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Abstract: Identifying the predisposing factors to chronic or end-stage kidney disease is essential
to preventing or slowing kidney function decline. Therefore, here, we investigated the genetic
variants related to a rapid decline in the estimated glomerular filtration rate (eGFR) (i.e., a loss of
>5 mL/min/1.73 m2 per year) and verified the relationships between variant-related diseases and
metabolic pathway signaling in patients with chronic kidney disease. We conducted a genome-wide
association study that included participants with diabetes, hypertension, and rapid eGFR decline
from two Korean data sources (N = 115 and 69 for the discovery and the validation cohorts, re-
spectively). We identified a novel susceptibility locus: 4q32.3 (rs10009742 in the MARCHF1 gene,
beta = −3.540, P = 4.11 × 10−8). Fine-mapping revealed 19 credible, causal single-nucleotide polymor-
phisms, including rs10009742. The pimelylcarnitine and octadecenoyl carnitine serum concentrations
were associated with rs10009742 (beta = 0.030, P = 7.10 × 10−5, false discovery rate (FDR) = 0.01;
beta = 0.167, P = 8.11 × 10−4, FDR = 0.08). Our results suggest that MARCHF1 is associated with a
rapid eGFR decline in patients with hypertension and diabetes. Furthermore, MARCHF1 affects the
pimelylcarnitine metabolite concentration, which may mediate chronic kidney disease progression
by inducing oxidative stress in the endoplasmic reticulum.

Keywords: single-nucleotide polymorphism; kidney function; estimated glomerular filtration rate;
genome-wide association study

1. Introduction

Chronic kidney disease (CKD) is a worldwide public health concern [1]. Patients with
CKD have an increased risk of end-stage kidney disease (ESKD) and cardiovascular disease.
Therefore, identifying the predisposing factors for CKD or ESKD is essential to preventing
or slowing the rate of kidney function decline [2,3].

Genetic susceptibility is also a risk factor for CKD, in addition to diabetes mellitus
and hypertension [4]; CKD heritability is estimated to be between 30 and 75% [5]. Several
genome-wide association studies (GWASs) have identified genetic loci associated with
CKD in populations comprising millions [6,7]. The first GWAS published in 2009 identified
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UMOD, SHROOM3, and STC1 to be associated with renal phenotypes such as estimated
glomerular filtration rate (eGFR), creatinine and cystatin C, CKD, tubulo-interstitial in-
flammation, and renal fibrosis [8–10]. GWASs are important for mapping the risk loci for
complex diseases by identifying the association between genetic variants and diseases [10].
Prior to the development of SGLT2 inhibitors in large-scale clinical trials, conventional ther-
apies used to slow the decline in renal function were only moderately effective on clinically
relevant renal endpoints [11,12]. Selecting the genetically supported drugs targeting the
causal genes from Mendelian diseases or GWAS-driven coding variants was estimated
to double the success rate in drug discovery [13,14]. Moreover, it is possible to discover
the candidate genes for drug development by identifying the key genes associated with
specific diseases through an in silico functional analysis based on a meta-analysis from
published GWASs [15]. These underlie GWASs for the identification of genetic variants
associated with the deterioration of renal function.

However, only a few GWASs have explored eGFR decline [16–18], despite being
a surrogate marker for ESKD [19,20]. The Kidney Disease: Improving Global Outcomes
guidelines define a rapid progression as a sustained eGFR decline of >5 mL/min/1.73 m2

per year [21]. However, no study has directly investigated this.
Asian patients with CKD tend to progress faster to ESKD than other ethnic groups [22].

Since the origin of ESKD risk mismatch between Asians and other ethnic groups is not
accounted for by traditional risk factors such as exposure to specific dietary products,
socioeconomic status, or comorbid imbalances, the potential roles of nontraditional risk
factors are highlighted [23]. Studies have noted that the prevalence of IgA nephropathy
is higher among Asians [24,25]. The cultural factors of Asian traditional herbs and other
therapies are also potential reasons [26]. Select Asian herbs and remedies may contain
poorly defined nephrotoxic compounds [26].

A GWAS using cross-sectional eGFR meta-analysis data from an Asian population
has been performed [27], but the authors did not investigate eGFR decline. Therefore, we
aimed to identify the genetic variants associated with a rapid eGFR decline in the Korean
general population. Furthermore, identifying genetic variants alone may be insufficient.
Metabolites are biological pathway end-products. Thus, a recent integrated study evaluated
the effects of genetic variants on the phenotypes associated with metabolite enrichment to
enhance our understanding of the biological mechanisms and networks [28]. Therefore, we
also evaluated the associations between genetic variants and serum metabolite enrichment
using a genome–metabolomic integrative analysis (GMIA).

2. Material and Methods
2.1. Data Sources and the Study Population

The Korean Biobank Array, also called the Korean Chip (K-CHIP) Consortium, consists
of three general population cohorts with genomic information: the Health Examinee
Cohort Study (HEXA), the Cardiovascular Disease Association Study (i.e., CAVAS), and the
Korea Association Resource (KARE). Thus, we used K-CHIP as our discovery dataset for
GWASs to explore rapid eGFR decline. The K-CHIP Consortium, designed by the Center
for Genome Science, contains approximately 8,000,000 single-nucleotide polymorphisms
(SNPs) customized for the Korean population [29]. Details about the quality control and
imputation of the K-CHIP Consortium have been described previously [29].

We used a validation dataset from 2045 CKD samples to verify our GWAS results.
We collected 2306 samples, comprising 2118 subjects from the KoreaN Cohort Study for
Outcomes in Patients with Chronic Kidney Disease (KNOW-CKD) cohort and 188 partici-
pants with biopsy-proven diabetic nephropathy from two hospitals (91 patients from the
Seoul National University Hospital Human Biobank and 97 from Kyung Hee University
Medical Centre). The KNOW-CKD is a multicenter, prospective, observational study of
2388 patients with CKD [30]. In total, 2045 samples passed the genotype quality control
process, resulting in 7,763,720 remaining SNPs, similar to the K-CHIP Consortium; these
were included in the study [29].
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We screened 72,298 participants from the K-CHIP Consortium and 2045 from the CKD
cohort for the GWAS analysis. First, we excluded participants with a history of cancer, those
with missing eGFR data, and those with an eGFR slope of less than −5 mL/min/1.73 m2

per year. Next, we excluded participants without both diabetes and hypertension. Finally,
115 participants were included from the K-CHIP Consortium (discovery cohort), and 69
participants were included from the CKD cohort (validation cohort) (Figure S1). The
median follow-up of the K-CHIP consortium was 3.9 (interquartile range [IQR] = [3.6, 4.2]),
and that of the KNOW-CKD was 1.8 ([IQR] = [1.4, 2.4]) (Table 1).

Table 1. General characteristics of the participants in the discovery and the validation cohorts.

Characteristics Discovery a

(N = 115)
Validation b

(N = 69)
p-Value

Mean (SD) Mean (SD)
Age at baseline 57.2 (8.5) 52.9 (11.9) 0.01

Systolic BP (mmHg) 121.9 (10.6) 134.0 (21.4) <0.01
Diastolic BP (mmHg) 73.6 (7.4) 78.9 (12.1) <0.01

Body mass index (kg/m2) 24.2 (2.7) 25.5 (3.3) <0.01
Hemoglobin (g/dL) 13.8 (1.7) 11.7 (1.9) <0.01

Serum albumin 4.5 (0.3) 3.7 (0.7) <0.01
eGFR (mL/min/1.73 m2) 89.2 (14.5) 53.6 (24.4) <0.01

eGFR slope (mL/min/1.73 m2/year) −7.1 (2.1) −6.4 (1.9) 0.05
Median [IQR] Median [IQR]

Follow-up (years) 3.9 [3.6, 4.2] 1.8 [1.4, 2.4] <0.01
N (%) N (%)

Sex (male) 64 (55.7) 49 (71.0) 0.06

Abbreviations: BP, blood pressure; eGFR, estimated glomerular filtration rate; IQR, interquartile range; K-CHIP,
the Korean Biobank Array; KNOW-CKD, the Korean cohort study for Outcomes in patients With Chronic Kidney
Disease; SD, standard deviation. a. Discovery cohort: K-CHIP consortium. b. Validation cohort: KNOW-CKD
cohort.

We also measured 135 serum metabolites for all 2580 participants in the KARE cohort
that is part of the Korean Genome and Epidemiology Study (i.e., KoGES) (Table S1). The
quality control measures for the serum metabolites in the KARE cohort have been previously
described [31]. Of the 2580 participants, 1905 had information about both genotypes in the
K-CHIP Consortium. Finally, 137 patients with hypertension and diabetes were included.

2.2. Exposure Measurements

The eGFR was calculated using the four-variable Chronic Kidney Disease Epidemi-
ology Collaboration equation [32]. For the discovery cohort, only subjects with at least
two follow-up eGFR measurements were selected. The eGFR change was calculated by
dividing the difference in the eGFR by the follow-up year and using linear mixed models
with random intercepts in the validation cohort.

2.3. GWAS

We performed a GWAS to evaluate rapidly declining eGFR (i.e., a decline greater than
5 mL/min/1.73 m2 per year) using a linear regression analysis under the assumption of
an additive genetic model; the study was based on the K-CHIP consortium (the discovery
cohort) and was conducted using the Pass kinship analysis (PLINK) version 2.0 (http:
//pngu.mgh.harvard.edu/$\sim$purcell/plink) [33]. SNPs with a p-value below 1 × 10−6

were considered to have genome-wide significant associations.
Significant associations from the K-CHIP consortium were validated using data from

independent patients with CKD. SNPs with p-values of less than 0.05 were considered valid.
The annotation for selected SNPs and linkage disequilibrium (LD) clumping (R2 < 0.001
within a 10,000 kb window) was conducted from the reference panel of phase 3 in the
1000 Genomes project (East Asian) using the “ieugwasr” R package (R software, version

http://pngu.mgh.harvard.edu/$\sim $purcell/plink
http://pngu.mgh.harvard.edu/$\sim $purcell/plink
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4.1.2 R Core Team, Vienna, Austria) and the ANNOtate VARiation (ANNOVAR) (version
20220320) [34,35].

2.4. Fine-Mapping

Fine-mapping was performed to find the potential causal variants among the SNPs
identified in the GWAS [36] using the sum of single effects (SuSiE) method [37]. The lead
SNP was determined based on the strongest association signal. We then selected +/−10 kb
regions around this SNP. Based on an iterative Bayesian stepwise selection, the SuSiE
regression model calculated the posterior inclusion probability (PIP) for each SNP, which
is the probability of including the SNP in a causal association, by isolating the effects of
the LD structure (1000 Genomes Project East Asian population) [36]. Credible sets were
created through an iterative model fitting generated by ranking the SNPs from the largest
to the smallest PIP. A regional plot around the lead SNP was created by “LocusZooms” and
fine-mapping analysis was conducted using the “susieR” R package [37,38].

2.5. GMIA

GMIA was performed using a linear regression model to identify the metabolomic
mechanisms underlying the genetic variants. A linear regression model was constructed
based on the metabolite’s serum concentration, calculated through metabolomic analysis,
and the previously calculated allele information from GWAS analysis based on an additive
model. The associations were considered significant if the false discovery rate (FDR) was
<0.05.

3. Results

Table 1 presents the participant’s general characteristics for the discovery and val-
idation cohorts. The discovery cohort participants were older and had higher baseline
hemoglobin, serum albumin, and eGFR levels, and more follow-up years than the valida-
tion cohort. Furthermore, they had lower systolic and diastolic blood pressures and body
mass indices than those in the validation cohort. However, the eGFR slope and sex did not
differ between the cohorts.

Figure S1 presents the Manhattan and quantile–quantile plots of GWAS analysis for
both cohorts. The genetic inflation was 1.004 and 0.995 in the discovery and the validation
cohorts, respectively (Figure S2).

We identified 241 SNPs associated with a rapid eGFR decline in the discovery cohort
(Table S2). Of these, we identified five externally validated SNPs (rs10009742, rs1390835129,
rs71600637, rs6852270, and rs5012631) on the membrane-associated ring-CH-type finger
1 (MARCHF1) gene significantly associated (genome-wide) with a rapid eGFR decline
(Table 2). Of these five SNPs, rs10009742 (discovery cohort: beta = −4.128, standard
error [SE] = 0.790, p-value = 8.01 × 10−7; validation cohort: beta = −2.361, SE = 1.118, p-
value = 0.04 in the validation cohort; meta-analysis with a fixed-effect model: beta = −3.540,
SE = 0.645, p-value = 4.11 × 10−8) was selected as the lead SNP after LD clumping (Table 2).

SNPs correlating with rs10009742 on LD were identified from a regional plot with
a 50 kb interval from rs10009742 to identify the potential causal SNPs by fine-mapping
(Figure 1A). After fine-mapping at 10 kb intervals by enlarging the regional plot, we
estimated 19 credible sets that could be considered causal SNPs based on rs10009742 with
respect to the PIP for the 4q32.3 (164664901–164684901), 70 loci (Figure 1B; Table S3). Of the
19 credible sets, rs13127646 had the highest estimated PIP.

GMIA identified four genome-wide significant SNPs (rs10009742, rs1390835129, rs7160
0637, and rs6852270) associated with the pimelylcarnitine (beta = 0.030, SE = 0.007,
FDR = 0.01) and octadecenoylcarnitine (beta = 0.167, SE = 0.049, FDR = 0.08) (Table 3)
serum concentrations. We also observed an increase in the pimelylcarnitine and octade-
cenoylcarnitine blood concentrations per the effect allele (T) of rs10009742 (Figure 2).
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(C: reference allele; T: the effect allele of rs10009742). GMIA, genome–metabolomics integrative
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Table 2. Significant SNPs associated with rapid eGFR decline based on the genome-wide association study.

K-CHIP Consortium 1 KNOW-CKD 2

Chr Position SNP Function Gene Allele MAF Beta (SE) p-Value Beta (SE) p-Value

4q32.3 164664101 rs5012631 intronic MARCHF1 C/G 0.03 −4.113 (0.790) 8.69 × 10−7 −2.303 (1.118) 0.04
4q32.3 164665383 rs6852270 intronic MARCHF1 C/T 0.03 −4.116 (0.790) 8.55 × 10−7 −2.315 (1.118) 0.04
4q32.3 164670375 rs71600637 intronic MARCHF1 C/CAT 0.03 −4.127 (0.790) 8.08 × 10−7 −2.377 (1.117) 0.04
4q32.3 164670444 rs1390835129 intronic MARCHF1 CT/C 0.03 −4.129 (0.790) 8.01 × 10−7 −2.365 (1.118) 0.04
4q32.3 164674901 rs10009742 intronic MARCHF1 C/T 0.03 −4.128 (0.790) 8.01 × 10−7 −2.361 (1.118) 0.04

Abbreviations: Chr, chromosome; eGFR, estimated glomerular filtration rate; K-CHIP, the Korea Biobank Array; KNOW-CKD, The Korean Cohort Study for Outcomes in Patients with
Chronic Kidney Disease; MAF, minor allele frequency; SE, standard error; SNP, single-nucleotide polymorphisms. 1. Discovery dataset. 2. Validation dataset.

Table 3. Genome–metabolomics integrative analysis for rapid eGFR decline.

SNP Function Gene Alleles MAF Beta (SE) 1 p-Value 1 Metabolites Beta (SE) 2 p-Value 2 FDR2

rs10009742 intronic MARCHF1 C/T 0.027 −4.128 (0.790) 8.01 × 10−7 C7-DC 0.030 (0.007) 7.10 × 10−5 1.44 × 10−2

rs10009742 intronic MARCHF1 C/T 0.027 −4.128 (0.790) 8.01 × 10−7 C18:1 0.167 (0.049) 8.11 × 10−4 8.21 × 10−2

rs1390835129 intronic MARCHF1 CT/C 0.027 −4.129 (0.790) 8.01 × 10−7 C7-DC 0.030 (0.007) 7.10 × 10−5 1.44 × 10−2

rs1390835129 intronic MARCHF1 CT/C 0.027 −4.129 (0.790) 8.01 × 10−7 C18:1 0.167 (0.049) 8.11 × 10−4 8.21 × 10−2

rs71600637 intronic MARCHF1 C/CAT 0.027 −4.127 (0.790) 8.08 × 10−7 C7-DC 0.030 (0.007) 7.10 × 10−5 1.44 × 10−2

rs71600637 intronic MARCHF1 C/CAT 0.027 −4.127 (0.790) 8.08 × 10−7 C18:1 0.167 (0.049) 8.11 × 10−4 8.21 × 10−2

rs6852270 intronic MARCHF1 C/T 0.027 −4.116 (0.790) 8.55 × 10−7 C7-DC 0.030 (0.007) 7.10 × 10−5 1.44 × 10−2

rs6852270 intronic MARCHF1 C/T 0.027 −4.116 (0.790) 8.55 × 10−7 C18:1 0.167 (0.049) 8.11 × 10−4 8.21 × 10−2

Abbreviations: C7-DC, pimelylcarnitine; C18:1, octadecenoylcarnitine; eGFR, estimated glomerular filtration rate; FDR, false discovery rate; MAF, minor allele frequency; SE, standard
error. Gene symbol in the intergenic region was represented by the nearest gene. 1. Results of genome-wide association study in the discovery dataset 2. Results of genome–metabolomics
integrative analysis.
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4. Discussion

The main aim of our study was to identify the mechanisms of integration between
genetic variants and metabolites based on the association between the genetic variants
selected through GWAS analysis and the metabolites that are the last product in biological
pathways. We found that the rs10009742 in the MARCHF1 gene on chromosome 4q32.3
was associated with a rapid eGFR decline (a decrease of ≥5 mL/min/1.73 m2 per year)
in patients with hypertension and diabetes in Korea. The serum pimelylcarnitine concen-
tration was also associated with the effective allele (T) of rs10009742 compared with the
reference genotypes (C/C).

The MARCHF1 gene has been associated with fatty acids (FAs), glucose metabolism,
and renal dysplasia [39,40]. MARCHF1 is a membrane-bound ubiquitin ligase that mediates
protein ubiquitination [41]. The ubiquitin (Ub)–proteasome system (UPS) tags and degrades
proteins, and there is evidence that Ub and proteasome subunit transcription is involved
with UPS-induced muscle proteolysis in CKD. Additionally, previous CKD studies on CKD
complications have shown that inflammation and acidosis activate Ub junctions, causing
muscle proteolysis in CKD; this suggests that MARCHF1 is linked to the development of
CKD [42–44].

CKD is caused by the progression of transient acute kidney injury (AKI) of a fully
reversible lesion, which can be initiated by secondary causes, such as hypertension and
diabetes mellitus [45]. AKI increases the CKD risk in patients with transient AKI, which is
accompanied by a fibrotic outcome. A proposed AKI to CKD progression mechanism is fatty
acid oxidation (FAO) downregulation in tubular epithelial cells [46]. Oxygen deprivation
(a major cause of AKI) can stop FAO, resulting in a long-term decrease in energy supply
to cells, namely starvation. Furthermore, FAO downregulation is associated with lipid
accumulation in the kidneys and the liver, leading to tubulointerstitial inflammation that
contributes to fibrosis [46]. A long-term lack of energy, such as during starvation, prolonged
exercise, illness, and fever, triggers endoplasmic reticulum (ER) stress, inducing autophagy
and apoptosis. Consequently, FAO inhibition by mitochondrial dysfunction occurs in the
kidney, liver, heart, and skeletal muscles (Figure 3) [47–50].
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trations associated with diabetes were considered in our study [31], but urine metabolites 
are potential renal biomarkers [60]. Since diet and gut microbiome composition are likely 
associated with the metabolite profile of various diseases, multi-omics designs that 

Figure 3. Biological mechanisms for the association between MARCHF1 and pimelylcarnitine are
based on GMIA. An unusual metabolite, pimelylcarintine, may be an intermediator for CKD progres-
sion through oxidative stress on the endoplasmic reticulum. (A) Normal processes and (B) processes
during CKD development influenced by the genetic variant of MARCHF1, hypertension, and dia-
betes, and in CKD progression. AC, acylcarnitine; CKD, chronic kidney disease; ER, endoplasmic
reticulum; FA, fatty acid; GMIA, genome–metabolomics integrative analysis; INSR, insulin receptor;
LC, long-chain; MARCHF1, Membrane-associated ring-CH-type finger 1; MC, medium-chain; Ub,
ubiquitin. Figures created with BioRender.com.
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MARCHF1 ubiquitination modulates tubulo-interstitial inflammation, renal fibrosis,
and FAO [44]. Furthermore, it regulates tubular-interstitial inflammation, renal fibrosis
(leading to CKD), and muscle protein breakdown in CKD [44]. However, as AKI pro-
gresses to CKD, β-oxidation damage predominates over the normal regulatory capacity
for ubiquitination, resulting in an increased intracellular accumulation of FAs and CKD
exacerbation [51,52]. Previous studies using obesity, diabetes, and starvation animal mod-
els support our mechanistic explanation. For example, acylcarnitine (AC) accumulation
has been associated with mild FAO dysregulation and mitochondrial stress, exacerbating
insulin resistance [48]. Hypertension may also affect FA transport via a cluster of differ-
entiation 36/fatty acid translocase (CD36/FAT). One study suggested that the onset of
myocardial metabolic disorders during the early stage of hypertension decreased plasma
CD36/FAT content and function, leading to decreased FA transport capacity (Figure 3) [53].

An inherent problem of metabolism is that it interferes with FA catabolism, resulting in
a considerable increase in the plasma and urine concentrations of long- and medium-chain
fatty acids [54]. A previous study in rodents reported that short-, medium-, and long-chain
ACs accumulate in the serum and muscles owing to insulin resistance impairments arising
from mismatches among long-chain fatty acid delivery, catabolism, and the tricarboxylic
acid cycle rate (Figure 3) [48].

Excessive ubiquitination caused by genetic variants of rs10009742 in MARCHF1 im-
pairs the activity of cellular insulin by degrading insulin receptor-β on the cell surface, lead-
ing to diabetes [55]. In addition, CD36/FAT degradation interrupts the cellular transport of
long-chain fatty acids in patients with hypertension and genetic variants of rs10009742 [53].
Subsequently, FA accumulates in the blood, resulting in decreased FAO, which causes ER
stress due to β-oxidation damage. Thus, medium-chain fatty acids in plasma cannot diffuse
into the cells due to long-chain AC accumulation from ER stress [56,57].

Our study indirectly demonstrates these mechanisms; we detected an increased serum
pimelylcarnitine concentration, which is a long-chain AC with an effective allele (T) of
rs10009742 on MARCHF1 (Figure 3). A series of mechanisms related to hypertension and
diabetes can exacerbate the development and progression of CKD. Therefore, this suggests
that MARCHF1 and its regulatory metabolites are crucial in triggering CKD progression.
In addition, octadecenoylcarnitine, a long-chain AC, may also be involved in the kidney,
although its association with rs10009742 on MARCHF1 was not statistically significant
based on the FDR value.

Our study has some limitations. First, the definition of eGFR change in the epidemio-
logical data is less clear than that in the clinical data, which generally defines eGFR change
as a decline for at least three follow-up visits [19,58]. The HEXA cohort from the K-CHIP
Consortium in our discovery dataset had only two follow-ups. Thus, the eGFR change in
the HEXA cohort was calculated based on the two time points divided by the follow-up
year. Considering this, we attempted to select patients with CKD from the general popula-
tion dataset and the K-CHIP Consortium, and then selected patients with CKD progression
using repeated eGFR data. For this purpose, in this study, we selected subjects based on
a very rapid eGFR decline. In addition, we only selected high-risk participants with a
rapid eGFR decline, hypertension, and diabetes. Thus, the number of study participants
could be insufficient. Therefore, the associations between the SNP and the metabolites were
indirectly estimated among other participants in the GWAS. Nevertheless, compared to
the general population, high-risk participants can be more appropriate for determining the
effects of genetic variants [59]. However, validation analysis is required for a large consor-
tium study in the future. Furthermore, only serum metabolite concentrations associated
with diabetes were considered in our study [31], but urine metabolites are potential renal
biomarkers [60]. Since diet and gut microbiome composition are likely associated with the
metabolite profile of various diseases, multi-omics designs that include various metabolites
are required to completely understand the metabolomic mechanisms.

In cohort studies, selection bias that can affect either the internal or the external
validity of a study occurs when the selection of exposed and nonexposed participants is
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associated with the outcomes [61,62]. Therefore, selection bias can also occur if a subgroup
of participants (such as a high-risk group or a more disease-susceptible group) within a
study is selected for more detailed research [63]. Nevertheless, the problem related to
selection bias may not be significant because the genetic variants that are a factor at birth
can be free from traditional confounding factors [64–66]. Therefore, the problems associated
with a lack of representativeness that can cause selection bias may be modest [64,65].

Furthermore, we identified genetic variants in a population more susceptible to CKD
development to account for the missing heritability. Schematically, studies to account for
missing heritability involve genomic analysis on a high-risk population to identify major
genes [67]. The prevalence of renal dysfunction in patients with hypertension and diabetes
is higher than that in patients with hypertension or diabetes alone [68]. Hypertension and
diabetes have common metabolic pathways, and genetic, environmental, and behavioral
factors contribute to the comorbidity of the two diseases [69]. Therefore, a high-risk
group was studied to exclude missing heritability that may occur owing to environmental
influences in estimating the genetic effect on CKD development based on the general
population.

Nonetheless, the major strength of our study is the GWAS, which was performed in
patients with hypertension and diabetes from the general population and validated in a
population of patients with CKD in Korea. Genetic variants of MARCHF1 may be associated
with the development and progression of CKD in the general population. Therefore,
MARCHF1 could be clinically significant since it has the potential to interfere with the
development and progression of CKD. Therefore, this result provides an opportunity for
novel drugs targeting MARCHF1. A previous study analyzed the association between
metabolites and CKD [70]. However, the genetic effects on the metabolite concentrations
in our study could be clinically significant because circulating metabolites have broad
effects on renal function. Thus, these metabolites possibly have functional roles in the
development and progression of CKD.

In conclusion, the MARCHF1 gene on chromosome locus 4q32.3 (rs10009742, refer-
ence/effective allele, C/T) was associated with a very rapid decline in eGFR, an indicator
of CKD progression, in patients with hypertension and diabetes in Korea. Furthermore, the
rs10009742 genetic variation in MARCHF1 can be modified by the serum pimelylcarnitine
concentration. Overall, our study provides insight into interventions for patients with
hypertension and diabetes in Korea at high risk for CKD development and progression by
estimating the effects of genetic variants on the metabolites within circulating metabolic
mechanisms.
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