A Validated HPLC–Diode Array Detection Method for Therapeutic Drug Monitoring of Thiopurines in Pediatric Patients: From Bench to Bedside
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Stock and Working Solutions
2.3. Calibration and Quality Control Samples
2.4. Blood Sample Collection
2.5. Sample Preparation
2.6. Instrumentation
2.7. Data Analysis
3. Results
3.1. Method Development
3.2. Method Validation
3.2.1. Selectivity and Specificity
3.2.2. Linearity
3.2.3. Sensitivity
3.2.4. Accuracy and Precision
3.2.5. Carryover
3.2.6. Matrix Effect
3.2.7. Stability
3.3. Application to Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Rheenen, P.F.; Aloi, M.; Assa, A.; Bronsky, J.; Escher, J.C.; Fagerberg, U.L.; Gasparetto, M.; Gerasimidis, K.; Griffiths, A.; Henderson, P.; et al. The Medical Management of Paediatric Crohn’s Disease: An ECCO-ESPGHAN Guideline Update. J. Crohn’s Colitis 2020, 15, 171–194. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Ruemmele, F.M.; Orlanski-Meyer, E.; Griffiths, A.M.; de Carpi, J.M.; Bronsky, J.; Veres, G.; Aloi, M.; Strisciuglio, C.; Braegger, C.P.; et al. Management of Paediatric Ulcerative Colitis, Part 1: Ambulatory Care—An Evidence-based Guideline from European Crohn’s and Colitis Organization and European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J. Craniofacial Surg. 2018, 67, 257–291. [Google Scholar] [CrossRef] [PubMed]
- Toksvang, L.N.; Lee, S.H.R.; Yang, J.J.; Schmiegelow, K. Maintenance therapy for acute lymphoblastic leukemia: Basic science and clinical translations. Leukemia 2022, 36, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Franca, R.; Stocco, G.; Favretto, D.; Giurici, N.; Del Rizzo, I.; Locatelli, F.; Vinti, L.; Biondi, A.; Colombini, A.; Fagioli, F.; et al. PACSIN2 rs2413739 influence on thiopurine pharmacokinetics: Validation studies in pediatric patients. Pharm. J. 2019, 20, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Soldin, O.P.; Soldin, S.J. Review: Therapeutic drug monitoring in pediatrics. Ther. Drug Monit. 2002, 24, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephenson, T. How children’s responses to drugs differ from adults. Br. J. Clin. Pharmacol. 2005, 59, 670–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korth-Bradley, J.M. The Path to Perfect Pediatric Posology-Drug Development in Pediatrics. J. Clin. Pharmacol. 2018, 58 (Suppl. 10), S48–S57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Lama, Y.; Gisbert, J.P. Monitoring thiopurine metabolites in inflammatory bowel disease. Frontline Gastroenterol. 2016, 7, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, A.; Ooi, S.-Y.J.; Lynch, K.D.; Parthasarathy, N.; Bishara, M.; Gounder, M.; Grafton, R.; Leach, P.; Bampton, P.; Sechi, A.; et al. Proactive Metabolite Testing in Patients on Thiopurine May Yield Long-Term Clinical Benefits in Inflammatory Bowel Disease. Dig. Dis. Sci. 2022. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.; Estevinho, M.M.; Dias, C.C.; Ministro, P.; Kopylov, U.; Danese, S.; Peyrin-Biroulet, L.; Magro, F. Thiopurines’ Metabolites and Drug Toxicity: A Meta-Analysis. J. Clin. Med. 2020, 9, 2216. [Google Scholar] [CrossRef] [PubMed]
- Dervieux, T.; Boulieu, R. Simultaneous determination of 6-thioguanine and methyl 6-mercaptopurine nucleotides of azathioprine in red blood cells by HPLC. Clin. Chem. 1998, 44, 551–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cangemi, G.; Barabino, A.; Barco, S.; Parodi, A.; Arrigo, S.; Melioli, G. A validated HPLC method for the monitoring of thiopurine metabolites in whole blood in paediatric patients with inflammatory bowel disease. Int. J. Immunopathol. Pharmacol. 2012, 25, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Lucafò, M.; Stocco, G.; Martelossi, S.; Favretto, D.; Franca, R.; Malusà, N.; Lora, A.; Bramuzzo, M.; Naviglio, S.; Cecchin, E.; et al. Azathioprine Biotransformation in Young Patients with Inflammatory Bowel Disease: Contribution of Glutathione-S Transferase M1 and A1 Variants. Genes 2019, 10, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, U.; Heinkele, G.; Angelberger, S.; Schaeffeler, E.; Lichtenberger, C.; Jaeger, S.; Reinisch, W.; Schwab, M. Simultaneous quantification of eleven thiopurine nucleotides by liquid chromatography-tandem mass spectrometry. Anal. Chem. 2012, 84, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- De Beaumais, T.A.; Medard, Y.; Amblard, O.; Goldwirt, L.; Simonin, M.; Martinez Vinson, C.; Petit, A.; Jacqz-Aigrain, E. Improved HPLC Quantification of 6-Mercaptopurine Metabolites in Red Blood Cells: Monitoring Data and Literature Analysis. Int. J. Mol. Sci. 2022, 23, 11885. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Z.; Raja, A.R.A.; Makpol, S.; Wee, E. Therapeutic monitoring of thiopurine metabolites: Validation of an HPLC method and preliminary findings from a small cohort of Malaysian patients with inflammatory bowel disease. Sains Malays. 2022, 51, 1847–1859. [Google Scholar] [CrossRef]
Min | A (%) | B (%) |
---|---|---|
0.00 | 100 | 0 |
13.50 | 85.1 | 14.9 |
14.00 | 82.2 | 17.8 |
15.00 | 82.2 | 17.8 |
15.50 | 100 | 0 |
18.00 | 100 | 0 |
Calibration Standard TGN | Theoretical Concentration (nM) | Mean of Calculated Concentration (nM) | Standard Deviation of Calculated Concentration (nM) | Intra-Day Accuracy (%) | Intra-Day Precision (CV%) |
---|---|---|---|---|---|
1° CALIBRATION CURVE R2 = 0.9998 y = 19,128x + 118.62 | |||||
CAL1 | 300 | 354.75 | 24.14 | 81.75 | 6.81 |
CAL2 | 600 | 637.06 | 10.15 | 93.82 | 1.59 |
CAL3 | 1000 | 996.17 | 25.09 | 100.38 | 2.52 |
CAL4 | 2000 | 1960.21 | 229.95 | 101.99 | 11.73 |
CAL5 | 3000 | 3009.66 | 115.09 | 99.68 | 3.82 |
CAL6 | 6000 | 5885.65 | 229.91 | 101.91 | 3.91 |
CAL7 | 12,000 | 12,056.91 | 54.62 | 99.53 | 0.45 |
2° CALIBRATION CURVE R2 = 0.9995 y = 19,500x + 158.46 | |||||
CAL1 | 300 | 358.18 | 0.39 | 80.61 | 0.11 |
CAL2 | 600 | 650.69 | 11.95 | 91.55 | 1.84 |
CAL3 | 1000 | 1029.91 | 46.86 | 97.01 | 4.55 |
CAL4 | 2000 | 1991.30 | 90.18 | 100.44 | 4.53 |
CAL5 | 3000 | 2790.85 | 104.91 | 106.97 | 3.76 |
CAL6 | 6000 | 6073.07 | 151.74 | 98.78 | 2.50 |
CAL7 | 12,000 | 12,006.16 | 40.88 | 99.95 | 0.34 |
3° CALIBRATION CURVE R2 = 0.9977 y = 23,470x + 21.831 | |||||
CAL1 | 300 | 270.05 | 39.02 | 109.98 | 14.45 |
CAL2 | 600 | 649.54 | 61.32 | 91.74 | 9.44 |
CAL3 | 1000 | 866.05 | 43.92 | 113.39 | 5.07 |
CAL4 | 2000 | 1862.86 | 23.32 | 106.86 | 1.25 |
CAL5 | 3000 | 3051.24 | 42.56 | 98.29 | 1.39 |
CAL6 | 6000 | 6402.59 | 203.32 | 93.29 | 3.18 |
CAL7 | 12,000 | 11,797.84 | 663.86 | 101.68 | 5.63 |
Calibration Standard MMPN | Theoretical Concentration (nM) | Mean of Calculated Concentration (nM) | Standard Deviation of Calculated Concentration (nM) | Intra-Day Accuracy (%) | Intra-Day Precision (CV%) |
---|---|---|---|---|---|
1° CALIBRATION CURVE R2 = 0.9999 y = 32,320x − 12.029 | |||||
CAL1 | 3000 | 3273.48 | 39.18 | 90.88 | 1.20 |
CAL2 | 5000 | 5054.33 | 130.03 | 98.91 | 2.57 |
CAL3 | 10,000 | 9761.71 | 1277.15 | 102.38 | 13.08 |
CAL4 | 15,000 | 14,789.21 | 38.10 | 101.41 | 0.26 |
CAL5 | 30,000 | 30,101.20 | 1579.23 | 99.66 | 5.25 |
CAL6 | 60,000 | 60,021.19 | 2120.93 | 99.96 | 3.53 |
2° CALIBRATION CURVE R2 = 0.9995 y = 33,222x + 893.43 | |||||
CAL1 | 3000 | 3518.60 | 337.34 | 82.71 | 9.59 |
CAL2 | 5000 | 5186.80 | 91.88 | 96.26 | 1.77 |
CAL3 | 10,000 | 9163.05 | 990.54 | 108.37 | 10.81 |
CAL4 | 15,000 | 15,201.29 | 1040.12 | 98.66 | 6.84 |
CAL5 | 30,000 | 29,801.38 | 618.70 | 100.66 | 2.08 |
CAL6 | 60,000 | 60,128.14 | 299.85 | 99.79 | 0.50 |
3° CALIBRATION CURVE R2 = 0.9971 y = 39,182x − 1501.9 | |||||
CAL1 | 3000 | 2819.19 | 63.59 | 106.03 | 2.26 |
CAL2 | 5000 | 4693.87 | 617.27 | 106.12 | 13.15 |
CAL3 | 10,000 | 8648.54 | 739.45 | 113.51 | 8.55 |
CAL4 | 15,000 | 16,187.43 | 5.22 | 92.08 | 0.03 |
CAL5 | 30,000 | 31,602.78 | 2559.76 | 94.66 | 8.10 |
CAL6 | 60,000 | 59,046.46 | 7131.64 | 101.59 | 12.08 |
Calibration Standard TGN | Inter-Day Accuracy (%) | Inter-Day Precision (CV%) |
---|---|---|
CAL1 | 90.78 | 15.23 |
CAL2 | 92.37 | 1.17 |
CAL3 | 103.60 | 8.97 |
CAL4 | 103.09 | 3.46 |
CAL5 | 101.65 | 4.74 |
CAL6 | 97.99 | 4.28 |
CAL7 | 100.39 | 1.15 |
Calibration Standard MMPN | Inter-Day Accuracy (%) | Inter-Day Precision (CV%) |
---|---|---|
CAL1 | 93.21 | 11.08 |
CAL2 | 100.43 | 5.12 |
CAL3 | 108.09 | 6.06 |
CAL4 | 97.38 | 4.67 |
CAL5 | 98.33 | 3.16 |
CAL6 | 100.45 | 1.00 |
Quality Controls TGN | 1° | 2° | 3° | |||
---|---|---|---|---|---|---|
Intra-Day Accuracy (%) | Intra-Day Precision (CV%) | Intra-Day Accuracy (%) | Intra-Day Precision (CV%) | Intra-Day Accuracy (%) | Intra-Day Precision (CV%) | |
LLOQ | 81.11 | 5.48 | 80.04 | 4.81 | 93.71 | 11.15 |
LQC | 93.78 | 2.62 | 92.45 | 5.80 | 86.73 | 3.60 |
MQC | 95.36 | 1.68 | 98.06 | 1.83 | 85.92 | 6.63 |
HQC | 87.02 | 1.21 | 95.41 | 4.41 | 89.67 | 3.53 |
Quality Controls MMPN | 1° | 2° | 3° | |||
---|---|---|---|---|---|---|
Intra-Day Accuracy (%) | Intra-Day Precision (CV%) | Intra-Day Accuracy (%) | Intra-Day Precision (CV%) | Intra-Day Accuracy (%) | Intra-Day Precision (CV%) | |
LLOQ | 100.44 | 4.67 | 98.52 | 8.19 | 110.89 | 3.71 |
LQC | 102.78 | 7.00 | 100.62 | 11.72 | 89.33 | 5.78 |
MQC | 98.98 | 4.01 | 103.40 | 5.68 | 86.48 | 6.91 |
HQC | 100.12 | 1.22 | 98.08 | 2.71 | 103.82 | 5.69 |
Quality Controls TGN | Inter-Day Accuracy (%) | Inter-Day Precision (CV%) |
---|---|---|
LLOQ | 84.95 | 6.61 |
LQC | 90.99 | 3.44 |
MQC | 93.12 | 5.96 |
HQC | 90.70 | 3.92 |
Quality Controls MMPN | Inter-Day Accuracy (%) | Inter-Day Precision (CV%) |
---|---|---|
LLOQ | 103.29 | 6.88 |
LQC | 97.58 | 7.06 |
MQC | 96.29 | 8.46 |
HQC | 100.67 | 2.93 |
QCs | TG | MMP | ||
---|---|---|---|---|
Accuracy (%) | Precision (CV%) | Accuracy (%) | Precision (CV%) | |
LLOQ | 95.88 | 11.26 | 111.49 | 10.91 |
LQC | 113.47 | 10.16 | 100.96 | 9.91 |
MQC | 109.38 | 4.01 | 87.11 | 4.51 |
HQC | 85.22 | 0.25 | 101.12 | 1.66 |
QCs | TG | MMP | ||
---|---|---|---|---|
Accuracy (%) | Precision (CV%) | Accuracy (%) | Precision (CV%) | |
LLOQ | 87.87 | 10.24 | 104.00 | 8.29 |
LQC | 106.63 | 7.69 | 94.48 | 8.57 |
MQC | 119.88 | 8.41 | 95.93 | 8.95 |
HQC | 85.10 | 1.35 | 95.83 | 7.21 |
DISEASE TYPE | TGN (pmol/8 × 108 RBC) [IQR] | MMPN (pmol/8 × 108 RBC) [IQR] |
---|---|---|
IBD | 335.94 [165.44–496.80] | 1275.36 [413.75–6186.18] |
ALL | 627.66 [470.78–762.95] | 1466.08 [734.95–1933.12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franzin, M.; Curci, D.; Lucafò, M.; Bramuzzo, M.; Rabusin, M.; Fabretto, A.; Addobbati, R.; Stocco, G.; Decorti, G. A Validated HPLC–Diode Array Detection Method for Therapeutic Drug Monitoring of Thiopurines in Pediatric Patients: From Bench to Bedside. Metabolites 2022, 12, 1173. https://doi.org/10.3390/metabo12121173
Franzin M, Curci D, Lucafò M, Bramuzzo M, Rabusin M, Fabretto A, Addobbati R, Stocco G, Decorti G. A Validated HPLC–Diode Array Detection Method for Therapeutic Drug Monitoring of Thiopurines in Pediatric Patients: From Bench to Bedside. Metabolites. 2022; 12(12):1173. https://doi.org/10.3390/metabo12121173
Chicago/Turabian StyleFranzin, Martina, Debora Curci, Marianna Lucafò, Matteo Bramuzzo, Marco Rabusin, Antonella Fabretto, Riccardo Addobbati, Gabriele Stocco, and Giuliana Decorti. 2022. "A Validated HPLC–Diode Array Detection Method for Therapeutic Drug Monitoring of Thiopurines in Pediatric Patients: From Bench to Bedside" Metabolites 12, no. 12: 1173. https://doi.org/10.3390/metabo12121173
APA StyleFranzin, M., Curci, D., Lucafò, M., Bramuzzo, M., Rabusin, M., Fabretto, A., Addobbati, R., Stocco, G., & Decorti, G. (2022). A Validated HPLC–Diode Array Detection Method for Therapeutic Drug Monitoring of Thiopurines in Pediatric Patients: From Bench to Bedside. Metabolites, 12(12), 1173. https://doi.org/10.3390/metabo12121173