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Abstract: In a context where the search for plant-derived additives is a hot topic, glycerol mono-
laurate (GML) was chosen as our subject to study its effect on grouper (Epinephelus fuscogutta-
tus♀ × Epinephelus lanceolatus♂). Seven gradient levels of GML (0, 600, 1200, 1800, 2400, 3000, and
3600 mg/kg) were used for the experiment. Based on our experiments, 1800 mg/kg GML significantly
increased the final body weight (FBW) and weight gain rate (WGR). GML increased the activity of
superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased malondialdehyde
(MDA). Adding 1800 mg/kg GML also significantly increased the levels of lauric acid (C12:0) (LA),
n-3 polyunsaturated fatty acids (PFA), and the n-6 PFA-to-n-3/n-6 ratio, while significantly decreasing
the levels of saturated fatty acids (SFA). Dietary supplementation with GML significantly inhibited
the expression of pro-inflammatory factors and reduced the occurrence of inflammation. GML im-
proved intestinal flora and the abundance of beneficial bacteria (Bacillus, Psychrobacter, Acinetobacter,
Acinetobacter, Stenotrophomonas, and Glutamicibacter). It provides a theoretical basis for the application
of GML in aquafeed and greatly enhances the possibility of using GML in aquafeed. Based on the
above experimental results, the optimum level of GML in grouper feed is 1800 mg/kg.

Keywords: hybrid grouper; glycerol monolaurate; plant-derived additives; anti-inflammatory ability;
antioxidant capacity; muscle nutritional value; intestinal flora

1. Introduction

Hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂) has become
one of the most important marine economic fish in China because of its tender meat and
delicious taste. In recent years, the production of grouper culture has been rising, and the
scale of culture has been expanding. However, the rapid development of the intensive
culture of grouper may induce oxidative stress in fish, caused by aquatic animals, and affect
the antioxidant protection capacity of aquatic animals [1].

Oxidative stress is caused by the inordinate generation of free radicals and reactive
oxygen species (ROS), resulting in a reduction in the body’s antioxidant defenses [2,3]. It
causes biomolecular damage and metabolic and physiological dysregulation, which in turn
results in an imbalance in the animal’s immune function and inflammatory response [4,5].
Oxidative stress promotes multiple transcription factors that allow for a high expression of
pathways associated with inflammation [6]. Inflammation caused by oxidative stress is the
etiology of many chronic diseases [7]. Inflammatory diseases can reduce aquatic animal
productivity, reproductive performance, and disease resistance, causing huge economic
losses not only to farmers but also to consumers [8].
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In the past several years, antibiotic treatments have been one of the main treatments
to counteract oxidative stress and inflammatory diseases and improve disease resistance in
animals [9,10]. However, antibiotics have had a serious impact on sustainable development,
human health, and the ecological environment due to drug resistance and residues [11,12].
The European Union (EU) has imposed a ban on the application of antibiotics as additives in
animal feed since 2006 [13]. Therefore, further development and research on additives with
the potential to replace antibiotics has become a pressing matter of urgency. Plant extracts
are recognized as a promising source of antioxidants and anti-inflammatory substances
that have been confirmed and suggested for combatting diseases associated with oxidative
stress [14].

Glycerol monolaurate (GML) is a naturally occurring compound commonly found
in coconut oil and American spice and is a food additive of plant origin permitted by the
US Food and Drug Administration (FDA) [15–17]. It has excellent antibacterial, antiviral,
antioxidant, and emulsifying properties [18,19]. Because GML is a natural compound, it
does not cause either resistance in animals or drug residues. Recently, it has been shown
that GML has a beneficial effect on terrestrial animals’ (piglets [20], broilers [21,22], laying
hens [23], weaned lambs [24]) growth and development, significantly promoting growth,
improving antioxidant capacity, and reducing the inflammatory response. However, there
is a huge gap in the study of GML in aquatic animals; the main ones known are Litopenaeus
vannamei [25], Danio rerio [26], and Pelodiscus sinensis [27]. The aim of this paper is to explore
the effects of GML on antioxidant capacity, disease resistance, and inflammatory response
in grouper to improve the feasibility of GML application in aquatic animals and to provide
a theoretical basis for the further substitution of GML for antibiotics.

2. Materials and Methods

This study was reviewed and approved by the Institutional Animal Care and Use
Committee (IACUC) of the College of Aquatic Sciences, Guangdong Ocean University. The
approval code is GDOU-IACUC-2021-A2013 and the approval date was 11 April 2021.

2.1. Experimental Design and Diets Preparation

This experiment followed the method of the Association of Official Analytical Chemists
(AOAC) [28] to prepare a basal diet. Seven iso-nitrogenous and iso-lipidic diets were
formulated according to Table 1. The steps for making the feed refer to our previous
production process [29].

Table 1. Ingredients and chemical compositions of experimental diets (% DM basis).

Groups

G0 G600 G1200 G1800 G2400 G3000 G3600

Brown fish meal 30.00 30.00 30.00 30.00 30.00 30.00 30.00
American soybean meal 18.00 18.00 18.00 18.00 18.00 18.00 18.00
Corn gluten meal 9.50 9.50 9.50 9.50 9.50 9.50 9.50
Peanut meal 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Chicken powder 6.00 6.00 6.00 6.00 6.00 6.00 6.00
Wheat flour 18.59 18.59 18.59 18.59 18.59 18.59 18.59
fish oil 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Soybean oil 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Soybean lecithin 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ca(H2PO4)2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Premix 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Choline chloride 0.50 0.50 0.50 0.50 0.50 0.50 0.50
vitamin C 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Microcrystalline cellulose 0.36 0.30 0.24 0.18 0.12 0.06 0.00
GML 0.00 0.06 0.12 0.18 0.24 0.30 0.36
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 1. Cont.

Groups

G0 G600 G1200 G1800 G2400 G3000 G3600

Nutrient levels
Crude protein 49.74 49.19 49.65 49.66 49.19 49.32 49.40
Crude lipid 9.42 9.46 9.38 9.37 9.28 9.29 9.18

Premix (g/kg premix): vitamin A (675,000 IU), vitamin D3 (180,000 IU), vitamin E (6000 mg), vitamin K3 (1200 mg),
vitamin B1 (900 mg), vitamin B2 (1350 mg), vitamin B6 (1050 mg), vitamin B12 (7.5 mg), calcium pantothenate
(4500 mg), nicotinic acid (6750 mg), folic acid (375 mg), biotin (15 mg), vitamin C phosphate (42,860 mg), inositol
(10,000 mg), FeSO4·H2O (64,286 mg), ZnSO4·H2O (26,283 mg), MnSO4·H2O (19,688 mg), Ca (IO3)2·H2O (128.6 mg),
CoCl2·6H2O (323 mg), CuSO4·5H2O (2357 mg), Na2SeO3 (87.6 mg).

2.2. Experimental Animals and Breeding Management

Juvenile grouper were sourced from the Yongsheng Fish Hatchery (Zhanjiang, China).
Before the start of the experiment, all the grouper were placed in several fiberglass barrels
(2 m3) for a fortnight to allow them to acclimatize to the culture conditions and reach
the target weight. Feeding was stopped 24 h before the start of the experiment. A total
of 840 healthy and active fish (9.09 ± 0.01 g) were chosen and divided into 7 groups of
4 replicates of 30 fish per tank for an 8-week trial. All fish were fed twice daily on a full
stomach (7:30, 17:30). The water environment needed to be sustained at the following
levels: temperature of 28–30 ◦C, salinity of 28–30, pH 7.5–8.0, and dissolved oxygen levels
of ≥5.0 mg/L.

2.3. Sample Collection

After the breeding experiment, groupers were starved for 24 h before samples were
collected [30]. All fish were anesthetized with MS-222 before the sample collection. Four
fish in each tank were chosen freely to collect their livers and then transferred to −80 ◦C
after being temporarily frozen in liquid nitrogen until analysis. Four fish were randomly
selected from each tank, and the head kidneys were taken, placed in RNA later at 4 ◦C 24 h,
and then kept at −80 ◦C. The above sample collection procedures were conducted on ice
and were based on previous experimental methods [31,32].

2.4. Liver Antioxidant Enzyme Activity Analysis

The activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase
(GSH-Px), malondialdehyde (MDA), and lysozyme (LZM) were analyzed using commercial
ELISA kits (Shanghai Enzyme-linked Biotechnology Co., Ltd., Shanghai, China). Liver
samples were homogenized into 10% homogenate (EasyWeLL Series JY98-IIIN Model
Cell Disruptor) with iced saline (sterile) at a ratio of 1:9. After cryogenic homogenization
(2500 rpm, 10 min), the supernatant was extracted and then analyzed according to the
instructions. The above measurements of enzyme activity were performed on ice.

2.5. Gene Expression Analysis

The head kidney total mRNA was obtained using an RNA extraction kit (TansGen
Biotech, Co., Ltd. (Beijing, China)). The complementary DNA (cDNA) was transcribed
using an Evo M-MLV RT kit (Accurate Biotechnology (Accurate Biotechnology Co., Ltd.
(Changsha, China)).

The gene expressions of toll-like receptor 2 (TLR2), myeloid differentiation primary
response gene 88 (myd88), interleukin 1β (IL-1β), interleukin 10 (IL10), interleukin 8 (IL8)
were performed on Roche Light Cycler 480II (Switzerland) using an SYBR® Green Pro
Taq HS Premix II kit (Accurate Biotechnology Co., Ltd. (Changsha, China)). The primer
sequences of genes are shown in Table 2. The results of real-time qPCR were analyzed by
previous authors [33].
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Table 2. Primers pair sequences for real-time qPCR.

Nucleotide Sequence (5′–3′) Genbank Accession No.

β-actin F: GATCTGGCATCACACCTTCT
R: CATCTTCTCCCTGTTGGCTT AY510710.2

TLR2 F: AGGGTTCAGAAGGGTTGCTAT
R: CAGGAAGGAAGTCCCGTTTGT HM357230.1

myd88 F: AGCTGGAGCAGACGGAGTG
R: GAGGCTGAGAGCAAACTTGGTC JF271883.1

IL-1β
F: AACCTCATCATCGCCACACA
R: AGTTGCCTCACAACCGAACAC XP_049460451.1

IL-10 F: ACACAGCGCTGCTAGACGAG
R: GGGCAGCACCGTGTTCAGAT KJ741852.1

IL8 F: GGCCGTCAGTGAAGGGAGTC
R: TCAGAGTGGCAATGATCTCA GU988706.1

TLR2: toll-like receptor 2; myd88: myeloid differentiation primary response gene 88; IL-1β: interleukin 1β; IL10:
interleukin 10; IL8: interleukin 8.

2.6. Vibrio parahaemolyticus Challenge Test

The Vibrio parahaemolyticus used for the bacterial challenge test was provided by the
Key Laboratory of Pathogenesis Biology and Epidemiology of Aquatic Economic Animals
of Guangdong Province. The strains were taken out from −80 ◦C and thawed and shaken
well, and then 200 µL were taken and inoculated into Luria–Bertani (LB) solid medium for
rejuvenation of the strain (37 ◦C, 24 h). Single colonies with strong growth were added
to LB liquid medium and incubated at 37 ◦C for 18–24 h. At the end of the culture, the
bacteria were collected by centrifugation at 4 ◦C (4000 rpm, 10 min), washed with sterile
phosphate-buffered saline (PBS), and then centrifuged again. This process was repeated
2–3 times until the solution was clarified. Different volumes of PBS were added for dilution
until OD = 1 (109 cfu/mL). Then the solution was diluted to 108, 107, and 106 for the pre-test.
The results show that the median lethal dose (LD50) was 2× 107 cfu/mL. Ten grouper were
collected randomly from each tank and injected with 200 µL of the bacterial solution slowly
into the abdominal cavity for a 7 d bacterial challenge test. At the end of the 7 d challenge
test, four livers were collected from each vessel to detect immune and antioxidant-related
enzyme activities.

2.7. Statistical Analysis

Statistical analysis of the experimental data was conducted using SPSS 17.0 software.
One-way ANOVA was used to analyze the data, and Duncan’s multiple comparisons
were applied if there was a significant difference (p < 0.05). The experimental data were
expressed as means ± standard deviation (X ± SD).

3. Results
3.1. Effects of Dietary GML Levels on the Antioxidant Index in Liver and Serum for Grouper

FBW and WGR increased and then decreased with the addition of GML, and both had
a maximal value in the G1800 group (p < 0.05). However, there was no significant effect of
SR between the groups (p > 0.05) (Figure 1).

3.2. Effects of Dietary GML Levels on the Antioxidant Index in Liver and Serum for Grouper

All antioxidant indices are shown in Table 3. In the serum, the group supplemented
with GML significantly reduced the MDA content (p < 0.05); SOD activity was significantly
increased (p < 0.05); GSH-Px was significantly higher in the G1800, G2400, and G3000
groups than in the control group (p < 0.05). In the liver, the G1800 group had the lowest
values of MDA and the highest values of SOD activity (p < 0.05). The difference in CAT
activity between the liver and serum was not statistically significant (p > 0.05).
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Figure 1. Effects of dietary GML levels on growth performance for juvenile grouper. Data repre-
sent means of three tanks in each group; error bar indicates S.D. Values with different letters are
significantly different (p < 0.05). (A) FBW: weight body weight. (B) WGR: weight gain rate. (C) SR:
survival rate.

Table 3. Effects of dietary GML levels on antioxidant index of juvenile grouper.

G0 G600 G1200 G1800 G2400 G3000 G3600

Liver
MDA/nmol/mL 1.57 ± 0.26 d 1.27 ± 0.21 bc 1.08 ± 0.02 b 0.86 ± 0.11 a 1.28 ± 0.01 bc 1.40 ± 0.01 cd 1.14 ± 0.13 c

SOD/U/mL 16.91 ± 0.46 a 17.31 ± 0.31 a 22.04 ± 0.42 c 26.01 ± 0.73 d 23.54 ± 1.14 cd 21.38 ± 4.01 b 18.64 ± 1.57 ab

CAT/U/mL 8.29 ± 1.15 9.37 ± 0.11 10.19 ± 1.49 9.64 ± 0.79 9.31 ± 0.51 9.51 ± 0.97 8.84 ± 0.50
GSH-Px/U/mL 94.56 ± 12.43 a 94.90 ± 13.80 a 96.16 ± 5.01 ab 113.53 ± 3.60 c 108.86 ± 7.95 c 106.96 ± 7.04 bc 97.64 ± 8.87 ab

Serum
MDA/nmol/mL 1.66 ± 0.13 e 1.73 ± 0.07 e 1.12 ± 0.17 c 0.79 ± 0.07 a 1.00 ± 0.11 bc 0.91 ± 0.11 ab 1.36 ± 0.07 d

SOD/U/mL 8.61 ± 0.56 a 13.33 ± 1.94 b 13.62 ± 2.12 b 17.14 ± 0.67 c 17.95 ± 1.71 c 15.74 ± 2.34 bc 17.01 ± 3.03 c

Data are means ± SEM of three replicates (n = 3). Values within the same line with different superscripts are
significantly different (p < 0.05). MDA: malondialdehyde; CAT: catalase; GSH-Px: glutathione catalase; SOD:
superoxide dismutase.

3.3. Effects of Dietary GML Levels on Muscle Fatty Acid Composition for Grouper

The composition of muscle fatty acid (FA) is shown in Table 4. The G1800 group
had significantly increased levels of lauric acid (C12:0) (LA), n-3 polyunsaturated fatty
acids (PUFA), n-6 PUFA, and the n-3/n-6 PUFA ratio and significantly decreased levels of
saturated fatty acids (SFA) compared to the control group.

Table 4. Effects of dietary GML levels on fatty acid composition of juvenile grouper (%).

G0 G600 G1200 G1800 G2400 G3000 G3600

C12:0 0.00 ± 0.00 a 0.27 ± 0.01 b 0.61 ± 0.01 c 0.75 ± 0.04 d 0.83 ± 0.01 e 1.25 ± 0.12 f 1.37 ± 0.03 g

C14:0 2.56 ± 0.07 a 2.77 ± 0.00 bc 2.68 ± 0.08 ab 2.70 ± 0.25 ab 2.94 ± 0.01 c 2.94 ± 0.01 c 2.78 ± 0.02 bc

C16:0 19.87 ± 0.16 b 20.41 ± 0.09 c 19.73 ± 0.08 b 19.11 ± 0.05 a 20.48 ± 0.32 c 20.36 ± 0.21 c 19.81 ± 0.07 b

C16:1n7 2.85 ± 0.03 a 3.41 ± 0.02 f 3.04 ± 0.02 c 2.95 ± 0.03 b 3.29 ± 0.02 e 3.24 ± 0.02 d 3.03 ± 0.03 c

C17:0 0.35 ± 0.01 b 0.35 ± 0.01 b 0.39 ± 0.01 c 0.41 ± 0.01 c 0.40 ± 0.01 c 0.41 ± 0.02 c 0.29 ± 0.03 a

C18:0 8.18 ± 0.13 f 6.89 ± 0.03 a 7.77 ± 0.09 e 7.45 ± 0.03 c 7.25 ± 0.04 b 7.74 ± 0.04 e 7.62 ± 0.01 d
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Table 4. Cont.

G0 G600 G1200 G1800 G2400 G3000 G3600

C18:1n9c 17.84 ± 0.28 a 19.94 ± 0.14 e 18.91 ± 0.03 d 18.63 ± 0.06 bc 19.11 ± 0.13 d 18.62 ± 0.26 bc 18.32 ± 0.06 b

C18:2n6c 24.09 ± 0.08 c 25.25 ± 0.10 e 24.98 ± 0.05 d 25.30 ± 0.08 e 23.91 ± 0.22 bc 23.14 ± 0.14 a 23.79 ± 0.21 b

C18:3n3 0.00 ± 0.00 a 3.98 ± 0.14 c 3.54 ± 0.04 b 3.55 ± 0.03 b 0.00 ± 0.00 a 0.00 ± 0.00 a 0.00 ± 0.00 a

C20:0 0.45 ± 0.01 e 0.31 ± 0.00 abc 0.33 ± 0.02 bcd 0.30 ± 0.01 ab 0.34 ± 0.02 cd 0.34 ± 0.01 d 0.29 ± 0.02 a

C20:1 3.32 ± 0.04 b 0.00 ± 0.00 a 0.00 ± 0.00 a 0.00 ± 0.00 a 3.56 ± 0.02 d 3.50 ± 0.06 d 3.42 ± 0.07 c

C20:2 3.32 ± 0.04 b 0.00 ± 0.00 c 0.00 ± 0.00 d 0.00 ± 0.00 e 3.56 ± 0.02 a 3.50 ± 0.06 bc 3.42 ± 0.07 d

C20:3n6 0.34 ± 0.01 d 0.23 ± 0.02 b 0.28 ± 0.03 c 0.26 ± 0.01 c 0.28 ± 0.01 c 0.38 ± 0.01 e 0.20 ± 0.01 a

C20:4n6 1.31 ± 0.04 e 1.02 ± 0.02 ab 1.04 ± 0.04 abc 1.09 ± 0.03 e 0.99 ± 0.06 a 1.10 ± 0.01 c 1.17 ± 0.05 d

C20:5n3 6.12 ± 0.10 d 5.80 ± 0.02 b 5.58 ± 0.04 a 5.96 ± 0.07 bc 5.90 ± 0.04 bc 5.89 ± 0.04 bc 6.11 ± 0.06 d

C22:0 0.45 ± 0.00 d 0.30 ± 0.02 b 0.38 ± 0.03 c 0.32 ± 0.01 c 0.31 ± 0.02 b 0.34 ± 0.02 b 0.24 ± 0.01 a

C22:1n9 0.36 ± 0.01 bc 0.39 ± 0.00 c 0.35 ± 0.03 b 0.37 ± 0.03 bc 0.31 ± 0.01 a 0.34 ± 0.02 ab 0.35 ± 0.02 b

C22:6n3 8.92 ± 0.14 c 7.50 ± 0.13 a 8.39 ± 0.05 b 9.23 ± 0.08 d 8.86 ± 0.02 c 8.92 ± 0.14 c 9.62 ± 0.20 e

C24:1n9 0.87 ± 0.07 d 0.53 ± 0.03 a 1.08 ± 0.03 e 0.59 ± 0.03 ab 0.62 ± 0.02 bc 0.68 ± 0.06 c 0.66 ± 0.06 bc

∑SFA 31.86 ± 0.21 b 31.29 ± 0.08 a 31.88 ± 0.11 b 31.04 ± 0.16 a 32.56 ± 0.31 c 33.38 ± 0.18 d 32.41 ± 0.08 c

∑n-3 15.04 ± 0.12 b 17.28 ± 0.02 d 17.51 ± 0.09 d 18.74 ± 0.16 e 14.75 ± 0.05 a 14.81 ± 0.19 ab 15.73 ± 0.24 c

∑n-6 25.74 ± 0.12 c 26.49 ± 0.07 de 26.30 ± 0.08 d 26.65 ± 0.06 e 25.19 ± 0.27 b 24.62 ± 0.13 a 25.15 ± 0.19 b

∑n-3/∑n-6 0.58 ± 0.00 a 0.65 ± 0.00 d 0.67 ± 0.00 d 0.70 ± 0.01 e 0.59 ± 0.01 a 0.60 ± 0.01 b 0.63 ± 0.01 c

SFA: saturated fatty acid; n-3: n-3 polyunsaturated fatty acids; n-6: n-6 polyunsaturated fatty acids. Values within
the same line with different superscripts are significantly different (p < 0.05).

3.4. Effects of Dietary GML Levels on the Relative Expression of myd88 and IL10 in Head Kidney
for Grouper

In this study, the expressions of inflammation-related genes in the head kidney were
determined (Figure 2). The expression of TLR2 in the G1200, G1800, G2400, and G3000
groups was significantly lower than that in the G0 group. The addition of GML significantly
reduced the expressions of myd88 and IL-1β, which was significantly higher in the control
group (G0) than in the other groups (p < 0.05). GML significantly increased IL10 expression,
which was significantly higher in the G1800, G2400, and G3000 groups than in the G0 group
(p < 0.05). There was no significant effect of GML on IL8 (p > 0.05).
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Figure 2. Effects of dietary GML levels on relative expressions of TLR2, myd88, TL-1β, IL10, and
IL8 in head kidney inflammatory factors genes in bacterial challenge test for juvenile grouper. Data
represent means of three tanks in each group; error bar indicates S.D. Values with different letters are
significantly different (p < 0.05). TLR2: toll-like receptor 2; myd88: myeloid differentiation primary
response gene 88; IL-1β: interleukin 1β; IL10: interleukin 10; IL8: interleukin 8.
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3.5. Vibrio parahaemolyticus Challenge Test Results
3.5.1. Effects of Dietary GML Levels on Survival Rate in Vibrio parahaemolyticus
Challenge Test

After 7 days of the bacteria challenge test with Vibrio parahaemolyticus, the G1800
and G2400 groups showed the highest survival rates (p < 0.05) but were not significantly
different from each other (p > 0.05) (Figure 3).
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Figure 3. Effects of dietary GML levels on survival rate in bacterial challenge test for juvenile grouper.
Data represent means of three tanks in each group; error bar indicates S.D. Values had different letters
are significantly different (p < 0.05).

3.5.2. Effects of Dietary GML Levels on Enzyme Activity of LZM in Bacterial
Challenge Test

The activity of LZM in the G600, G1800, and G2400 groups was significantly increased
in the bacterial experiment test (p < 0.05) and had the highest value in the G1800 group
(p < 0.05) (Figure 4A).
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Figure 4. Effects of dietary GML levels on liver MDA (A), SOD (B) and LZM (C) activities in bacterial
challenge test for juvenile grouper. Data represent means of three tanks in each group; error bar
indicates S.D. Values with different letters are significantly different (p < 0.05). LZM: lysozyme. SOD:
superoxide dismutase. MDA: malondialdehyde.
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3.5.3. Effects of Dietary GML Levels on Enzyme Activity of SOD in Vibrio parahaemolyticus
Challenge Test

The SOD activities of G1200, G1800, G2400, G3000, and G3600 were significantly higher
than that in the G0 group before the test (p < 0.05). The activities of SOD were significantly
higher in the G1800, G2400, and G3600 groups than in G0 after the test (p < 0.05) (Figure 4B).

3.5.4. Effects of Dietary GML Levels on MDA Content in Vibrio parahaemolyticus
Challenge Test

The content of MDA was significantly lower in the G2400 group than in the control
group before the test (p < 0.05). The MDA contents of the G1800, G2400, G3000, and G3600
groups did not change significantly after the test but were significantly lower than that of
the control group (p > 0.05) (Figure 4C).

3.6. Effects of Dietary GML Levels on Intestinal Flora for Hybrid Grouper
3.6.1. Effects of Dietary GML Levels on Relative Abundance of Species for Hybrid Grouper

As seen in Figure 5A, the top four intestinal flora of grouper at the phylum level
were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The highest relative
abundance of Firmicutes was found in the G1800 (12.37%) and G2400 groups (27.89%).
At the genus level, G1800 (11.91%) and G2400 (27.68%) had the highest relative abun-
dance of Bacillus, while Vibrio (2.05% and 2.595%) and Enterovibrio (0.13% and 0.77%) were
significantly lower than the G0 group (Figure 5B).
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3.6.2. Effects of Dietary GML Levels on Shannon and Simpson Indices for Juvenile Grouper

There were no significant differences in the Shannon and Simpson indices among the
seven groups (Figure 6) (p > 0.05). 
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Figure 6. Effects of dietary GML levels on (A) Shannon and (B) Simpson indices for juvenile grouper.

3.6.3. Analysis of the Association between GML and Intestinal Flora

The level of GML addition showed a significant positive correlation with Acinetobacter,
Acinetobacter, Stenotrophomonas, and Glutamicibacter (p < 0.05), while a highly significant
positive correlation was found with Bacillus and Psychrobacter (p < 0.01). However, the
addition of GML inhibited Photobacterium, with a significant negative correlation (p < 0.05)
(Figure 7).
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4. Discussion

Our experimental results show that the addition of GML significantly improved
the FBW and WGR of the grouper. Similar results have been verified in terrestrial ani-
mals [20–24]. However, the application of GML in aquatic animals [25,26] is still very rare
and needs further extensive research.

Enzymatic and non-enzymatic systems make up the antioxidant system of an organ-
ism. The enzymatic system includes antioxidant enzymes such as SOD, CAT, and others,
while the non-enzymatic system mainly includes oxidation products such as MDA, GSH,
and other non-enzymatic antioxidants [34]. The antioxidant system scavenges excess ROS
and superoxide anion radicals (O2

−) from the body and reduces oxidative damage to the
body [35]. Our experiment indicated that the addition of 1800 and 2400 mg/kg GML signif-
icantly raised the activities of SOD and GSH-Px and significantly reduced the content of
MDA in the serum. The study in Litopenaeus vannamei demonstrated that GML significantly
improved the activities of SOD and CAT [25]. A previous study showed that the SOD
activity of Procambarus clarkii was significantly elevated because of the supplementation of
GML [36]. Studies on laying hens [37], Lateolabrax maculatus [38], and weaned lambs [24]
have shown that GML increased SOD and GSH-Px activities. Famurewa et al. showed that
the addition of coconut oil (containing approximately 45% LA) significantly increased the
activities of SOD, CAT, and GSH-Px in mice while reducing MDA levels [39]. The results of
the above studies are similar to the present experiment, probably because medium-chain
fatty acids (MCFAs) can supply energy more efficiently than carbohydrates for animals.
As a typical derivative of MCFAs, GML can be added to the diet of juvenile animals for
energy supply. GML can enter the mitochondria of hepatocytes freely for oxidation and is
not dependent on carnitine carriers, allowing for a rapid energy supply [40]. The metabolic
energy consumption of other nutrients and mitochondrial energy production are reduced,
resulting in lower free radical production and less damage to the body due to oxidative
stress [41]. Based on the above experimental results, the optimum level of GML in grouper
feed is 1800 mg/kg.

FA composition is one of the most valuable indices of the nutritional value and quality
of meat [42]. Experiments with Trionyx sinensis [27] and chickens [22,23,37] have shown that
the addition of GML significantly reduced the SFA content. There was a tendency to reduce
muscle SFA in rhododendrons by adding GML to the feed [43]. Our experimental results
show that supplementation with GML (1800 mg/kg) reduced the SFA levels, which is
generally consistent with the previous results described. SFA is the main cause of elevated
human cholesterol (CHOL), triglycerides (TG), and low-density lipoprotein cholesterol
(LDL-C) [44]. In this experiment, the addition of GML significantly reduced the SFA content,
which both improved the muscle quality of groupers and reduced the harm caused by
excessive SFA. Medium-chain fatty acids (MCFAs) have good antibacterial properties and
can regulate the balance of the intestinal micro-ecosystem by inhibiting the proliferation of
harmful bacteria [45]. GML, as a type of MFA, can be rapidly oxidized to provide energy to
the organism [46]. The content of LA in muscle was positively correlated with the addition
of GML, and the nutritional value was significantly increased. The n-6 PUFA and n-3 PUFA
cannot be synthesized in the human body and can only be consumed from external sources;
thus, they are called essential fatty acids (EFAs) [47,48]. The n-6 PUFA can be consumed in
large quantities from vegetable oils, such as soybean oil. Fish (especially marine fish) and
seal oils, are the main sources of n-3 PUFA intake for humans, but the intake of n-3 PUFA is
severely inadequate [49]. Excessive intake of n-6 PUFA increases cellular inflammation and
induces obesity, which is detrimental in humans [50]. The present experiment demonstrated
that GML supplementation significantly increased the contents of the n-3 PUFA-to-n-6
PUFA ratio and improved n-3 PUFA intake and dietary balance. Supplementation of GML
promotes the digestion and absorption of fat in animals due to its good emulsification
properties [51]. Changes in the FA composition of grouper muscle also reflect the positive
effect of GML on the nutritional quality of grouper.
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Oxidative stress also causes damage to biomolecules and metabolic and physiological
dysregulation, which in turn causes imbalances in the immune function and inflammatory
response of animals. The TLR signaling pathway is a signaling pathway closely related to
anti-inflammatory immune mechanisms, and it plays an important role in the development
of tissue inflammation [52]. TLR2 induces a myd88-dependent pathway that regulates other
pro-inflammatory factors to indirectly induce a series of chain reactions that increase the
expressions of pro-inflammatory factors [53,54]. The expression of myd88 was significantly
increased in mice that were fed a high-fat diet, whereas myd88 expression was suppressed
by the addition of 1600 mg/kg GML [55]. IL10 has significant effects on physiological
processes, such as immune response and inflammation [56]. The expression of IL10 was
significantly enhanced, and IL-1β tended to decrease in Danio rerio after the addition
of 750 mg/kg of GML to the diet [26]. A study on piglets showed that the addition of
1000 mg/kg of α-GML resulted in a significant increase in the IL10 concentration [55].
The results of our experiment demonstrate that the addition of GML could reduce the
expression of the pro-inflammatory factor IL-1β by decreasing the signaling of TLR4 and
inhibiting the myd88-dependent pathway. The anti-inflammatory capacity of the organism
was remarkably enhanced and could be sufficient to resist the inflammatory response
brought about by oxidative stress, which was greatly related to the enhanced activity of
the antioxidant enzyme system. The above experimental results demonstrate that GML
could have a positive effect on reducing oxidative stress and improving immune function
in grouper by regulating inflammation-related factors and increasing the activity of the
antioxidant system.

When grouper are exposed to external stimuli, excess reactive oxygen species (ROS) are
produced in the organism. ROS promotes lipid peroxidation in cell membranes, resulting
in oxidative damage to the body and various diseases [57]. Similar to mammals, fish
have both non-specific and specific immune functions, with various immune cells and
factors in the blood, mucosal barriers, and tissues working together to protect against
pathogens [58]. LZM is an important component of the specific immune function of fish. It
lyses the bacterial cell wall by binding to the β-1,4 glycosidic bond between the hydrolysis
sites N-Acetylmuramicacid (NAM) and N-Acetylglucosamine (NAG), resulting in the lysis
of the bacteria [59]. Qian et al. found that GML (3000 mg/kg) significantly increased the
survival rate and SOD activity of Procambarus clarkii infected with white spot syndrome
virus (WSSV) [36]. An experiment in piglets showed that the addition of GML significantly
reduced the MDA content and significantly increased the SOD activity of porcine epidemic
diarrhea virus (PEDV)-infected piglets, while the change in CAT activity was not significant
but tended to increase [56]. This study shows that the survival rate of grouper in a bacterial
challenge test was significantly increased using GML (1800 and 2400 mg/kg). The LZM
activity increased significantly after the bacterial challenge test and reached the maximum
value in the G1800 and G2400 groups. At the same time, the bacterial challenge test had
no significant effect on the MDA content when the GML addition level was greater than
1800 mg/kg. The possible mechanism for this is that GML can attach to the majority of G+
surfaces and a small amount of G-, leading to cell wall rupture and the efflux of intracellular
material [59–61], significantly enhancing the ability of LZM to eliminate bacteria. The liver
SOD activity increased significantly after the bacterial challenge test, with the highest
activity in the G1800 and G2400 groups. At the same time, the bacterial challenge test had
no significant effect on the liver MDA content when the GML addition level was greater
than 1800 mg/kg. This indicates that the addition of GML resulted in a decrease in the
accumulated ROS content of the organism and protected the body from oxidative damage.

The main metabolite of Firmicutes is butyric acid (BA) [62]. BA is a type of short-
chain fatty acid that plays an active role in intestinal health. It is a major source of energy
for intestinal epithelial cells and may promote intestinal health by increasing epithelial
absorptive cells. The addition of GML, which significantly increased the abundance of
thick-walled bacterial phylum in this experiment, could increase the accumulation of BA
content and promote intestinal health [63]. In the association analysis between GML and
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intestinal flora, GML was correlated with Bacillus, Psychrobacter, Acinetobacter, Acinetobacter,
Stenotrophomonas, and Glutamicibacter. Bacillus is one of the most widely used probiotics in
aquaculture. Bacillus, as a probiotic, can improve antioxidant capacity, effectively scaveng-
ing free radicals and protecting the body from oxidative damage [64]. Bacillus can produce
antimicrobial substances with broad-spectrum antimicrobial properties, inhibiting a wide
range of pathogenic Gram-positive and Gram-negative bacteria (but more so for G+) and
improving the immune system [65–67]. Cha et al. demonstrated that the addition of Bacillus
to the diet significantly improved the immunity and disease resistance of Paralichthysoli-
vaceus [68]. The above results have also been confirmed in Oreochromis niloticus [69] and
Litopenaeus vannamei [70]. The results of this experiment show that GML promoted the
growth of Bacillus, and the immune capacity, antioxidant capacity, and disease resistance
were also improved. The carbohydrate utilization ability of carnivorous fish is much worse
than that of terrestrial animals, and excessive carbohydrate content will lead to a decrease
in fish resistance. Enteroglucagon has the function of promoting insulin secretion and
inhibiting glucagon secretion, which can achieve hypoglycemic effect; however, it is easily
degraded and inactivated by dipeptidyl peptidase-IV (DDP-IV) and cannot be effective.
Yu et al. found that Lysinibacillus could inhibit DDP-IV activity in Cyprinus carpio, thus
indirectly reducing blood glucose and promoting the health of the organism [71]. The
application of Lysinibacillus to the culture of Litopenaeus vannamei significantly reduced the
harmful nitrogen levels in the water and significantly increased the survival rate [72]. There
is experimental evidence for the synthesis of silver nanoparticles from the extracellular
filtrate of Lysinibacillus sphaericus, which have bactericidal activity against G- and G+ and
are non-toxic to cells [73]. Studies have shown that Glutamicibacter uratoxydans KIBGE-
IB41 produces chitinase, which hydrolyzes the cell wall of the fungus and enhances the
ability of the organism to resist the fungus [74]. However, no study of Glutamicibacter in
aquatic animals has been found, and this may also be considered a new finding. Studies in
aquatic animals have shown that both Acinetobacter and Psychrobacter can secrete lipase [75],
which is an important digestive enzyme for the body that hydrolyzes lipids and acceler-
ates catabolism [76]. GML was significantly and positively correlated with Acinetobacter
and Psychrobacter to increase the digestive activity of lipase and promote intestinal health
in grouper.

5. Conclusions

In conclusion, the addition of GML significantly improved the antioxidant capacity,
anti-inflammatory activity, and disease resistance of grouper, which effectively resisted
oxidative damage caused by oxidative stress, enhanced the nutritional value of muscles,
regulated intestinal flora, and increased immune capacity. This provides a theoretical basis
for the application of GML in aquafeeds and greatly enhances the possibility of using
GML in aquafeeds. Based on the above experimental results, the optimum level of GML in
grouper feed is 1800 mg/kg.
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