% B. The column temperature was maintained at 40 ◦C. Ionization
was performed using electrospray ionization in positive mode. The determination of ions
was achieved in multiple reaction monitoring (MRM) mode (Supplementary Table S1).
Mass spectrometric conditions were as follows: dwell time: 0.019–0.025 s; capillary voltage:
1 kV; collision gas medium: nitrogen; source temperature: 150 ◦C. Preprocessing and data
import were performed in TargetLynx software (Waters, Milford, MA, USA).

Based on the received quantitative results, the GABR ([Arginine]/([Ornithine] + [Citrulline]))
ratio, AOR ratio ([Arginine]/[Ornithine]) and Fisher ratio (([Leucine] + [Isoleucine] +
[Valine])/([Tyrosine] + [Phenylalanine])) were calculated.

2.10. Asymmetric Dimethylarginine and Symmetric Dimethylarginine Quantification

Sample preparation for asymmetric dimethylarginine (ADMA) and symmetric dimethy-
larginine (SDMA) determination was performed as follows: a 100 µL aliquot of each plasma
sample (calibrator or QC sample) was mixed with 50 µL of isotopically labeled internal
standards (ISTD) solution (D7-Arg, 1.55 µM) and 40 µL of methanol in a microtiter plate for
protein precipitation. After 10 min of incubation, the microtiter plate was centrifuged for
5 min at 13,000× g. Then, 40 µL of supernatant was transferred into a vial and mixed with
40 µL of water, and 1 µL of the received solution was injected into the LC–MS/MS system.

Samples were analyzed using a Waters Acquity I HPLC system coupled to a Waters
TQ-S-micro triple quadruple mass spectrometer (Waters Corp, Milford, USA). Chromato-
graphic separation was conducted using a Waters ACQUITY BEH C18 column 1.7 µm,
100 mm × 2.1 mm (Waters, USA). The mobile phases consisted of water with 2 mM am-
monium formate and 0.015% heptafluorobutyric acid (mobile phase A) and methanol
containing 2 mM ammonium formate and 0.015% heptafluorobutyric acid (phase B). The
elution program was as follows: 1% B at 1 min, 20% B at 5 min, 90% B at 6 min, 90% B at
11 min, 1% B at 11.1 min, and 1% B at 15 min. The flow rate and column temperature were
0.3 mL/min and 40 ◦C, respectively. Mass spectrometric detection was achieved in MRM
mode (Supplementary Table S2) with a dwell time of 20 ms. Capillary and cone voltages
were 1 and 19 V, respectively. The source temperature was set at 150 ◦C, the desolvation
temperature was set at 500 ◦C, and the source and desolvation gas flow rates were 10 L/min
and 1000 L/h, respectively.

2.11. Acylcarnitine Determination

Forty-four acylcarnitines were quantified using the following method. Sample prepa-
ration was performed under the following conditions: 10 µL of each sample (calibrator or
QC) was mixed with 50 µL of ISTD solution and 40 µL of acetonitrile. The mixture was
vortexed and centrifuged at 13,000 rpm for 10 min. Furthermore, 80 µL of the received
supernatant was mixed with the same volume of water, and the resulting mixture was ready
for the subsequent UPLC–MS/MS analysis. A Waters Acquity I HPLC system coupled to a
Waters TQ-S-micro triple quadruple mass spectrometer (Waters Corp, Milford, CT, USA)
was used. Chromatographic separation was conducted using a Waters ACQUITY BEH
C18 column 1.7 µm, 100 mm × 2.1 mm (Waters, USA). Both mobile phase A (water) and
phase B (acetonitrile) contained 0.1% formic acid. The linear gradients were as follows:
1% B at 1 min, 20% B at 3 min, 90% B at 5 min, 90% B at 8 min, 1% B at 8.1 min, and 1% B at
12 min. The flow rate was 0.3 mL/min, and the column temperature was set at 40 ◦C. The
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injection volume and flow rate were 1 µL. MS detection was achieved by multiple reaction
monitoring (MRM) (Supplementary Table S3) with a dwell time of 20 ms. Capillary and
cone voltages were 1 and 19 V, respectively. The source temperature was set at 150 ◦C,
the desolvation temperature was set at 500 ◦C, and the source and desolvation gas flow
rates were 10 L/min and 1000 L/h, respectively. Metabolite concentrations were calculated
according to the signal intensity of analytes and appropriate internal standards.

2.12. Tryptophan Catabolism Metabolite Determination

The profiling of metabolites related to tryptophan catabolism included the determi-
nation of 20 analytes. Sample preparation was performed as follows: 100 µL of plasma
(calibrators or QCs) was mixed with the internal standard solution (10 µL of stock solution
of 10 µg/mL solution of 2-hydroxynicotinic acid) and 400 µL of acetonitrile. Subsequently,
the mixture was vortexed, centrifuged for 10 min at 13,000 rpm and evaporated to dry-
ness in a vacuum centrifuge evaporator at 37 ◦C. The residues were further reconstituted
with 100 µL of a solution of 0.02% ascorbic acid in 10% methanol, centrifuged, and trans-
ferred into an LC–MS vial. Five microliters of the extract was injected into the liquid
chromatograph for the subsequent LC–MS/MS analysis.

Instrumental analysis was performed using an Agilent 1200 liquid chromatograph
coupled to a 6450C tandem mass spectrometer (Agilent Technologies, Paolo Alto, CA, USA).
The chromatographic separation was achieved using a Discovery PFP HS F5 2.1 × 150, 3 µm
column (Supelco Inc, St. Louis, Missouri, USA) equipped with a Waters WAT084560 guard
column (Waters Inc. USA). The column temperature and the flow rate were set at 40 ◦C
and 0.4 mL/min, respectively. The mobile phases consisted of 0.1% formic acid aqueous
solution (phase A) and acetonitrile (phase B). The gradient program was as follows: 0 min:
1% B; 4 min: 10% B; 9 min: 90% B; 10 min: 90% B; 10.1: 1% B; 12 min: 1% B. Electrospray
ionization was operated in positive mode. The main MS parameters were as follows: gas
temperature: 300 ◦C; gas flow: 8 L/min; nebulizer gas: 20 psi; sheath gas heater: 300;
sheath gas flow rate: 10 L/min; capillary voltage: 3500 kV. Analytes were detected using
the MRM transitions presented in Supplementary Table S4.

2.13. Validation of the Methods

The presented methods were validated in accordance with the US FDA and EMA
guidelines for bioanalytical method validation (EMA, 2019; USFDA, 2018). Validation
included assessment of selectivity, linearity, precision and accuracy, recovery, matrix effect,
and stability of the method. Quality control samples were used for monitoring of the
data enrichment and instrumental performance. The calibration characteristics of the
analytes were determined based on the analysis of eight calibrators in three replicates
examined through three analytical runs. Calibration curves were fitted using a weighted
linear regression model. Inter- and intra-assay precision and accuracy were assessed using
QC samples in six replicates through three analytical runs. To assess the stability of the
methods, QC samples at low QC (LQC) and high QC (HQC) levels were utilized. Stability
was assessed in working solutions of the analytes that were stored at room temperature
(21 ± 3 ◦C); in biological samples stored in an autosampler for 24 h at 10 ± 0.5 ◦C; and
in biological samples stored at 35 ± 1 ◦C for 20 days. Recovery and matrix effects were
assessed in QC samples at low and high concentration levels. Inter- and intrabatch precision
and accuracy were assessed using QC samples in six replicates through three analytical
runs. The relative standard deviation of all tested QC samples was within 15%. The
calibration curves were linear. The lower limit of quantification for all analytes was 1 µM.
The inter- and intrabatch accuracy and precision for all of the analytes were below 5.4%
and 7.1%, respectively. The matrix effect ranged from 95.1% to 99.4%, and the recovery was
between 93.8 and 99.1%. Sample preparation for each profiling method was performed
simultaneously.
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2.14. Statistical Analysis

Statistical analysis was performed using the Stats package in Python software. The
distribution of the variables was checked with the Shapiro–Wilk test. Further analysis of
variance was performed using parametric ANOVA or the nonparametric Kruskal–Wallis
test (p value < 0.05). The correction of the p value was performed using the Benjamini–
Hochberg false discovery rate (BH-FDR) method, providing q values. Identification of
significant features was performed through the analysis of the whole data matrix, where all
values lower than 0.05 were considered significant.

The diagnostic accuracy of the selected metabolites was tested through calculation of
the areas under the curve (AUCs) obtained from receiver operating characteristic curve
analyses by comparing the non-CVD group with the CVD group (combined HTA and CAD
patients) and the non-CVD group with the HTA group. Heatmap correlation matrices were
assessed with Spearman correlations using the Seaborn package (Python) to investigate the
relationships between cardiometabolic risk factors and metabolomics profiling.

2.15. Machine Learning Methods

Machine learning (ML) methods provide an opportunity to process high-dimensional
datasets. In the current study, the dependent variable was first considered multiple (pa-
tients with CAD, patients with HTA and non-CVD individuals), while further patients
from the CVD groups were combined to build a binary classification model. Multiple
classification was performed using four different algorithms: random forest, gradient
boosting, multiple neural networks, and support vector machines. Binary classification
was performed through the application of six machine learning methods, including logistic
regression, random forest classifier, multiple neural network, gradient boosting, support
vector classifier, and bagging classifier. Hyperparameter optimization of the developed
models was performed using the sklearn GridSearchCV tool (sklearn, Python).

2.16. Logistic Regression

Logistic regression is one of the most widespread ML algorithms typically applied
for binary classifications. It aims to predict the probability of the sample being referred
to the presented groups according to the metabolite peak intensities by comparison with
logistic curves. In the case of penalized logistic regression, the model applies a built-in
stepwise variable selection process that serves to eliminate the powerless variables in the
classification of the two groups. The maximum number of iterations in the fitted models
was equal to 100, and the ‘newton-cg’ solver was used.

2.17. Random Forest Classifier

Random forest (RF) is an ML algorithm that utilizes a specific combination of tree
predictors, where each tree is constructed independently based on the random set of
observations. Thus, the distribution of the trees in the forest is the same, whereas each tree
provides the best classification outcome. The final ‘score’ of the model is derived from the
scaled summary of the tree’s outcomes. Optimization of the main hyper parameters of
the random forest classifier resulted in the following hyper parameters: [‘bootstrap’: false;
‘maximum depth’: 120; ‘maximum features’: ‘sqrt’; minimum samples leaf’: 1; ‘minimum
samples split’: 3; ‘n_estimators’: 100 for multiclass classification] and [‘bootstrap’: false;
‘maximum depth’: 3; ‘maximum features’: ‘sqrt’; minimum samples leaf’: 3; ‘minimum
samples split’: 3; ‘n_estimators’: 200 for binary classification].

2.18. Multiple Neural Networks

The multiple neural network algorithm was released through the utilization of a
multilayer perceptron classifier (MLPC). MLPC is based on the backpropagation algorithm
that computes the gradient of the loss function based on the weights of the network of a
single input–output case. The hyperparameters utilized for this algorithm in multiclass
classification included ‘activation’: ‘relu’; ‘alpha’: 0.1; ‘max_iter’: 150; ‘solver’: ‘lbfgs’. The
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binary classification parameters were as follows: activation: ‘relu’; alpha: 1e-5; maximum
iteration: 2000; solver: ‘sgd’.

2.19. Gradient Boosting

Unlike random forest, where trees are formed independently, a classification algorithm
using gradient boosting is constructed such that each model compensates for errors of
the previous model. In this case, target outcomes are generated on the basis of the error
gradient in accordance with the prediction. To apply the gradient boosting classifier to the
multiple classification problem, the following hyperparameters were tuned: maximum
depth: 5; minimum samples leaf: 5; minimum samples split: 50; n_estimators: 15. At
the same time, binary classification parameters were as follows: maximum depth: 13;
maximum features: ‘auto’; minimum samples leaf: 1; minimum samples split: 4.

2.20. Support Vector Machine

The application of the support vector machine (SVM) algorithm for classification
purposes is based on the principle of structural risk minimization that serves to identify
the lowest-probability error. The SVM classification method is applicable for nonlinear
classification issues by using a kernel function and is relatively insensitive to the high
dimensionality of the data in comparison to several other ML methods [29]. The utilized
algorithm for multiple classification was performed using the following hyperparameters:
C = 2, decision_function_shape = ‘ovo’, probability = True.

2.21. Bagging Classifier

Bagging classification is a machine learning approach released as an ensemble of
meta-estimators that train basic classifiers using random subsets of the original dataset. As
a result, the final prediction is formed according to the predictions of each fitted subset.
Therefore, the bagging classifier allows a decrease in the variance of the trained classifier
through the application of randomization during its construction procedure. The bag-
ging algorithm was used for classification of the data in this study through utilization
of the following parameters: number of estimators, 15; maximum samples, 1; maximum
features, 1.

To assess the power of different models aiming to determine the CVD state, the
following metrics were applied: values of the confusion matrix, accuracy, AUC-score,
Cohen’s Kappa, Matthew’s correlation coefficient, and log loss. Quality of the binary
classification was assessed using values of the confusion matrix, accuracy, AUC-score,
precision and recall, and F1-score. Confusion matrix values comprised TP (patients correctly
diagnosed as having CVD); FP (non-CVD individuals incorrectly diagnosed as patients);
TN (non-CVD individuals correctly found as non-CVD); FN (CVD patients incorrectly
defined as non-CVD individuals).

3. Results

The present study aimed to assess the meaningful metabolites that could provide
accurate separation of patients with HTA, patients with CAD, and non-CVD individu-
als. The analysis was performed using targeted metabolomics profiling of the following
metabolic panels: amino acids, methylarginines, acylcarnitines, and tryptophan catabolism
intermediates.

3.1. General Characteristics of the Participants

Nearly half of the participants in each group were female. It is worth noting that the
CVD groups [62 (55–69) years in HTA and 65 (59–71) years in CAD] were older (p < 0.001)
than the non-CVD group [48.5 (43–51) years]. Patients in the CVD groups had a higher BMI
(p < 0.05) than those in the non-CVD group [31 (29–34) kg/m2 and 30 (26–34) kg/m2 in the
HTA and CAD groups versus 26.5 (24.7–28.0) kg/m2 in the non-CVD group]. Posterior
wall thickness, septal thickness, and E/A ratios were significantly altered (p < 0.001) when
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compared to the non-CVD group. Systolic blood pressure at day and night according to
ambulatory blood pressure monitoring was higher in the HTA group than in the non-CVD
group, as expected. Plasma glucose levels were significantly higher (p < 0.05) in the CVD
groups than in the non-CVD group. It is important to note that 53.5%, 47.5%, and 51.5%
of the patients belonging to the HTA and CAD groups were treated with ACE inhibitors,
beta-blockers, and statins, respectively (Table 1).

Table 1. General characteristics of participants.

Variable Cut
Points

Non-CVD
Group
(n = 27)

Abnormal
%

CVD Group (n = 109) p Value

HT (n = 61) Abnormal
% CAD (n = 48) Abnormal

%

Non-
CVD

vs. HT

Non-CVD
vs. CAD

HT vs.
CAD

Gender (% w) 50 52 58
Age, years 48.5 (43–51) 62 (55–69) 65 (59–71) <0.001 <0.001 <0.05
BMI, kg/m2 >30 26.5 (24.7–28.0) 7 31 (29–34) 55 30 (26–34) 44 <0.01 <0.01 NS
Posterior wall
thickness, mm (3C) >10 m 10 (9–10) 0 11 (11–12) 77 11 (10–13) 54 <0.01 <0.01 NS

>9 w 8.5 (8–10) 14 10 (10–12) 81 10 (10–12) 73 <0.01 <0.01 NS
Septal thickness >10 m 10 (9–10) 0 11 (10–12) 70 11 (10–13) 57 <0.01 <0.01 NS

>9 w 8.5 (8–10) 14 10 (9–11) 71 11 (9–12) 50 <0.05 <0.05 NS
LVEF, % <50 63 (59–66) 0 60 (57–62) 0 57 (50–60) 14 NS <0.001 <0.001
Diastolic function,
Mitral E/A ratio ≤0.8 1.2 (1.1–1.3) 0 0.8 (0.7–1.1) 50 0.7 (0.6–1.0) 40 <0.001 <0.001 NS

SBP day, mmHg >135 123 (120–130) 3.5 135 (123–144) 31 130 (123–141) 14 <0.01 NS NS
SBP night, mmHg >120 103 (99–107) 3.5 121 (111–131) 34 124 (104–134) 12 <0.001 <0.05 NS
DBP day, mmHg >85 77 (73–81) 10.7 84 (74–90) 33 80 (77–88) 8 NS NS NS
DBP night, mmHg >70 69 (67–75) 25 72 (65–82) 33 71 (69–77) 14 NS NS NS
Total cholesterol,
mg/dL >200 203 (175–223) 43 210 (165–231) 55 150 (151–220) 32 NS NS NS

LDL-C, mg/dL >100 101 (85–122) 43 124 (93–142) 56 74 (75–140) 40 NS NS NS
VLDL-C, mg/dL >30 21.4 (14–34) 25 22 (18–33) 25 21 (15–27) 20 NS NS NS
HDL-C, mg/dL <40 m 63 (59–75) 0 57 (48–62) 7 50 (43–71) 7 NS NS NS

<50 w 62 (61–82) 0 55 (48–67) 16 55 (41–64) 23 NS NS NS
TG, mg/dL >150 103 (85–142) 10.7 118 (94–176) 36 104 (77–138) 16 NS NS NS
Plasma glucose,
mg/dL

100–
125 92 (87–96) 99 (904–106) 103 (97–111) <0.05 <0.001 NS

Serum creatinine,
µmol/L

>110
m 94 (93–101) 14 90 (81–96) 13 95.6

(88.0–109.8) 18 NS NS NS

>90 w 88 (85–100) 36 93 (84–107) 48 94 (78–111) 59 NS NS NS

Uric acid, mg/dL >6.99
m 7.2 (6.3–7.4) 43 6.99

(6.24–7.65) 47 6.42
(5.54–7.18) 24 NS NS NS

>5.6 w 5.4 (5.11–5.98) 36 7.1 (5.6–8.0) 65 8.06
(5.95–0.67) 56 NS <0.01 NS

Smoking (% yes) 3.5 17 24
GFR, CKD-EPI
(mL/min/1.73 m2) 71.9 (65.9–77.9) 69.7 (66–73.3) 59.2

(54.4–64.0) NS <0.01 <0.01

ACE inhibitor (%
yes) 3.5 53 54

Statins (% yes) 0 41 62
Angiotensin
receptor blockers (%
yes)

0 24.2 8.7

Calcium channel
blocker (% yes) 0 24.2 23.9

Beta-blockers (%
yes) 0 33 62

Diuretics (%yes) 0 33.9 43.5
Hypoglycemic
Medications (% yes) 0 6.5 15.2

Abbreviations: w = women, m = men, NS = non-significant, GFR = glomerular filtration rate.

3.2. Heatmap Correlation Matrices

To overview associations between the measured metabolomics profiles with clinical
cardiological markers, consequent heatmaps were plotted, showing consistent correlation
(p < 0.05) between cardiometabolic risk factors versus the metabolites (Figure 1a–c). It is
important to highlight that LVEF, LDL-C, HDL-C, and uric acid were the most consistent
cardiometabolic parameters to be associated with the analyzed metabolites. Addition-
ally, we built correlation heatmaps separately for each group of patients (Supplementary
Materials, Figures S1–S3).
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Figure 1. Heatmap correlation matrices between plasma metabolites and cardiometabolic risk factors.
(a) Amino acids and methylarginines, (b) acylcarnitines, and (c) tryptophan catabolism metabolites.
Each colored square shows a significant Spearman correlation (p < 0.05). Red squares depict positive
correlations, whereas blue squares are indicative of negative correlations.
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3.3. Discriminated Biomarkers between the Studied Groups

Discrimination of the metabolites that significantly separated the non-CVD, HTA
and CAD groups of the patients was performed using univariate analysis with BH-FDR
correction. Moreover, AUC ROC values were calculated to characterize the diagnostic
accuracy of each metabolite through the comparison of the non-CVD group versus CVD
group (HTA + CAD) and, precisely, the non-CVD group versus the HTA group. Thus,
Tables 2–4 represent the extracted metabolites related to amino acid, acylcarnitine, and
tryptophan metabolism intermediate profiles, respectively. The tables include information
on the direction of the alteration along the progression of CVDC, raw p value, q value
(calculated after the FDR correction), AUC ROC values for non-CVD versus CVD, and,
separately, non-CVD versus HTA groups.

Table 2. Meaningful metabolites of amino acid profiling selected based on the multiple hypothesis
comparison with FDR correction.

Metabolite Direction Raw p-Value q-Value
AUC

(Non-CVD
vs. CVD)

AUC
(Non-CVD
vs. HTA)

Fischer ratio Increased <0.01 <0.01 0.70 0.67
Isoleucine Increased <0.01 <0.01 0.62 0.55

Phenylalanine Increased <0.00 <0.01 0.66 0.59
ADMA Increased 0.002 <0.01 0.71 0.67
SDMA Increased <0.01 <0.01 0.65 0.60

ADMA/Arginine ratio Increased 0.011 0.02 0.72 0.71
Ornitine Increased 0.013 0.02 0.64 0.61
Glycine Decreased 0.017 0.02 0.68 0.73
Leucine Increased 0.012 0.020 0.61 0.56
Proline Increased 0.014 0.022 0.65 0.61
Alanine Increased 0.019 0.026 0.66 0.63
Lysine Increased 0.028 0.03 0.64 0.61

Tyrosine Increased 0.028 0.03 0.66 0.64
Aor Decreased 0.03 0.03 0.61 0.66

Methionine Increased 0.04 0.04 0.54 0.51

Table 3. Meaningful metabolites of acylcarnitine profiling selected based on the multiple hypothesis
comparison with FDR correction.

Metabolite Direction Raw p-Value q-Value AUC (Non-CVD vs.
CVD)

AUC (Non-CVD vs.
HTA)

Adipoylcarnitine Increased <0.00001 <0.001 0.61 0.51
Carnitine Increased <0.0001 <0.001 0.75 0.73

Propionylcarnitine Increased <0.0001 <0.001 0.77 0.75
Butyrylcarnitine Increased <0.0001 <0.001 0.74 0.70

Isovalerylcarnitine Increased <0.0001 <0.001 0.73 0.70
Acetylcarnitine Increased <0.01 <0.01 0.71 0,73

Hexanoylcarnitine Increased <0.01 <0.01 0.72 0.73
Hydroxyisovalerylcarnitine Increased <0.01 <0.01 0.64 0.60
Hydroxytetradecanoylcarnitine Increased <0.01 <0.01 0.77 0.77

Palmitoylcarnitine Increased <0.01 <0.01 0.73 0.75
Octenoylcarnitine Increased 0.019 0.026 0.67 0.69

Oleoylcarnitine Increased 0.015 0.027 0.68 0.66
Linoleylcarnitine Increased 0.021 0.027 0.66 0.65

Hexadecenoylcarnitine Increased 0.028 0.033 0.68 0.68
Decenoylcarnitine Increased 0.03 0.03 0.66 0.66
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Table 4. Meaningful metabolites of tryptophan conversion profiling selected based on the multiple
hypothesis comparison with FDR correction.

Metabolite Direction Raw
p-Value q-Value

AUC
(Non-CVD
vs. CVD)

AUC
(Non-CVD
vs. HTA)

Kynurenine/Tryptophan ratio Increased <0.00001 <0.0001 0.77 0.72
Serotonin Decreased <0.0001 <0.001 0.68 0.61

Indole-3-acetic acid Increased <0.0001 <0.001 0.73 0.68
Kynurenine Decreased <0.001 <0.001 0.71 0.66

Kynurenic acid Increased <0.001 <0.01 0.68 0.61
HIAA Increased <0.01 <0.01 0.68 0.62

Quinolinic acid Increased 0.012 0.020 0.68 0.67
Indole-3-carboxaldehyde Increased 0.015 0.023 0.59 0.52

Anthranilic acid Increased 0.032 0.034 0.66 0.65
Tryptophan Decreased 0.032 0.034 0.65 0.62

Indole-3-butyric acid Increased 0.049 0.049 0.65 0.64

Amino acid and methylarginine concentrations were consistently elevated (p < 0.05)
among the three analyzed groups. The only amino acids that presented a decrease (p < 0.05)
in concentrations with the progression of the disease were glycine and tryptophan (Table 2).
Notably, the Fischer ratio, glycine, ADMA, and ADMA/arginine ratio presented AUCs
above 0.7.

All significantly different (p < 0.05) acylcarnitines belonging to short-, medium- and
long-chain subgroups presented increased concentrations with the progression of the
disease (Table 3). Carnitine, short-chain acylcarnitines, hydroxytetradecanoylcarnitine,
and palmitoylcarnitine showed AUC values higher than 0.7, reflecting high individual
diagnostic power.

Metabolites related to kynurenine and indole metabolic pathways had elevated trends
across the progression of the disease, with AUCs higher than 0.7. At the same time,
the serotonin pathway showed a declining trend with a corresponding accumulation of
HIAA (Table 4). Quantitative levels of the analyzed metabolites are presented in the
supplementary material (Table S5).

3.4. Application of Machine Learning Modeling for Prediction of CVD

The development of the predictive CVD ML model was based on the received profiling
data. To overview the distribution of the variables, a principal component analysis (PCA)
of the three groups (non-CVD group, HTA and CAD) indicated the absence of any object
grouping (Supplementary Materials, Figure S4). Therefore, to find the most appropriate
ML method, we first performed supervised multiclass classification on the presented three
classes (non-CVD group, HTA and CAD) using the four most common multiclass classifiers:
random forest, artificial 5 neural networks, gradient boosting and support vector machine.
According to the conducted assessment, the random forest classifier showed the highest
classification power, with an accuracy equal to 0.8 (Figure 2).

Currently, calculation of the clinical relevance of the ML classification model is typically
represented not only through the accuracy assessment but also using additional metrics
that may better indicate the efficacy of the model (Table 5). Error matrix plots of the other
applied methods are presented in the Supplementary Materials, Figure S4.
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Table 5. Comparison of the main metric characteristics for the applied classification methods.

Accuracy F1 Score Cohen’s Kappa Log_Loss AUC Score
(One-vs.-All)

Matthews
Corr Coef

Random forest classifier 0.80 0.80 0.68 0.67 0.93 0.69
MLP classifier 0.73 0.72 0.55 0.72 0.87 0.57

Gradient classifier 0.66 0.61 0.40 0.68 0.83 0.47
Support vector classifier 0.76 0.75 0.60 0.61 0.88 0.61

Application of the feature importance function resulted in selection of 12 main features,
including kynurenine/tryptophan ratio, proline, carnitine, indole-3-acetic acid, hydroxyte-
tradecanoylcarnitine, octenoylcarnitine, ADMA/Arg ratio, propionylcarnitine, ornithine,
adipoylcarnitine, butyrylcarnitine, alanine, and 5-hydroxytryptophan (Supplementary
Materials, Figure S5). The combination of these metabolites could form a potential panel
for stratifying patients with CAD, HTA, and non-CVD individuals.

Based on the results obtained through multiclass classification, we also applied a
binary classification approach among the non-CVD and CVD groups. In this case, six ML
algorithms, including logistic regression, random forest classifier, multiple neural network,
gradient boosting, support vector classifier, decision tree classifier, and bagging classifier,
were applied for the selection of the most appropriate approach. The comparison was
performed based on the received quality metrics. The summary metrics of predictive
performance for the analyzed models are presented in Table 6. To visualize the effectiveness
of the applied classification methods, the appropriate AUCROCs were built (Figure 3a).

Table 6. Quality metrics of the applied ML algorithms in the classification of CVD patients and
healthy individuals.

Algorithm/Metric TN FP FN TP Accuracy AUC-Score Precision Recall F1

Logistic Regression 3 4 5 23 0.74 0.71 0.84 0.74 0.75

Support vector classifier 0 7 0 28 0.80 0.78 0.80 0.8 0.71

Random Forest Classifier 4 3 0 28 0.91 0.91 0.90 0.91 0.90

MLP Classifier 4 3 4 24 0.8 0.81 0.88 0.8 0.8

Gradient Boosting Classifier 1 6 1 27 0.80 0.86 0.82 0.8 0.75

BaggingClassifier 0 7 0 28 0.8 0.58 0.8 0.8 0.71
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According to the results, the random forest algorithm showed the best predictive qual-
ity in the classification of patients from the CVD and non-CVD groups (AUCROC = 0.91).
Based on the SHAP-based feature importance of the RF model, 10 main features were
selected, as presented in Figure 3b.



Metabolites 2022, 12, 1185 15 of 22

4. Discussion

In the present study, we explored the levels of plasma metabolites measured through
targeted metabolomics profiling of patients with CAD, patients with HTA, and non-CVD
individuals with the aim of exploring the associations of these metabolites with the pro-
gression of the cardiovascular disease continuum.

It is worth noting that through the comparison of the results related to cardiometabolic
risk factor patterns of total cholesterol, LDL-C, and HDL-C presented similarities, while
VLDL-C presented a descending trend. Presumably, VLDL-C may have more valuable
prognostic value than other lipidogram compartments.

Inflammation plays one of the key roles at all stages of CVD. Likewise, intermediates
of the tryptophan catabolism pathway were previously reported to be associated with differ-
ent stages of CVDC and are therefore predictors of certain acute outcomes, mostly induced
through inflammatory processes [30]. Generally, tryptophan is involved in three major
metabolic pathways, including the serotonin production pathway, kynurenine pathway,
and indole pathway. Figure 4 represents intermediates of tryptophan catabolism that were
significantly changed in HTA and CAD patients in comparison to non-CVDs. Consistently,
tryptophan, and serotonin plasma concentrations were significantly decreased during CVD
progression, suggesting the acceleration of their degradation during inflammation induced
by cardiovascular dysregulation. However, increased concentration levels of HIAA indi-
cated its accumulation in blood in CVD patients. The major changes among the considered
groups were mainly related to the kynurenine metabolic pathway, which was characterized
by significant alterations during early CVDC. Previously, it was found that fatal cardio-
vascular events have been directly connected with increased conversion of tryptophan to
kynurenine [31]. Acceleration of this conversion has a strong association with oxidative
stress, inflammation, and immune activation. In this regard, the kynurenine to tryptophan
ratio has previously shown a high predictive power for cardiovascular morbidity, including
acute coronary events in patients without preexisting coronary artery disease [32,33]. In
the present study, we found an elevated trend of the kynurenine/tryptophan ratio across
CVD progression, underlining the assumed association of inflammation and early CVD
outcomes. Additionally, significantly elevated plasma trends of kynurenic acid, anthranilic
acid, and quinolinic acid were also found during the progression of CVDC, which sup-
ported the hypothesis of kynurenine pathway activation during cardiovascular disorders.
Notably, association of the same elevating trend was previously reported in patients with
arterial hypertension compared to non-CVD individuals, where the authors connected
these results with hypertensive target organ damage [34]. Overall, we can conclude that
the concentration of metabolites related to the kynurenine pathway had elevated trends in
CVD groups of patients, reflecting the acceleration of kynurenine pathway activity during
the early progression of CVD.

The metabolites that most significantly differentiated the considered groups were
related to arginine metabolism intermediates, predominantly comprising the urea cycle
pathway. L-arginine is the main substrate of nitric oxide synthase (NOS) for the production
of nitric oxide (NO), which is involved in regulatory mechanisms of the cardiovascular
system, especially in modulation of vascular tone [35]. In comparison to symmetrical
dimethylarginine, asymmetrical dimethylarginine inhibits endogenous nitric oxide syn-
thase and therefore decreases the AOR ratio; thus, increasing ADMA levels suggests the
inhibition of nitric oxide production. However, Pope et al. [36] assumed that the associ-
ations between arginine metabolites and CVD risks are independent of NO production
because the enzymes involved in the metabolism of methylated arginines are affected by
inflammation and oxidative stress. Moreover, it should be noted that the concentration of
methylated arginine in blood directly correlates with the age of the patients, thereby affect-
ing the interpretation of the received results. The ADMA-to-arginine ratio may also be taken
into consideration as a potential biomarker of early-stage CVDC, in which altered levels
were previously identified to be associated with the risks of arterial hypertension [37,38].
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In addition to glycine, amino acid concentrations have shown a slight increase during
CVD progression (Figure 5). In our experiments, significant differences in branched-chain
amino acid (BCAA) levels were observed for leucine and isoleucine. Numerous studies
have shown strong associations of plasma free amino acids [BCAAs (isoleucine, leucine,
and valine), aromatic amino acids, alanine, and proline] with visceral obesity, metabolic
disorders, dyslipidemia, hypertension obesity, and type 2 diabetes mellitus [12,39,40]. In
particular, increases in BCAA levels in the blood and heart tissues have been associated
with the development of cardiovascular and metabolic diseases [41–43]. The aromatic
amino acids phenylalanine and tyrosine take part in the catabolism of both acetyl-CoA
and fumarate. The authors in [44] previously linked an increase in the concentration levels
of phenylalanine with CVD using four population cohorts. Interestingly, three amino
acids (arginine, ornithine, and citrulline) were inversely proportional to key factors of
metabolic syndrome: BMI, LDL-C, total cholesterol, and glucose. Moreover, they were
directly connected with a positive factor, VLDL-C, as a positive factor. It should be noted
that these amino acids comprise the ornithine cycle responsible for ammonia utilization.
Indirectly, the ornithine cycle supports the Cori cycle, which utilizes alanine/lactate and is
therefore part of energy metabolism. This finding is supported by the increase in alanine
concentration levels in the CVD groups that corresponded to the slowdown of its utilization.
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As intermediates of fatty acid oxidation, circulating acylcarnitines have been proposed
to be connected with the development of CVDs [45,46]. Thus, many previous studies
have linked trends of short-chain [46], medium-chain [46–49], and long-chain [45,46] acyl-
carnitines with different stages of CVD progression. In our study, significantly different
acylcarnitines presented increased concentrations with the progression of CVD, including
short-, medium- and long-chain acylcarnitines. It should be noted that not surprisingly, in
our study, the patients with CVDs presented a higher BMI than the non-CVD individuals.
An accumulation of incompletely oxidized fatty acids in the mitochondria is known as
“mitochondrial overload” and, when accompanied by reduced efficiency of glucose dis-
posal, has been reported in obesity [50]. This incomplete fatty acid oxidation is expected
to result in the accumulation of mitochondrial-derived acyl-CoA and therefore elevate
acylcarnitines [50,51]. The alterations in plasma circulating acylcarnitines may be due
to impaired cardiac metabolism connected to obesity. Figure 6 summarizes metabolic
pathways and corresponding boxplots of the significantly altered metabolites related to
amino acid class.
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Data analyses based on univariate analysis are limited and may not fully provide the
ability to stratify patients at early stages of CVDC. Application of computational modeling
serves for the identification of nonlinear associations among the received metabolomics
profiles of the patients. Thus, supervised ML algorithms today serve as superior emerging
tools for the prediction of disease stratifications using metabolomics data and are suitable
for preliminary postulates of potential biomarkers. ML may model and imitate complex
relationships between existing metabolomics changes and predictors that serve to improve
early CVD risk stratification. Application of machine learning methods aims to perform
an integration assessment of all quantified metabolites resulting in better stratification of
patients. While any alteration in concentration level of an individual metabolite could not
be considered as the reliable biomarker due to its great concentration biological variability,
the presented ML-based approach serves as a more accurate identifier of the disease.

The heterogeneity of cardiological disorders at early stages of CVDC is expected in
future investigations, indicating an increased need for the development of multiclass pre-
diction models. However, a relatively small number of approaches have been focused on
multiple CVD stage classes using metabolomics profiling data. At the same time, it should
be noted that multiclass classification problems are more challenging than binary classifica-
tion methods. Thus, several classification algorithms applied for binary classification tasks
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are not always appropriate for binary cases. Most likely, such approaches apply decom-
position of the multiclass problem into a number of paired binary subclassification cases,
and further combination of these subclassifications results in increased computational time
and decreased interpretability of the model decision. Additionally, it should be mentioned
that typical for omics studies, the problem of ‘small n, large p’ becomes more crucial in
multiclass classification, where subclassification leads to the formation of smaller sample
size classes.

According to the study design, we compared three groups of individuals–non-CVD,
HTA and CAD groups. Thus, initially we decided to assess the separability of the analyzed
groups of patients using a supervised multi-class classification method. There are few
reports on the application of multi-class metabolomics approach in cardiology. Despite the
controversial quality metrics received for the applied multiclass algorithms, the predictivity
accuracy of the random forest classifier equal to 0.8 was relatively acceptable and may be
considered as the potential approach for its application in multiclass metabolomics studies.

For the best model fitting, the main hyperparameters were selected using the Grid-
SearchCV approach (scikit-learn package, Python). This approach allowed optimization
and provided the best combination of hyperparameters for each of the tested algorithms.
In addition, correct evaluation of the ML model performances was reached through the
application of a five-fold cross-validation approach for each of the models.

In this regard, to stratify patients with HTA, CAD, and non-CVD individuals, we
compared four multiclass classification models, where the random forest algorithm showed
the best predictive quality. The error matrix provided clear discrimination of non-CVD
patients, while classification of HTA and CAD patients had several misclassification errors.
This phenomenon may appear due to non-strict boundaries between the CVD groups of
the patients. However, the prediction power of the random forest multiclass model was
moderately suitable for the separation of the presented groups of patients (accuracy equal
to 0.80). Future studies consisting of larger groups of disease patients may provide more
accurate predictions.

Additionally, we performed a binary classification method for separating CVD and
non-CVD individuals. The classification results across six classifiers showed the strong
possibility of the features differentiating CVD and non-CVD individuals. Thus, the clas-
sification performance of the fitted models based on different metrics also indicated that
random forest (RF) may provide the best quality and could be chosen as an alternative
tool for the identification of CVD patients based on targeted metabolomics profiling. The
developed RF models for multivariable and binary classification showed significant quality
in separating the patients from the considered groups. The most variable metabolites
formed potential metabolomics panels that may be utilized for the preliminary prediction
of early stages of CVD based on targeted metabolomics profiling.

The present study was based on the quantification of plasma metabolites in well-
discriminated and characterized individuals. However, we acknowledge the lack of follow-
up of the patients and statistical analyses performed comparing groups from a cross-
sectional study design. It would be ideal to consider stronger study designs, such as
prospective cohorts or randomized controlled trials, in the future. Compared to other
metabolomics profiling methods, our sample size was not small, but it would be ideal to
have a larger sample size to increase the power to detect significant differences.

Nevertheless, our study provides relevant information that can serve translational
medicine in cardiovascular risk. Multiple metabolites presented a p value > 0.05 to discrim-
inate groups. In comparison to previously published large-scale metabolomics studies, the
present experiment is characterized by strict inclusion criteria, resulting in the exclusion of
patients with any inflammatory conditions, as well as oncological and endocrine disorders.
This study design provides an opportunity to identify metabolomics alterations directly
related to the early stages of CVD.

Correlation matrices highlighted cardiometabolic risk factors such as LVEF, LDL-C,
HDL-C and uric acid to be significantly correlated with multiple metabolites. One key



Metabolites 2022, 12, 1185 19 of 22

aspect to consider in the future is to calculate the proper cut points for the concentra-
tions of the metabolites to discriminate among groups. In future studies, based on more
robust study designs, it would be interesting to test whether the metabolites found to
be discriminated and associated with cardiometabolic risk in our study can be used as
biomarkers. This metabolomics profiling contributes to the identification of metabolite
changes associated with a higher severity of cardiovascular disorders and shows promise
as an early indicator of cardiovascular risk. Moreover, Future studies should also include
the assessment of the presented profiles in urine.

In conclusion, the present study provides new findings concerning the significance
of plasma metabolites for the prediction of early stages of the CVD continuum. The
comparison of different ML algorithms enabled the models based on RF algorithms to
provide the best predictive power for the stratification of early CVDC patients based on
targeted metabolomics profiling. The presented approach offers prospective starting point
for exploring and summarizing the complexity of the interrelated metabolites in cardiology.
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Heatmap correlations matrices between plasma metabolites related to amino acid profiling and
cardiometabolic risk factors by participant groups: a. Non-CVD individuals; b. Patients with HTA; c.
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