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Abstract: As a comprehensive analysis of all metabolites in a biological system, metabolomics is
being widely applied in various clinical/health areas for disease prediction, diagnosis, and prog-
nosis. However, challenges remain in dealing with the metabolomic complexity, massive data,
metabolite identification, intra- and inter-individual variation, and reproducibility, which largely
limit its widespread implementation. This study provided a comprehensive workflow for clinical
metabolomics, including sample collection and preparation, mass spectrometry (MS) data acquisition,
and data processing and analysis. Sample collection from multiple clinical sites was strictly carried out
with standardized operation procedures (SOP). During data acquisition, three types of quality control
(QC) samples were set for respective MS platforms (GC-MS, LC-MS polar, and LC-MS lipid) to assess
the MS performance, facilitate metabolite identification, and eliminate contamination. Compounds
annotation and identification were implemented with commercial software and in-house-developed
PAppLineTM and UlibMS library. The batch effects were removed using a deep learning model method
(NormAE). Potential biomarkers identification was performed with tree-based modeling algorithms
including random forest, AdaBoost, and XGBoost. The modeling performance was evaluated using
the F1 score based on a 10-times repeated trial for each. Finally, a sub-cohort case study validated the
reliability of the entire workflow.

Keywords: metabolomics; clinical cohort; LC-MS; GC-MS; quality control; data normalization;
data modeling

1. Introduction

Metabolites are intermediates or end products of biosynthetic reactions that can di-
rectly depict the physiological status of cells [1,2]. In comparison to the other “omics” tech-
niques, namely genomics, transcriptomics, and proteomics, metabolomics is closer to the
phenotype in a biological system, enabling us to better understand the inner interaction be-
tween genetics, health status, and environmental impacts [3]. With the development of mass
spectrometry (MS)-based technologies and machine learning approaches, metabolomics
is becoming a promising tool for precision medicine [4,5]. In recent years, metabolomics
has been successfully applied in several clinical studies, for example, in the diagnosis of
the inborn errors of metabolism (IEM) [6] and the discovery of biomarkers for diagnosing
cancers, Alzheimer’s diseases, cardiovascular disease, and obesity disease [7–13].
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Metabolomics strategies have been divided into two distinct approaches for clinical
studies: targeted and untargeted metabolomics. Targeted metabolomics is the measurement
of a known set of metabolites. The number of samples in targeted clinical metabolomics
studies is relatively small (normally < 200). This may lead to some bias, resulting in a high
chance of false discovery [14]. In contrast, untargeted clinical metabolomics focuses on the
comprehensive profiling of all the measurable metabolites in a large group of biological
samples. Due to its comprehensive nature and the extensive amount of data generated, this
approach faces challenges to achieve precise results. For example, the quality of clinical
samples can be easily influenced by environmental factors (e.g., temperature, handling
time). Compared with other cellular biomolecules, metabolite species and concentrations
changed rapidly in vivo and even in vitro. Hence, well-practiced standard operation pro-
cedures (SOPs) for sample collection, storage, and preparation are vital for the success
of metabolomics experiments [15]. Equivalently, a reliable instrument analysis method is
required to warrant the quality of data acquisition. Metabolites represent a diverse class of
molecules, including amino acids, peptides, lipids, nucleic acids, organic acids, carbohy-
drates, vitamins, and thiols. These compounds process the diversity of physicochemical
properties (i.e., structure, size, polarity, and volatility), which leads to the impossibility
of a global analysis through one analytical platform or single analysis method. Using
multiple analytical platforms is a desirable strategy to expand the coverage and depth
of metabolite mining. Untargeted clinical metabolomics analysis offers the opportunity
for novel biomarker discovery. However, the principal challenges of this approach lie
in the standardization of sample collection and preparation, quality control, batch effect
correction, and data processing and analysis. The objective of this work was to develop a
comprehensive guide for clinical metabolomics cohort studies from pre-acquisition (clinical
sample harvest, sample quality inspection, transportation, and storage) and acquisition
(sample preparation and metabolomics data acquisition) to post-acquisition (data cura-
tion and model selection and evaluation) (Figure 1). In this study, clinical metabolomics
was based on plasma samples, which were collected from large-scale and multi-center
cancer cohorts in China (ca. 2500 participants). Untargeted metabolomics profiling of
these plasma samples was performed using three MS platforms, namely, untargeted liquid
chromatography (LC)-MS polar and lipid and targeted GC-MS. The performance of our
workflow was evaluated using a sub-cohort study, from which we identified not only
well-reported biomarkers but also a group of novel candidates for further validation. These
results demonstrated that our clinical metabolomics workflow study allows reproducible
global metabolomics profiling of large clinical samples with a broad coverage and a high
accuracy, which could pave the way for applications of big data-driven metabolomics in
clinical studies.

Clinical samples were collected as described in the SOP (File S1) and screened via
crucial exclusion criteria. Before data acquisition, strict quality assurance was performed.
Three types of QC samples were set for evaluation. “All-in-one extraction” was chosen
to cover as many types of metabolites as possible by not introducing too many extraction
steps and solvents. A combination of commercial and in-house-developed libraries and
software was applied for metabolite annotation. Data analysis was performed as described
in the methods.
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Figure 1. The workflow for a clinical-oriented metabolomics study.

2. Material and Methods
2.1. Study Design and Biospecimen Choice

A case-control study enrolling 2490 participants, belonging to three cancers groups,
namely, lung cancer (LC), gastric cancer (GC), and colorectal cancer (CRC), as well as two
control groups (healthy control (HCtrl) and diseased/non-cancer (NC)), was performed
between September 2018 and January 2020. The subjects were registered in three Chinese
hospitals: The First Affiliated Hospital of Nanchang University (NCH; Nanchang, China),
the Second Xiangya Hospital of Central South University (XYH; Changsha, China), and
the Second Hospital of Tianjin Medical University (TJH; Tianjin, China). The study was
approved by their local Institutional Review Board, following the guidelines of the Inter-
national Conference on Harmonization for Good Clinical Practice and the Declaration of
Helsinki, including the formal consent of the participants. Prior to sampling, all partic-
ipants were screened using the inclusion and exclusion criteria (Table 1). To minimize
confounding factors (e.g., age and gender), demographics and medical records (e.g., can-
cer or other disease status and cancer staging and subtypes) were also collected for the
metabolomics analysis.

2.2. Clinical Sample Collection, Processing, and Storage

Trained nurses collected fasting blood samples from inpatients and outpatients, as
described in SOP (File S1). Briefly, 5 mL of peripheral blood was collected and kept at 4 ◦C
until pre-processing. Samples were centrifuged at 3800 rpm at 4 ◦C for at least 10 min, and
the supernatant was aliquoted into 2 mL sterile cryopreservation tubes. One aliquot of 1 mL
was collected for the biospecimen bank, whereas two aliquots of 100 µL each were collected
for metabolite analysis. All aliquots were stored at −80 ◦C before they were transported to
Metanotitia Inc. (Shenzhen, China) for metabolomics analyses.
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Table 1. Inclusion and exclusion criteria.

Group Inclusion Exclusion

Cancer
• hospitalized for surgery or screenings at

participating clinical sites
• younger than 18 years old
• severe metabolic diseases
• pregnancy
• unconfirmed diagnosis
• require any emergency treatments

Non-cancer
• hospitalized for surgery or screenings

indication at participating clinical sites
• diagnosis other than cancer

Healthy

• underwent physical exams at
participating clinical sites

• screened with chest low dose computed
tomography (LDCT),

• younger than 18 years old
• severe metabolic diseases
• pregnancy
• diabetes
• hypertension
• cardiovascular diseases
• any other abnormalities requiring immediate intervention

2.3. Metabolomics Sample Preparation

Metabolite extraction was performed from an aliquot of 50 µL of each sample using
700 µL of extraction buffer containing methanol/methyl tert-butyl ether/water (v/v/v, 1:3:1)
and a mixture of chemical standards (gibberellic acid A3: 0.45 µg/mL, 13C sorbitol: 1 µg/mL
and PC(17:0/14:1): 0.45 µg/mL) as previously described in [16]. Samples were sonicated
in a 4 ◦C bath for 15 min, followed by the addition of 350 µL methanol/water (v/v, 1:3).
Samples were then centrifuged at 12,700 rpm (Centrifuge 5430R, Eppendorf, Germany) at
4 ◦C for 5 min. The upper phase containing lipophilic metabolites (350 µL) was transferred
to a fresh 1.5 mL microcentrifuge tube. The hydrophilic phase was divided into two 2 mL
fresh microcentrifuge tubes containing 350 µL and 1000 µL separately, which were further
used for GC-MS and C18-UPLC-MS based metabolites analysis, respectively. All aliquots
were dried using a speed vacuum concentrator without heating and stored at −80 ◦C for
further analysis.

2.4. Quality Control (QC) Settings

To ensure the quality of the measurements and the equipment performance, three
types of QC samples were set and prepared following the same procedure as biological
samples. The first type of QC encompasses biological samples, named as QCbio, in which
50% of randomly selected plasma samples obtained in this study were pooled, or NIST SRM
1950 plasma (QCNIST) [17]. The second type of QC samples are a mixture of chemical stan-
dards. They are QCmix for GC-MS [18] and LC-MS polar [19] separately and LIPIDOMIX®

for LC-MS lipid (File S2). The last type of QC contains only solvents, namely, QCblank.
Each run of the analytical batch started with a QCblank to detect the impurities in

the solvents or the contamination of the separation system. Then, a gradient of QCmix
(containing the following concentrations of 40 µg/mL, 27 µg/mL, 20 µg/mL, 13 µg/mL,
10 µg/mL, and 7 µg/mL) was used to fit linear calibration curves and test the MS perfor-
mance along with concentration. The QCmix, QCbio, and QCNIST samples were typically
analyzed every 10 biological samples. The chemical standards in the QCmix were analyzed
with TraceFinder 4.0 software (Thermo Fisher Scientific, Waltham, MA, USA) to monitor
the machine and sample status. Before the MS run, the injection order of all biological
samples was randomized by hospital (NCH, XYH, TJH), disease group (HCtrl, LC, GC,
CRC, and NC), gender (male and female), and age group (under 55 years, 55 to 65 years,
and 65 years and older) and then split into batches of 40 samples.

2.5. GC-MS and UPLC-MS Detection

The derivatization of the dried polar fraction was done according to Lisec et al. [20].
For each sample, 1 µL was then injected into an Agilent 7890B gas chromatograph with
an Rxi®-5SilMS GC column (30 m, 0.25 × 30 mm, 0.25 µm) coupled to a Pegasus BT time-
of-flight (TOF) mass spectrometer (Leco Corp., St. Joseph, MI, USA) with an electron



Metabolites 2022, 12, 1168 5 of 20

ionization (EI) source by an Agilent 7683 series autosampler (Agilent Technologies GmbH,
Waldbronn, Germany). High-purity helium was used as the carrier gas at a flow rate of
1 mL/min. The temperature was initially set at 50 ◦C for 2 min and then increased by 1 ◦C
per min until reaching 330 ◦C. The interface and ion source temperatures were adjusted
to 280 ◦C and 250 ◦C, respectively. The detector voltage was maintained at 1.2 kV with
standard 70 eV EI parameters.

UPLC-MS analysis was performed using a Waters ACQUITY (Milford, MA, USA) ultra-
performance liquid chromatography (UPLC) system coupled to Thermo-Fisher Q-Exactive
(Bremen, Germany) mass spectrometers with an electrospray ionization (ESI) source. For
the analysis of polar metabolites, the dried polar fraction was resuspended in 200 µL water,
and 3 µL of supernatant was transferred to a Waters ACQUITY FTN autosampler with
the temperature set to 10 ◦C. For the lipidomic analysis, the dried lipophilic fraction was
resuspended in 200 µL acetonitrile/isopropanol (v/v, 7:3) solution, and 2 µL of supernatant
was transferred to a Waters ACQUITY FTN autosampler with the temperature held at 10 ◦C.
Data were acquired both in positive and negative modes with parameters as described
in File S3.

2.6. Mass Spectrometry Data Processing

Chromatograms obtained from GC-MS analysis were first exported to NetCDF files
using Leco ChromaTOF (version 5.40). Peak detection, fatty acid methyl esters (FAME)-
based retention time alignment, and mass spectral comparison with the Fiehn refer-
ence libraries [21] were carried out using the Bioconductor package TargetSearch [22] in
R (version 4.0.3). Metabolite identification was validated through manual inspection of
chromatograms. Metabolites were quantified by the peak intensity of a selective mass.
Retention time (RT) deviation in GC-MS was calculated as the RT shift throughout all
batches for each FAME internal standard (File S2).

LC-MS chromatograms were processed using Metanotitia Inc. in-house developed
software PAppLineTM, which was complemented by commercial software including Com-
pound Discoverer 3.1 (Thermo Fisher Scientific, Waltham, MA, USA) and LipidSearch
(Thermo Fisher Scientific, Waltham, MA, USA). The parameter settings for the in-house
software referred to the commercial software. The first step was to extract peaks from the
entire spectrum for each chromatogram and then to apply filtering and a baseline correction
algorithm to remove baseline noise while preserving the peaks from the raw signals. The
raw continuous data was converted into centroided discrete data. After identifying peaks
in individual samples, they were matched across samples and retention time alignment
was performed as previously described [23]. The dataset was further refined by removing
isotopic peaks, in-source fragments of analytes from ionization, and a lower intense adduct
of the same analyte as described by Giavalisco et al. [24,25]. The features were annotated
with manual supervision using the Metanotitia Inc. library, UlibMS. Hydrophilic metabo-
lites were annotated via a six-thousand compounds sub-library, which were developed
under the same chromatographic and spectrometric conditions as the measured samples,
and the lipophilic metabolites were annotated with a sub-library of 1700 lipids and sugar
esters that were putatively identified based on the precursor m/z, fragmentation spectrum,
and elution patterns. Elution profiles for each ion group that is likely to originate from
the same compound were reviewed. The matching criteria were RT within a window of
0.2 min and m/z below 10 ppm. Metabolites were quantified via the peak intensity. RT
deviation was calculated as: the observed RT minus the expected RT for each chemical
standard in QCmix (for LC-MS polar) or in LIPIDOMIX ® (for LC-MS lipid). Duplicated
annotations across platforms were removed on the basis of metabolites’ physicochemical
properties (i.e., solubility, polarity, RT) and performances (i.e., abundance, intensity, peak
shape, annotation score).
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2.7. Data Normalization

All annotated metabolites and unknown features with an overall coverage above 50%
were selected for further normalization using Python 3.7.6 Anaconda Edition (Anaconda
Software Distribution, 2016). The missing values were assigned according to the sample
type and the peak abundance. For example, the batch median intensity of the biological
samples was used for imputing QCbio and QCNIST missing values. For biological samples,
according to features intensity and abundance, different imputation strategies were applied
under certain circumstances. For imputation of a feature with an abundance > 50%, a
feature median with ±5% random noise was used. For those with an abundance < 50% and
a mean intensity > 1E5, platform-specific limit of detection (LOD) with ± 5% random noise
was used. For the rest of the features with an abundance < 50% and a mean intensity < 1E5,
0 was used. Batch correction was performed using the QC-based deep learning method
implemented in the Normalization Autoencoder (NormAE) package [26]. A non-linear
autoencoder was used to remove batch effects. It embeds original high-dimensional data
into low-dimensional space that contains biological information without an inter-batch
effect. Data reconstruction was performed subsequently to transform those representations
in low-dimensional space back into high-dimensional data to remove the inter-batch effect.
Furthermore, adversarial regularization and discriminators were used for optimization of
the autoencoder to identify and remove the intra-batch effect. QCNIST was used for data
normalization in the LC-MS and GC-MS platforms. An optional step was used for scaling
the data after merging the data from different platforms [27].

2.8. Data Analysis with Machine Learning

To classify different groups of samples based on the features of the data matrices,
machine learning was performed using different tree-based algorithms including random
forest, AdaBoost, and XGBoost [28], with the help of the Python package scikit-learn [29].
Then, 75% of the samples were created as a training data set with stratified sampling, while
the remaining 25% of the samples were treated as the testing dataset. The successive halving
strategy was used to search for promising candidate combinations of hyperparameters
for the XGBoost model [29]. Then, to estimate hyperparameters performance, a 10-fold
cross-validation was carried out, dividing the training dataset into ten equal partitions. In
each cross-validation, one partition was used as the validation set, while the remaining
ones were considered as the training set. The best combination of hyperparameters was
determined when the F1 score (F1 Score = 2 × (Precision × Recall)/(Precision + Recall))
reached the highest performance. Finally, the F1 score was used to report classification
performance in the testing set.

3. Results
3.1. Fasting for Blood Sampling

One of the factors that could affect the quality of the plasma is the fasting state.
Previous studies have revealed that the reproducibility of several metabolite classes could
be lower in non-fasting individuals compared with fasting individuals, which impacts the
discovery of new biomarkers for certain diseases [30–32]. To elucidate the influence of
fasting status on metabolomics comprehensively, we set up a fasting experiment before
the cancer cohort study. This investigation was performed with 12 healthy individuals
from Metanotitia Inc. to self-compare their blood samples under fasting and non-fasting
conditions. We annotated 272, 441, and 86 metabolites from LC-MS polar, lipid, and GC-MS
platforms respectively (Figure 2A, Source data 1). These compounds covered different
metabolic classes, including amino acids, carbohydrates, nucleotides and their derivatives,
bile acids, vitamins and cofactors, xenobiotics, and other organic compounds as well
as several lipid classes. To avoid imbalanced weight induced by magnitude differences
between platforms, we combined and standardized features across all three platforms by
scaling them to unit variance before conducting the principal component analysis (PCA).
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Figure 2. Metabolic profiles and comparisons of plasma samples from identical subjects in the fasting
and non-fasting status. (A) Venn diagram of annotated metabolites from GC-MS and LC-MS (polar
and lipid) platforms. (B) The PCA analysis of metabolic profiles of fasting (orange dots) and non-
fasting (blue dots) samples from identical subjects (connected by red lines). The eclipses are the
95% confidence intervals. (C) Volcano plot of significantly changed metabolites on fasting status.
|Log2(foldchange)| > 0.25, p value < 0.05. Orange dots: significantly accumulated metabolites;
blue dots: significantly depleted metabolites; gray dots: non-significant; black circles: the well-
known fasting biomarkers from literature. (D) Pathway enrichment analysis from significantly
changed metabolites by comparing the fasting and non-fasting status. Visualization was based on
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/ (accessed on 18 August 2022)).

As we know, it is often difficult to control the fasting state of the patients in clinical
analysis. We performed a principal component analysis to assess the impact of these
two feeding states on the global metabolome (Figure 2B). The first principal component
(PC1) separated the fasting and non-fasting groups, explaining 13.99% of the variation.
Inspection of the loading responsible for the PC1 showed that amino acids and TAGs
largely contributed to the discrimination. The PC2 was mainly explained by the variabil-
ity among the individuals (12.81%). Three well-known markers for fasting [33], namely,
3-hydroxybutyric acid, O-acetyl-L-carnitine, and L-octanoylcarnitines, were also signifi-
cantly accumulated in the samples of individuals under fasting conditions, whereas all three
branched-chain amino acids (BCAAs), i.e., valine, leucine, and isoleucine, were depleted
(Figure 2C). Furthermore, the pathway enrichment analysis unraveled the accumulation of
intermediates involved in lipid metabolism, such as unsaturated fatty acids, linoleic acid,
and alpha-linolenic acid, as well as glycerolipids (Figure 2D). Despite the small number of
samples, these results confirmed the importance of having samples on the same fasting

https://www.metaboanalyst.ca/
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status, as diet has a significant impact on the human metabolome, which may interfere
with the diagnostics prediction of certain diseases.

3.2. A Cancer Pilot Study

Clinicians at all participating sites followed the same biospecimen collection SOP and
kept a detailed sample collection log to guarantee the completeness and accuracy of the
data (Figure 1). The median process time, defined as the time from specimen collection to
storage at −80 ◦C, was 53 min. The medical records were used to exclude patients who
met any exclusion criteria (Table 1). In addition, the sample collection log was used to
rule out the samples that failed to pass the sample quality control. For instance, a sample
was discarded due to visible hemolysis, discoloration, too long processing time (>4 h),
insufficient volume (<60 µL), and improper storage.

Among 2490 consenting subjects, 190 were excluded because of either meeting one of
the exclusion criteria or failing in the sample quality check. More specifically, 4 subjects were
excluded as they are below 18 years old; 12 samples were repeatedly enrolled. A total of
156 participants exhibited unconfirmed diagnoses, and 18 samples were wiped out because
of failed quality checks. Out of 2300 eligible participants, 1292, 772, and 236 subjects
were enrolled in the cancer, non-cancer, and healthy group, respectively (Figure 3). The
cancer group was further divided into LC, GC, and CRC sub-groups and a sub-group of
other cancers.
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Figure 3. Flow chart of the patient disposition in the cancer pilot study. A total of 190 were excluded
by either meeting one of the exclusion criteria or failing the sample quality check, and 1292, 772, and
236 patients were enrolled in the cancer, non-cancer and healthy group, respectively.

The demographic information is shown in Table 2. Differences were observed based on
sample size, age, female percentage, chronic diseases, smoking and alcohol-drinking history
between healthy control, cancer, and non-cancer groups. These factors may contribute to
interindividual variations in the measurements.
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Table 2. The demographics of the cohort study.

Demographics HCtrl Cancers Non-Cancer

n 236 1292 772
Hospital, n (%) TJH - 57 (4.4) 50 (6.5)

NCH 128 (54.2) 852 (65.9) 591 (76.6)
XYH 108 (45.8) 383 (29.6) 131 (17.0)

Mean age (SD) 45.6 (13.4) 60.9 (10.9) 54.6 (13.6)
Female (%) 124 (52.5) 469 (36.3) 309 (40.0)

Diabetes (%) - 80 (6.2) 37 (4.9)
Hypertension (%) - 319 (24.8) 123 (16.1)

Smoking History (%) Never 171 (72.5) 789 (61.9) 533 (70.0)
Current 57 (24.2) 317 (24.9) 166 (21.8)
Used to 8 (3.4) 169 (13.3) 62 (8.1)

Alcohol-drinking History (%) Never 153 (64.8) 1027 (81.1) 599 (78.9)
Current 83 (35.2) 213 (16.8) 147 (19.4)
Used to - 27 (2.1) 13 (1.7)

TJH: The Second Hospital of Tianjin Medical University; NCH: First Affiliated Hospital of Nanchang University
(Nanchang, Jiangxi Province); XYH: Second Xiangya Hospital of Central South University (Changsha, Hunan
Province); HCtrl: healthy control.

3.3. Metabolomics Analysis and Quality Control

We used a simple, robust, and repeatable two-phase liquid-liquid extraction process,
which can extract polar, semi-polar, and hydrophobic metabolites as well as proteins from
a single sample, therefore, it is suitable for high-throughput analysis [24]. The extraction
was manually performed in 70 batches for all samples. A maximum of three batches can be
analyzed weekly with a single GC-MS and two LC-MS platforms running in parallel. In
total, 3762 samples were analyzed in 28 weeks, including 2491 biological plasma samples
from 2300 subjects, 123 QCblank, 277 QCNIST, 279 QCmix, and 592 QCbio samples.

The average intra-batch CV of the spiked-in chemical standards is less than 13%,
which indicates a stable performance in metabolite extraction. To assess the performance
of our analytical workflow, we included several QCs during the process to track possible
contaminants and MS performance. As summarized in Figure 1, such QCs can help to
correct systematic error. The mass error (Masserr), RT deviation (RTdev), and the intensity
coefficient of variations (IntCV) were monitored via chemical standards in QCmix and FAME,
for LC-MS and GC-MS, respectively.

Ideally, the entire analytical window should include fully distributed analytes across
the m/z and RT range. Here, we present comprehensive QC reports for plasma samples
as an example of good practice. Detailed QC results include the mean RTdev and mean
Masserr and IntCV of each QCmix standard from both LC-MS platforms, as well as the mean
RTdev and IntCV of each FAME standard and QCmix from the GC-MS platform. These QC
parameters provide a global view on the MS performance, which facilitates us to assess
the analytical methods and quality of MS data. As shown in Figures 4 and S1–S4, the
mean RTdev ranged from −0.1 to 0.15, −0.1 to 0.26 and −0.1 to 0.1 for LC-MS polar, LC-MS
lipid, and GC-MS, respectively, and the extra-batch IntCVs were below 30%. The mean
Orbitrap Masserr of the LC-MS platform was below 10 ppm (polar) and below 5 ppm (lipid;
Figures 4A,B, S1 and S2). Altogether these results confirmed that all our three analytical MS
platforms were running stably in large batches spanning a long period, producing highly
reliable data for further analysis.
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(B) LC-MS lipid platform. (C) GC-MS platform. RTdev: delta retention time (RT), Masserr: mass
error, IntCV: intensity coefficient variation. Each standard value was calculated from 70 batches.
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3.4. Data Normalization

With the processed chromatograms of 3762 samples, 4380, 5415, and 92 features were
yielded from LC-MS polar, LC-MS lipid, and GC-MS platforms, respectively. Among those,
504, 611, and 92 features were annotated (Source data 2). Unknown features with an overall
coverage < 50% were excluded for further analysis, resulting in 2581 and 2575 features
for polar and lipid analysis, respectively. The COVID-19 outbreak in early 2020 delayed
the analysis of the plasma samples for three months. Consequently, data acquisition
for the cancer pilot study was separated into two phases, imposing challenges in data
normalization. To gain a good normalization performance, we compared several methods,
such as total ion count (TIC) [34], the median of feature intensity, and a deep learning
method, NormAE, that calibrates nonlinear batch effects [26,35].

As QCNIST was identical throughout the entire dataset and the variation only came
from the day of injection, this sample could be an excellent proxy to evaluate and normalize
the batch effects. Therein, we presented intensities of representative features before and
after normalization (Figure S5). In comparison to the TIC and median normalization
methods, NormAE significantly reduced the unexpected systematic variations among
samples. This is evidenced by the flattened intensity variation without a visible inter-batch
or intra-batch effect. We further tested the normalization performance of NormAE with
PCA analysis in QCNIST and biological samples (Figure 5). Before normalization, even
though the QCNIST samples tended to group together, they were still spread with the
biological samples in all three platforms, indicating the presence of batch effect (Figure 5).
After NormAE normalization, QCNIST samples were tightly clustered and further separated
from the biological samples. NormAE allows a satisfying normalization performance in
the case of data acquisition over a long period.
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3.5. A Case Study of Colorectal Cancer Sub-Cohort

Colorectal cancer (CRC) is the second most common adult cancer in women and the
third most common in men, and it is the fourth leading cause of cancer death [36,37]. Age
and genetic and environmental factors play a major role in the development of colorectal
cancer [38]. Hence, studying and recognizing CRC disease progression and patterns via
metabolomics will provide direct evidence of the outcome from the interaction between
genes and environment. Evaluating the metabolic profile of CRC is gaining popularity
in clinical metabolomics studies. CRC possesses significant perturbations in cellular res-
piration and metabolism, i.e., carbohydrate, lipid, amino acid, nucleotide, and ketone
metabolisms [39], which could provide a reference for our data mining and analysis. Here,
we selected CRC metabolic data for a case study, which forms a cohort from our cancer
pilot study.

The CRC sub-cohort was composed of 236 healthy control (HCtrl) and 279 CRC sam-
ples (Table S1). Samples of both groups were collected from independent centers and
distributed evenly in 70 batches during data acquisition, indicating a good representation
of the entire cancer cohort study. In total, we identified 5211 features from three MS-based
platforms. After rigorous filtering and deduplication, there were 1109 features annotated.
In comparison to the HCtrl group, 55 and 62 metabolites were significantly increased
and decreased in CRC samples (Figure 6A). Therein, 82 metabolites have been reported as
potential biomarkers of CRC and 10 of them were significantly changed in our study, includ-
ing hypoxanthine, palmitoleic acid, cis-aconitic acid, fatty acid 20:2, elaidic acid, gondoic
acid, pyruvic acid, O-hydroxyhippuric acid, trans-4-hydroxy-L-proline, and tryptophan
(Figure 6A). Overrepresentation analysis of these metabolites among metabolic pathways
unravels a major enrichment in the metabolism of lipids and amino acids (Figure 6B).

Appropriate classification methods are critical in predictive analysis to uncover links
between potential biomarkers, complex phenotypes, and clinical data. In this study, three
tree-based algorithms, namely, AdaBoost, random forest (RF), and XGBoost, were selected
for classification. Their performance was evaluated via an F1 score based on a 10-times
repeated trial for each [40]. Compared to the other two methods, XGBoost produced the
tightest cluster with the highest (>0.95) F1 scores for both HCtrl and CRC classes, which
suggests that XGBoost is potentially useful for the classification of different groups of
metabolomics samples (Figure 7).
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Figure 6. Differentiated metabolites in CRC samples. (A) Volcano plot of significantly changed
metabolites in CRC. |Log2(foldchange)| > 0.25, p value < 0.05. Orange dots: significantly accumu-
lated metabolites; blue dots: significantly depleted metabolites; gray dots: non-significant; black
circles: reported biomarkers of CRC from literature. (B) Pathway enrichment analysis from signifi-
cantly changed metabolites by comparing CRC and healthy control groups. Visualization was based
on MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/ (accessed on 11 September2022)).
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Figure 7. Violin plots from the F1 scores of the classification models from CRC patients and healthy
control subjects. Three tree-based classifier algorithms, AdaBoost, random forest, and XGBoost, were
selected for classification. Each model was run 10 times. Orange: healthy control (HCtrl); blue:
colorectal cancer (CRC). F1 Score = 2 × (Precision × Recall)/(Precision + Recall).

4. Discussion

Metabolomics has been practiced for several decades and unveiled crucial biological
information in fundamental research [41]. Nonetheless, there are still challenges in applied
aspects, especially in clinical practice. Metabolomics is one of the most promising tech-
nologies for precision medicine. It is particularly important to develop a comprehensive
and easy-handling pipeline that includes all critical steps with detailed descriptions from
clinical sampling, (pre-)analytical handling, metabolomics data acquisition, and processing.
This study fully utilized the advantages of metabolomics while circumventing its limita-

https://www.metaboanalyst.ca/
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tions in the context of the actual clinical situation. It provides clear guidelines for clinicians
and researchers to achieve accurate results for diagnosis and therapy.

4.1. Factors That May Influence Plasma Metabolomics Analysis

Because of the physicochemical diversity of metabolites, particularly in the dynamic
range of abundance, it is critical to have the samples in a proper status. This could reduce
noise as much as possible while ensuring sample quality. In comparison to genomics
studies, the metabolic samples are more sensitive to individualized activities such as diet
and pre-analytical handling (i.e., sensitive to temperature/light and continued in vitro
enzymatic reaction) [15]. Hence, we emphasized specific sampling suited for clinical
metabolomics studies. For example, it is recommended that blood samples be collected
from fasted subjects to minimize individual diversity because of the strong perturbation of
ketone body, BCAAs, and acylcarnitine metabolism due to fasting (Figure 2). Moreover,
the quality of plasma samples subjected to metabolomics analysis is determined by the
handling time and temperature before the freezing of samples in liquid nitrogen or at
−80 ◦C [42]. Blood samples should be transported using 4 ◦C pre-cooled boxes and
processed at 4 ◦C in the clinic lab (File S1). This pre-analytical handling should be finished
within two hours. Time and temperature not only matter before the pre-analytical phase
but also during storage. In one metabolomics study, the human blood sample was stored
for 16 years, and the majority of the metabolites remained stable within the first four years
at −80 ◦C [43]. However, they only investigated targeted metabolites with GC-MS, which
may not be able to represent the whole metabolome. Another 1H-NMR chemometrics study
in human blood only tested metabolic stability up to 31 days at −80 ◦C [44]. In this study,
although pre-processed samples were frozen at −80 ◦C until the day of data acquisition,
it is still unknown whether prolonged storage can affect the metabolome. A systematic
investigation of the effect of long-term storage on the quality of metabolic samples could
be considered. Here, we provided a practical example of balancing the trade-off between
long storage time and consecutive data acquisition in a large-scale study. Despite the data
acquisition being interrupted by the COVID-19 lockdown, the proposed normalization
results were satisfying (Figure S5).

4.2. Good Practices for Large-Scale Data Acquisition and Processing

In this work, we proposed several data acquisition and data processing strategies to
guarantee the quality of metabolomics data for downstream analysis.

First, proper sample randomization and enough QC sample replicates were included
to ensure optimal statistical power in the downstream bioanalyses. In this study, 2491 blood
samples were randomized as described in Section 2.4 and then analyzed with 1271 QC
samples (123 QCblank, 277 QCNIST, 279 QCmix, and 592 QCbio), each of which served critical
functions. QCblank samples were used to detect contamination across the workflow. QCNIST,
the popular pooled blood samples recommended in other metabolomics studies [18,45,46],
were employed for removing batch effect. The FAME mix and QCmix, which consists of
chemical standards evenly distributed across the RT, were used to monitor chromatographic
and mass spectrometric stability as well as the subsequent RT correction. The QCbio samples
pooled by healthy and cancer subjects were used to improve annotation by avoiding
potential ion suppression. They also served as a cost-effective alternative to analyzing all
samples in MS/MS.

Second, as machine maintenance routines and inevitable machine fluctuation can both
affect the machine sensitivity, a machine log was generated for each acquisition date so that
operators could identify the source of a problem when it appeared (e.g., an abnormal mean
intensity gap between batches).

Third, we chose QCNIST over QCbio as a sustainable normalization strategy for large-
scale studies. In our framework, there were three major challenges for data normalization:
(1) Despite the fact that using multiple spiked-in internal standards for subsequent nor-
malization has many advantages [47,48], the metabolite ionization and response might be
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influenced by the matrix ion suppression or enchantment. This strategy is not applicable for
unknown features [49]. (2) We implemented several scaling factor normalization methods,
including median and total ion count (TIC). As metabolites are physiological end-points
that can be largely affected by the environment and lack a self-averaging property [47],
these normalization methods did not show satisfactory results (Figure S5). (3) Due to the
enormous number of samples needed in the clinical studies, waiting until every sample
is collected to make a pooled sample will significantly delay operation progress, add to
the financial burden, and require more storage resources with an increasing number of
samples. Thus, using QCNIST for normalization enables parallel sample collection and
acquisition regardless of the timespan. In this study, we adapted a recently developed
algorithm, the normalization autoencoder (NormAE), to remove inter- and intra-batch
effects [26]. As artificial neural networks are commonly used to uncover complex patterns
in the data [50], such techniques can distinguish the latent representations that contain
biological information from batch effects [26]. Although concerns have been raised in
recent years about the danger of a “black box” in the output interpretation in AI-related
works [51], we are confident in our data normalization as it was validated via the QCNIST
samples serving as the proxy of biological samples and demonstrated high homogeneity
after normalization (Figure 5).

In addition, during data processing, we combined the features across all three plat-
forms and did deduplication of the metabolites detected via multiple analytical platforms,
which was conducted based on existing knowledge: (1) GC-MS data were preferred for
sugars, amino acids, hydroxy short-chain fatty acids, TCA cycle-involved metabolites,
urea, uric acid, creatinine, and creatine when these features were detected by both LC-MS
and GC-MS. (2) For long-chain fatty acids with more than 10 carbons, LC-MS lipid data
were preferable because they are more soluble in the lipophilic phase. (3) Metabolites
with an RT between 2 and 14 min were preferred for duplication across LC-MS polar and
lipid platforms. Despite the above criteria, annotations with better peak shape, higher
mean intensity, and higher abundance are favored. For example, the GC-MS data were
preferred for α-ketoglutaric acid when it was detected by both LC-MS polar and GC-MS
platforms because (1) it is a TCA cycle-involved metabolite; (2) its RT in the LC-MS polar
platform was before 2 min; (3) although its abundance in GC-MS is lower than in LC-MS
polar (70% vs. 80%), its annotation score is higher. Another example was hydrocortisone;
LC-MS polar data were preferred when it was detected by both LC-MS polar and LC-MS
lipid platforms, with higher mean intensity, preferable RT (2.8 vs. 0.7 min), and higher
abundance (95% vs. 46%). Furthermore, some metabolites exhibited different change trends
on different platforms. For example, 3 out of 1109 metabolites of the CRC case study
possessed different perturbation trend on polar and lipid platforms. In addition to the
above criteria and methods, we selected the platform data by assessing the significance of
change on different platforms (i.e., foldchange and p values). Thereafter, the cleaned data
was used for statistical and biological analysis.

4.3. Biomarker Evaluation

Biomarkers have revolutionized research on diverse diseases, particularly cancers,
drug trial design, and patient management in clinical practice. One of the most challenging
issues in untargeted metabolomic biomarker discovery is reproducibility, which may
be caused by cohort-related factors, pre-analytical and analytical factors, biotemporal
variability, improper statistical analysis, and insufficient validation [52]. In the case study
of fasting, we obtained a good reproducibility of fasting biomarkers, 3-hydroxybutyric
acid and two acylcarnitines (Figure 2C). A previous study set fasting periods of 10, 34,
and 58 h for four volunteers and conducted a longitudinal comparison [53]; however, our
blood samples were collected after only 9 h fasting and compared with non-fasting samples.
Converse to the previous study [53], the depletion of BCAAs in our fasting samples may be
due to different fasting status resulting in different degrees of metabolic reprogramming,
as well as a different comparison baseline. Interestingly, we noticed that the metabolism
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of unsaturated fatty acids and glycerolipids was upregulated under fasting (Figure 2D).
Linoleic acid, as the most highly consumed fatty acid in the human diet, functions as a
membrane component and can also be used as a source of energy [54]. Alpha-linolenic
acid was assumed to be a precursor of long chain fatty acids, eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA), whereas its major metabolic route is beta-oxidation [55],
which could provide energy for bioactivities. This information indicates the potential
relationship between lipid metabolism and fasting.

Although advances in colorectal cancer (CRC) treatment have led to a radical rise in
survival over recent decades, identifying predictive and/or prognostic biomarkers remains
a challenging issue. In addition to gene mutations and alterations in ncRNA, dysregulations
of metabolism could also be indications of CRC progression. As reported previously, CRC
occurrence is usually associated with a wide effect on metabolic pathways, including urea
cycle, ammonia recycling, protein biosynthesis, alanine metabolism, citric acid cycle, and
glutathione metabolism, and hundreds of metabolites involved in CRC progress have been
identified [39,56–58]. In our CRC sub-cohort study, we identified 82 metabolites targeting
the summarized CRC biomarker list, 50 of which showed change trends that are consistent
with those reported in the literature (i.e., 32 and 18 metabolites were accumulated and
depleted respectively), and 10 of them were significantly changed (Figure 6A). Due to
differences in analytical platforms, study design, and disease stages, most dysregulated
metabolites of CRC identified in different studies were inconsistent. Comparatively, the
screening of our workflow was more robust, with high coverage and reproducibility. In this
methodological paper, the CRC sub-cohort just served as an example that facilitates us to
roughly assess the performance of the entire workflow and the reliability of metabolomics
results. Thereafter, the biomarker panels of CRC will be reproduced and validated precisely
and developed as a licensed diagnostic product.

4.4. Limitations and Outlook

QCNIST is a pooled sample collected from representative races with both genders,
including 100 fasted healthy individuals in the United States. We discovered that there are
many QCNIST-specific as well as our healthy control (HCtrl)-specific features, which may be
due to the difference in the genomic and environmental background of subjects. It would
be more scientifically comparable as well as more sustainable to generate a QCNIST sample
from the region of interest in the cohort location under the guideline of QCNIST generation
and certification. Moreover, the injection order of all biological samples was randomized
by hospitals, disease groups, age, and gender and evenly divided into 70 batches to avoid
batch and center effects confounding the biological differences. This approach is sufficient
for measurements with ready cohort samples. Moreover, a metabolomics-based approach
for broadly applicable cancer screening necessitates very large-scale, potentially population-
level clinical evidence for both test development and clinical validation.

To adequately characterize the cancer-defining biomarkers, at least several hundred
cases are required for each cancer of interest. Given that most cancers were detected at a late
stage, a larger cohort is expected to include cancers with minor subtypes or at early stages.
Metanotitia Inc. is conducting several studies to profile the metabolic signatures of multiple
diseases, including cancer and chronic diseases, and the background patterns of matching
healthy subjects. In this regard, Metanotitia Inc. is developing a next-generation pipeline
designed for parallel sample collection and metabolomics profiling, laying the technical
groundwork for the development of a multi-disease diagnostic test at a population level.

5. Conclusions

We developed a workflow for clinical metabolomics, which has the following advan-
tages. (1) The well-practiced SOP for sample collection and transportation from clinical sites
assured the sample quality. (2) The combination of three MS-based platforms facilitated
the detection of metabolites, broadening the chemical space coverage and increasing the
likelihood of discovering biomarkers. (3) Up to 50% of QC sample settings enabled us to
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monitor the MS performance systematically and assisted the following data processing.
(4) The compound identification was made through annotation based on both commercial
and in-house-developed software and a library. Moreover, the entire routine was described
and validated by case studies to demonstrate its reliability and reproducibility. In a word,
our clinical metabolomics work frame demonstrates reproducible good practice and work-
flow, which can tutorize especially the applications of big data-driven metabolomics in
clinical studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12121168/s1, File S1: Standard operation protocol for biospec-
imen collection and storage; File S2: Composition of QC mixes (QCmix for LC-MS polar was set
as Broadhurst et al guided); File S3: LC-MS acquisition parameters; Figure S1: LC-MS polar chro-
matographic stability and Orbitrap mass accuracy monitored by QC mixes; Figure S2: LC-MS lipid
chromatographic stability and Orbitrap mass accuracy monitored by QC mixes; Figure S3: GC-MS
chromatographic stability monitored by FAME; Figure S4: GC-MS chromatographic stability moni-
tored by QC mixes; Figure S5: Normalization performance; Table S1: The demographics of the CRC
sub-cohort study.
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