
 

 
 

 

 
Metabolites 2022, 12, 1068. https://doi.org/10.3390/metabo12111068 www.mdpi.com/journal/metabolites 

Article 

Changes of Plasma Tris(hydroxymethyl)aminomethane and  

5-Guanidino-3-methyl-2-oxopentanoic Acid as Biomarkers of 

Heart Remodeling after Left Ventricular Assist Device Support 

Mengda Xu 1,2,3,†, Hao Cui 2,3,†, Xiao Chen 2,3, Xiumeng Hua 2,3, Jiangping Song 2,3,* and Shengshou Hu 2,3,* 

1 Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,  

Wuhan 430030, China 
2 Fuwai Hospital Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, 

Shenzhen 518057, China 
3 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular  

Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road,  

Xi Cheng District, Beijing 100037, China 

* Correspondence: songjiangping@fuwaihospital.org (J.S.); huss@fuwaihospital.org (S.H.) 

† These authors contributed equally to this work. 

Abstract: Cardiac function is closely related to heart metabolism. Heart failure patients undergoing 

LVAD support have shown varying degrees of remodeling of both cardiac function and 

morphology. However, the metabolic changes in patients with different outcomes are unclear. This 

study aimed to identify metabolic differences and evaluate metabolomics-based biomarkers in 

patients with non-improved/improved cardiac function after LVAD support. Sixteen patients were 

enrolled in this study. Plasma samples were analyzed by using untargeted metabolomic 

approaches. Multivariate statistical analysis and a Mann–Whitney U-test was performed to clarify 

the separation in metabolites and to identify changes in plasma metabolites between the two 

groups, respectively. The efficacy of candidate biomarkers was tested by the area under the curve 

receiver operating characteristic curve. Using the Metabolomics Standards Initiative level 2, a total 

of 1542 and 619 metabolites were detected in the positive and negative ion modes, respectively. 

Enrichment analysis showed that metabolites in improved cardiac function patients were mainly 

involved in carbohydrate metabolism and amino acid metabolism. Metabolites from non-improved 

cardiac function patients were mainly involved in hormone metabolism. Furthermore, we found 

tris(hydroxymethyl)aminomethane and 5-guanidino-3-methyl-2-oxopentanoic acid could serve as 

biomarkers to predict whether a patient’s cardiac function would improve after LVAD support. 
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1. Introduction 

Heart transplantation (HTx) is the most effective treatment for end-stage heart failure 

(HF). However, donor shortages, side effects of immunosuppressive drugs and graft 

failure currently limit the therapeutic benefits of HTx. The left ventricular assist device 

(LVAD) support alleviates these problems [1]. One study found that 21% of patients with 

non-ischemic cardiomyopathy and 5% of patients with ischemic cardiomyopathy showed 

varying degrees of remodeling in cardiac function (left ventricular ejection fraction, LVEF) 

and morphology (left ventricular end-diastolic diameter, LVEDD) during LVAD support 

[2]. These results suggested that patients undergoing LVAD support may have either 

improved cardiac function (ICF) or non-improved cardiac function (nICF), but the 

metabolic characteristics of patients with different outcomes were unclear. 

Recently several studies have clarified that LVAD support could induce significant 

changes in the cardiac transcript, protein, and metabolism. On the transcriptional level, 
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Nerbonne et al. performed RNA sequencing in HF patients undergoing LVAD support 

and found that lncRNA gradually returned to normal levels during the improvement of 

cardiac function. It was further hypothesized that lncRNAs might serve as important 

molecules to differentiate patients with different clinical outcomes [3]. By using 

microarray analysis, Thum et al. found that the concentration of plasma miR-483-3p was 

negatively correlated with the plasma level of NT-proBNP. Thus, miR-483-3p might be 

served as a biomarker of the efficacy of LVAD support. In addition, miR-1202 could be 

used as a predictive molecule for the degree of response to LVAD support [4]. On the 

protein level, studies have reported that reduced levels of immune system-related 

proteins, increased levels of membrane biology-related proteins as well as improved T-

tubule structure were detected following LVAD support [5]. On the metabolism level, 

Drakos et al. found that levels of glucose transporter proteins were increased after LVAD 

support by measuring the levels of key enzymes and metabolic substrates associated with 

glucose metabolism in myocardial tissue [6]. The above results helped us to further 

understand the changes in transcriptome, proteome, and glucose metabolism after LVAD 

support. However, there are limitations in the above studies, such as the complex 

biological functions of non-coding RNAs and the unstable state of single-stranded RNAs, 

which can be easily degraded, resulting in less accurate detection results. In addition, most 

studies use myocardial tissue as the test sample, which is difficult to carry out in the 

clinical management of patients with LVAD support. In addition to the above issues, NT-

proBNP is currently used as a biomarker to assess cardiac function in patients, but NT-

proBNP is a substance that is compensated for elevated tension felt by the ventricles and 

does not predict changes in cardiac structure or function in advance. Therefore, there is a 

certain lag in using NT-proBNP as a biomarker to assess changes in cardiac function after 

LVAD support. As the structural and functional status of the heart was closely correlated 

to its metabolic profile, HF patients underwent significant changes in energy metabolism 

[7] in the context of the myocardial metabolic disorder prior to the onset of altered cardiac 

function [8]. Therefore, characterizing the metabolomic changes in patients after LVAD 

support could help in the early post-operative risk assessment and management of 

patients. 

High-throughput metabolomics is a systematic approach for identifying small-

molecule (<1500 Da) metabolite profiles that have important potential for predicting 

disease states [9]. Metabolomics is a way of quantifying all the metabolites in an organism, 

following the ideas of genomics and proteomics and finding the relative relationship 

between metabolites and physiological and pathological changes [10]. Mass Spectrometry 

(MS)-based metabolomics is highly selective and sensitive, capable of detecting multiple 

metabolites simultaneously, and has a wide range of applications. Several studies have 

been conducted on cardiovascular diseases through MS-based metabolomics and 

identified a variety of metabolites that can be used as predictors of disease progression. 

According to plasma metabolomics, phenylacetylglutamine was first identified to be 

associated with major cardiovascular adverse events (MACEs) in a discovery cohort of 

1162 patients. It was then validated in a large cohort to cause an increase in MACEs. This 

led to its use as a biomarker for predicting MACEs [11]. In addition, metabolomic testing 

of plasma has identified elevated levels of gluconic acid, fumaric acid, and pseudouridine 

that may predict acute kidney injury following cardiac surgery [12]. These results 

demonstrate high throughput metabolomics is a powerful approach for developing novel 

biomarkers. 

Based on the significant changes in energy metabolism in HF patients and alteration 

of metabolic substrate utilization after LVAD support, we propose to use an untargeted 

metabolomics approach to analyze pre- and post-operative plasma samples from LVAD 

support patients to identify changes in the metabolome and to screen for biomarkers that 

can predict improvements in cardiac function. These studies will guide the precise 

treatment of patients and fill the current gap in the field of LVAD research. 
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2. Materials and Methods 

2.1. Study Design 

Plasma samples were prospectively collected prior to the LVAD implantation and 

post-implantation, following at least 24h of LVAD support. Clinical data (including 

assessment of clinical symptoms, imaging, and hematology) were recorded at baseline 

and during the entire follow-up phase. Patients’ cardiac function underwent 

preoperatively and 3–6 month post-operative echocardiographic assessment to evaluate 

signs of improvement [6]. Patients with ICF should meet at least one of the following 

criteria: (1) having a relative increase in LVEF ≥ 50% compared to baseline; (2) a final LVEF 

≥ 40%; (3) a final LVEDD < 6 cm. Patients who did not meet any of these criteria were 

classified as nICF. 

2.2. Metabolite Extraction from Plasma Samples 

Metabolite extraction was performed using a previously described protocol [13]. 

Briefly, 50 μL aliquots of plasma were added into 450 μL acetonitrile:methanol (v/v, 1:1), 

followed by vortexing for 5 min. The mixture was then centrifuged at 4 °C, 18,400× g for 

30min to exclude proteins. After the centrifugation, the supernatants were further 

processed for LC-MS/MS analysis. A mixture comprising equal volume from each sample 

was used as a quality control (QC) sample. 

2.3. Untargeted LC-MS/MS-Based Metabolomic Analysis 

Metabolite profiling was developed using a Vanquish ultra-performance liquid 

chromatography system coupled to a Q-Exactive HF mass spectrometer (Thermo Fisher 

Scientific, Waltham, MA, USA). Metabolite separation was performed at 40 °C in a 

Hypersil GOLD C18 column (100 × 2.1 mm, 1.9 μm, Thermo Fisher Scientific). A 15 min 

gradient at a flow rate of 0.25 mL/min was used to separate metabolites. Mobile phase A 

was H2O with 0.1% FA, and mobile phase B was ACN with 0.1% FA. The gradient was set 

as follows: 0–1.5 min, 5% B; 1.5–6.0 min, 5–95% B; 6.0–11.0 min, 95% B; 11.0–11.5 min, 95–

5% B; 11.5–15.0 min, 5% B. 

The MS was operated in electrospray ionization positive ion mode and negative ion 

mode. Analysis was performed in the full scan [mass-to-charge ratio (m/z) = 67~1000] and 

data-dependent scan (dd-MS2) modes (the parent ion ranked in the top five). The 

instrument settings for the full scan mode were: 120,000 resolution, 2 × 106 automatic gain 

control (AGC), and 200 ms maximum ion injection time (IT). The settings for the MS/MS 

mode were: 30,000 resolution, 1 × 105 AGC, 100 ms maximum IT, 15 s dynamic exclusion 

and collision energy of 40. Source ionization parameters were spray voltage set at 3.5 kV 

for positive ion mode and 4.0 kV for negative ion mode, capillary temperature set at 320°C, 

sheath gas set at 25, and aux gas set at 5. 

2.4. Data Processing 

The chemical analysis working group of the Metabolomics Standards Initiative (MSI) 

defined four different levels of metabolite identification, which include identified 

metabolites (level 1), putatively annotated compounds (level 2), putatively characterized 

compound classes (level 3), and unknown compounds (level 4). In this study, we applied 

to level 2 annotation [14,15]. The raw data was processed using Compound Discoverer 

version 3.1 software (Thermo Fisher Scientific) with the manufacturer’s recommended 

parameters to conduct peak area extraction and metabolite identification. Molecular mass 

was initially used to search against the commercial database from Thermo Fisher Scientific 

(McCloud). Mass and adduct types were used to search the HMDB, KEGG and Biocyc. 

The m/z features with < 20% for missing values and spectral relative standard deviations 

< 30% for QC were included in subsequent statistical analyses. 
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2.5. Statistical Analysis 

Differences in metabolite levels between ICF and nICF patients were assessed with 

Mann–Whitney U-tests. p-Values < 0.05 were considered to be statistically significant. 

Principle Component Analysis (PCA) and Orthogonal Partial least squares Discriminant 

Analysis (OPLS-DA) were performed using MetaboAnalyst version 5.0 

(https://www.metaboanalyst.ca). Receiver operating characteristic (ROC) curve analyses 

were used for developing biomarkers, and their predictive abilities were tested using the 

area under the curve (AUC). Correlation analysis was performed using IBM SPSS version 

20.0 (International Business Machines Corporation, Armonk, NY, USA). 

3. Results 

3.1. Demographic Characteristics of the Patients  

Patients’ general demographic and clinical data are presented in Table 1. According 

to the grouping criteria, 6 patients were classified as ICF, and the other 10 patients were 

classified as nICF. The mean age at implantation of ICF and nICF patients was 39.2 years 

(IQR:30.5–46.25 years) and 40.5 years (IQR:30.75–47.75 years). There were 6 male patients 

(100%) in the ICF group and 9 male patients (90%) in the nICF group. The causes of HF in 

the ICF group were ischemic cardiomyopathy in 2 patients (33%) and dilated 

cardiomyopathy in 4 patients (67%). In the meantime, the causes of HF in the nICF group 

were ischemic cardiomyopathy in 1 patient (10%), dilated cardiomyopathy in 6 patients 

(60%), valvular heart disease in 2 patients (20%) and alcoholic cardiomyopathy in 1 patient 

(10%). There was no significant difference in the above parameters between the two 

groups. Furthermore, body mass index, New York Heart Association heart function, 

serum creatinine, hemoglobin and diabetes were not significantly different between the 

two groups. 

Table 1. Clinical characteristics of patients. 

Variable ICF (n = 6) nICF (n = 10) p-Value 

Age at implantation 39.2 (30.50–46.25) 40.5 (30.75–47.75) 0.8125 

Male sex 6 (100%) 9 (90%) 0.4577 

HF etiology   0.2769 

   ICM 2 (33%) 1 (10%)  

   DCM 4 (67%) 6 (60%)  

   VHD 0 2 (20%)  

   ACM 0 1 (10%)  

BMI (kg/m2) 25.5 ± 4.27 23.3 ± 5.01 0.4167 

NYHA functional class   0.4250 

   I 0 0  

   II 1 (16.7%) 0  

   III 0 1 (10%)  

   IV 5 (83.3%) 9 (90%)  

Diabetes 0 1(10%) 0.4577 

Creatinine (μmol/L) 87.4 ± 28.47 99.4 ± 19.48 0.3324 

Hemoglobin (g/L) 115.3 ± 28.65 135.9 ± 15.47 0.0805 

ICF: improved cardiac function; nICF: non-improved cardiac function; ICM: ischemic 

cardiomyopathy; DCM: dilated cardiomyopathy; VHD: valvular heart disease; ACM: alcoholic 

cardiomyopathy. 
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3.2. Distinguishing ICF Patients from nICF Patients Using Plasma Metabolomics 

Untargeted metabolomics was performed in both pre- and post-operative plasma 

samples to clarify the changes in metabolites between the two groups and identify 

potential biomarkers to predict the changes in cardiac function (Figure 1).  

 

Figure 1. Schematic workflow of the present study. 

A total of 1542 and 619 metabolites were detected in the positive and negative ion 

modes, respectively. There were 96 metabolites significantly different between nICF 

patients and ICF patients, 52 metabolites showed a fold change (FC) > 2, and 21 

metabolites showed an FC < 2 between nICF patients and ICF patients (Figure 2 and Table 

S1).  

 

Figure 2. Volcano plot of metabolic profiles in preoperative plasma from non-improved cardiac 

function patients and improved cardiac function patients: 52 metabolites were significantly (p < 0.05) 

upregulated (fold change > 2) in non-improved cardiac function patients and 21 metabolites were 

significantly (p < 0.05) downregulated (fold change < 2) in non-improved cardiac function patients. 

Subsequently, based on the largest database of human metabolites-the human 

metabolome database (HMDB, https://hmdb.ca), we finally identified 714 endogenous 

metabolites (Table S2). PCA was used to identify the general characteristic of ICF and 
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nICF patients. The 714 endogenous metabolites were entered into MetaboAnalyst version 

5.0 to establish a PCA model. Score plots showed that there was no obvious separation 

between the two groups of patients (Figure 3A).  

 

Figure 3. Separation and classification of metabolic profiles in preoperative plasma from non-

improved cardiac function (nICF) patients and improved cardiac function (ICF) patients: (A). 

Principle Component Analysis (PCA) score plots based on 714 endogenous metabolites. (B). 
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Orthogonal Partial least squares Discriminant Analysis (OPLS-DA) score plots based on 714 

endogenous metabolites. (C). Permutation test of OPLS-DA score plots based on 714 endogenous 

metabolites. (D). PCA score plots based on metabolites that were upregulated in nICF patients. (E). 

OPLS-DA score plots based on metabolites that were upregulated in nICF patients. (F). Permutation 

test of OPLS-DA score plots based on metabolites that were upregulated in nICF patients. (G). PCA 

score plots based on metabolites that were downregulated in nICF patients. (H). OPLS-DA score 

plots based on metabolites that were downregulated in nICF patients. (I). Permutation test of OPLS-

DA score plots based on metabolites that were downregulated in nICF patients. (J). PCA score plots 

based on metabolites that were significantly different between nICF patients and ICF patients. (K). 

OPLS-DA score plots based on metabolites were significantly different between nICF patients and 

ICF patients. (L). Permutation test of OPLS-DA score plots based on metabolites that were 

significantly different between nICF patients and ICF patients. (M). Enrichment analysis based on 

metabolites that were significantly upregulated in ICF patients. (N). Enrichment analysis based on 

metabolites that were significantly upregulated in nICF patients. 

Furthermore, we performed an OPLS-DA analysis to identify the potential difference 

between the ICF patients and nICF patients. Optimum separation of the metabolic profiles 

for ICF patients and nICF patients was achieved from the OPLS-DA score plots (Figure 

3B). However, when the permutation test was performed, Q2 was less than 0 (−0.199, p = 

0.88), suggesting an overfitting of the OPLS-DA model (Figure 3C). To maximize the 

identification of the metabolite profile in ICF and nICF patients, we then performed the 

PCA and OPLS-DA analyses for the metabolites upregulated in nICF patients (Figure 3D–

F) and metabolites downregulated in nICF patients (Figure 3G–I), both showing that there 

was no obvious separation of the score plots for PCA or overfitting of the OPLS-DA 

model. The above results indicated that it was difficult to clarify the difference between 

ICF patients and nICF patients based on metabolites of preoperative plasma. Finally, we 

used a total of 24 metabolites that were significantly different between the two groups to 

perform PCA and OPLS-DA (Table S3). Optimum separation of the metabolic profiles for 

nICF patients and ICF patients was achieved from both the PCA score plots and OPLS-

DA score plots (R2Y,0.948; Q2, 0.656) (Figure 3J–L). Based on these results, we further 

performed a functional enrichment analysis of metabolites that were significantly 

different between the two groups, and the results showed that the metabolites that were 

significantly elevated in the ICF patients were mainly enriched in carbohydrate 

metabolism (glycolysis, gluconeogenesis, pyruvate metabolism), amino acid metabolism 

(glucose-alanine cycle, cysteine metabolism, glycine and serine metabolism and alanine 

metabolism) and ATP metabolism (citric acid cycle) (Figure 3M), whereas the metabolites 

that were significantly elevated in the nICF patients were mainly enriched in hormone 

metabolism (androstenedione metabolism and estrone metabolism) (Figure 3N). 

3.3. Identification of Potential Biomarkers 

To further develop predictive biomarkers from the metabolites, we calculated the 

extent to which the patients’ preoperative plasma and post-operative plasma metabolites 

were altered (post-operative metabolite level/preoperative metabolite level). The results 

showed that for ICF patients, 13 metabolites were significantly downregulated (FC < 2, p 

< 0.05) and 94 metabolites were significantly upregulated (FC > 2, p < 0.05) after LVAD 

support (Figure 4A and Table S4).  
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Figure 4. Volcano plot of metabolic profiles in preoperative plasma and post-operative plasma from 

non-improved cardiac function (nICF) patients and improved cardiac function (ICF) patients: (A). 

Ninety-four metabolites were significantly (p < 0.05) upregulated (fold change > 2) in ICF patients 

after LVAD support, and 13 metabolites were significantly (p < 0.05) downregulated (fold change < 

2) in ICF patients after LVAD support. (B). Eighty-five metabolites were significantly (p < 0.05) 

upregulated (fold change > 2) in nICF patients after LVAD support, and 135 metabolites were 

significantly (p < 0.05) downregulated (fold change < 2) in nICF patients after LVAD support. 

For nICF patients, 135 metabolites were significantly downregulated (FC < 2, p < 0.05) 

and 85 metabolites were significantly upregulated (FC > 2, p < 0.05) after LVAD support 

(Figure 4B and Table S4). We hypothesized that candidate biomarkers would significantly 

decrease in ICF patients after LVAD support but not in the nICF patients (Figure 5A).  
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Figure 5. Biomarker identification: (A,B). The screening pipeline of biomarkers identification. (C). 

Receiver operating characteristic (ROC) curve of Tris(hydroxymethyl)aminomethane (THAM). (D). 

ROC curve of 5-guanidino-3-methyl-2-oxopentanoic acid (5G3M2OA). (E). Correlations between 

the change of THAM (post-operative plasma vs. preoperative plasma) and the change of left 

ventricular end-diastolic diameter. (F). Correlations between the change of 5G3M2OA and the 

change of diameter of the main pulmonary artery. (G). Correlations between the change of 

5G3M2OA and the change of left ventricular ejection fraction. 

We screened the predictive biomarkers using the following 4 steps: (1) Screening for 

significantly decreased metabolites in the ICF group post-operatively: a total of 29 

metabolites met this criterion. (2) Screening for metabolites that did not significantly 

decrease in nICF patients post-operatively: a total of 1935 metabolites met this criterion. 

(3) Screening for metabolites that overlapped in steps 2 and 3: a total of 19 metabolites met 

this criterion. (4) Selecting metabolites with AUC > 0.8 (Figure 5B). Using strict selection 

criteria, we identified tris(hydroxymethyl)aminomethane (THAM, AUC, 0.8833; p = 

0.0227) and 5-guanidino-3-methyl-2-oxopentanoic acid (5G3M2OA, AUC, 0.8500; p = 
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0.0126) as potential biomarkers. In addition, the efficacy of THAM and 5G3M2OA was 

better than NT-proBNP (AUC, 0.8000; p = 0.0509) (Figure 5C,D). Furthermore, the change 

ratio (CR, post-operation/pre-operation) of THAM positively correlated with the CR of 

LVEDD (Figure 5E), and CR of 5G3M2OA positively correlated with the diameter of the 

main pulmonary artery (MPA) (Figure 5F) and negatively correlated with LVEF (Figure 

5G), respectively. 

4. Discussion 

Although LVAD support achieved LV unloading with a beneficial effect on 

symptoms, a variable response was observed in our patients [16,17]. To date, no studies 

have developed a predictive biomarker for early identification of patients’ response to 

LVAD support in a high throughput manner. In this study, we used untargeted 

metabolomic approaches to identify the different metabolites between ICF and nICF 

patients at baseline and changes in metabolites after LVAD support. Furthermore, we 

found the metabolic characteristic of ICF and nICF patients and identified two metabolites 

that could predict the outcome of HF patients after LVAD support (Figure 1).  

A strength of our study was the prospective enrollment of patients who accepted 

LVAD support, which reduced potential bias attributable to medications. Some studies 

have reported a decrease in fatty acid metabolism during the progression of HF [18], but 

there is a lack of consensus regarding the changes in carbohydrate metabolism during HF. 

Since most of the carbohydrate oxidation levels need to be checked invasively [7], most of 

the current information on the alteration of carbohydrate metabolism during HF is 

obtained from the animal level [19]. There has been a large variation in the results obtained 

from animal models. In a transverse aortic constriction (TAC) mouse model, glucose 

uptake was decreased [20]. However, a post-infarction HF rat model showed enhanced 

glucose metabolism [21]. Another study using TAC to induce HF in rats found that 

glucose oxidation levels initially increased, then returned to normal levels during 

compensatory HF, and decreased when end-stage HF occurred [22]. The above results 

suggest that animal models are not representative of metabolic changes during human 

HF. High throughput metabolomics enables an approach for identifying plasma 

metabolites during the HF process. Based on our metabolomic findings, no fatty acid-

related pathways were observed in either group, which was consistent with the findings 

of the previous study [18]. In the meanwhile, enrichment analysis revealed a significant 

difference between ICF and nICF patients. Specifically, metabolites upregulated in ICF 

patients were enriched in carbohydrate metabolism, amino acid metabolism and ATP 

metabolism (Figure 3M). The reason for this phenomenon might be enhanced 

carbohydrate and amino acid metabolism provides energy to the heart, which might 

partially compensate for HF and thus promote the remodeling of cardiac function. 

However, metabolites upregulated in nICF patients were mainly enriched in hormone 

metabolism (Figure 3N), thus failing to provide sufficient energy for cardiac contraction. 

LVAD support changes patients’ plasma metabolites [19,23]. To date, potential 

biomarkers of patients’ response to LVAD support have rarely been identified in both 

human and animal studies. Our study identified two metabolites, THAM and 5G3M2OA, 

that could predict the patients’ response to LVAD support. THAM is a small molecule 

metabolite that is weakly alkaline and relieves acidosis [24]. In clinical practice, plasma 

pH is an important indicator for assessing the prognosis of patients. Acidosis affects the 

release of Ca2+ from the sarcoplasmic reticulum and interferes with the efficiency of the 

Na-K pump, which finally results in a disturbance in cellular electrolyte balance [25]. We 

hypothesized that the long-term compensatory elevation of THAM after LVAD support 

might reflect a state of suppressed cardiac function. 5G3M2OA is a derivative of arginine 

metabolism [26]. Aspartate aminotransferase specifically catalyzes transformation from 

the aspartate to the resulting 5G3M2OA, generating β-methylarginine [26]. Arginine is 

important for maintaining blood pressure (BP) and hemodynamic homeostasis. 

Experiments in rats demonstrated that BP decreased after intravenous arginine infusion. 
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When the infusion was discontinued, BP gradually recovered [27]. It was reported that 

changes in amino acid metabolism in patients with LVAD support, and our study further 

confirmed that the intermediate molecule of the arginine metabolic process, 5G3M2OA, 

was maintained at high levels and might affect the recovery of cardiac function in patients 

after LVAD support. 

The ideal biomarker for predicting response to LVAD support would have high 

sensitivity and specificity in a stable and rapid manner. To date, however, few biomarkers 

are applicable. Although plasma NT-proBNP is widely used in evaluating cardiac 

function clinically, it only reflects the current state of cardiac function. Our metabolites-

based predictive biomarkers may be useful for early prediction of response to LVAD 

support. Identifying changes in metabolites in the early post-operative period (within 1 

week) can predict the recovery of cardiac function 6 months after surgery, thus allowing 

early identification of patients who do not respond to LVAD support. For patients who 

have difficulty recovering cardiac function, aggressive metabolic intervention and an 

early search for a donor for HTx are required. 

5. Conclusions 

In summary, the MS-based metabolomic technique is an effective approach to 

identifying differential features between ICF and nICF patients after LVAD support. The 

nontargeted metabolomic method is an effective strategy to screen potential predictive 

biomarkers of patients’ response to LVAD support.  Early identification of ICF patients 

and nICF patients helps surgeons to administer supportive treatments, such as adding 

nICF patients to the HTx list, in a timely manner. We hope to offer a framework that will 

fulfill a more precision medicine in HF treatment. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/metabo12111068/s1, Table S1: Preoperative metabolites; 

Table S2: 714 endogenous metabolites; Table S3: Significantly different metabolites nICF pre LVAD 

vs. ICF pre LVAD; Table S4: Significantly different metabolites pre LVAD vs. post LVAD 

Author Contributions: Conceptualization, J.S. and S.H.; methodology, M.X.; software, H.C.; 

validation, X.C.; formal analysis, M.X.; investigation, X.H.; resources, S.H.; data curation, H.C.; 

writing—original draft preparation, M.X.; writing—review and editing, J.S.; visualization, H.C.; 

supervision, S.H.; project administration, M.X.; funding acquisition, S.H. All authors have read and 

agreed to the published version of the manuscript. 

Funding: This research was funded by the Program for Guangdong Introducing Innovative and 

Enterpreneurial Teams (2019ZT08Y481) and the National Natural Science Foundation of China 

(81900335). 

Institutional Review Board Statement: The study was conducted in accordance with the 

Declaration of Helsinki and approved by the Ethics Committee of Fuwai hospital (SP2021103(01)). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 

study. 

Data Availability Statement: Not applicable. 

Acknowledgments: We thank Xin Yan and others at the State Key Laboratory of Cardiovascular 

Disease, Fuwai Hospital, National Center for Cardiovascular Diseases for their help. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Slaughter, M.S.; Rogers, J.G.; Milano, C.A.; Russell, S.D.; Conte, J.V.; Feldman, D.; Sun, B.; Tatooles, A.J.; Delgado, R.M., III; 

Long, J.W.; et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 2009, 361, 

2241–2251. https://doi.org/10.1056/NEJMoa0909938. 

2. Simon, M.A.; Bachman, T.N.; Watson, J.; Baldwin, J.T.; Wagner, W.R.; Borovetz, H.S. Current and Future Considerations in the 

Use of Mechanical Circulatory Support Devices: An Update, 2008–2018. Annu. Rev. Biomed. Eng. 2019, 21, 33–60. 

https://doi.org/10.1146/annurev-bioeng-062117-121120. 



Metabolites 2022, 12, 1068 12 of 13 
 

 

3. Yang, K.C.; Yamada, K.A.; Patel, A.Y.; Topkara, V.K.; George, I.; Cheema, F.H.; Ewald, G.A.; Mann, D.L.; Nerbonne, J.M. Deep 

RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with 

mechanical circulatory support. Circulation 2014, 129, 1009–1021. https://doi.org/10.1161/CIRCULATIONAHA.113.003863. 

4. Morley-Smith, A.C.; Mills, A.; Jacobs, S.; Meyns, B.; Rega, F.; Simon, A.R.; Pepper, J.R.; Lyon, A.R.; Thum, T. Circulating 

microRNAs for predicting and monitoring response to mechanical circulatory support from a left ventricular assist device. Eur. 

J. Heart Fail. 2014, 16, 871–879. https://doi.org/10.1002/ejhf.116. 

5. Shahinian, J.H.; Rog-Zielinska, E.A.; Schlimpert, M.; Mayer, B.; Tholen, S.; Kammerer, B.; Biniossek, M.L.; Beyersdorf, F.; 

Schilling, O.; Siepe, M. Impact of left ventricular assist device therapy on the cardiac proteome and metabolome composition in 

ischemic cardiomyopathy. Artif. Organs 2020, 44, 257–267. https://doi.org/10.1111/aor.13566. 

6. Badolia, R.; Ramadurai, D.K.A.; Abel, E.D.; Ferrin, P.; Taleb, I.; Shankar, T.S.; Krokidi, A.T.; Navankasattusas, S.; McKellar, S.H.; 

Yin, M.; et al. The Role of Nonglycolytic Glucose Metabolism in Myocardial Recovery Upon Mechanical Unloading and 

Circulatory Support in Chronic Heart Failure. Circulation 2020, 142, 259–274. 

https://doi.org/10.1161/CIRCULATIONAHA.119.044452. 

7. Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 

2005, 85, 1093–1129. https://doi.org/10.1152/physrev.00006.2004. 

8. Byrne, N.J.; Levasseur, J.; Sung, M.M.; Masson, G.; Boisvenue, J.; Young, M.E.; Dyck, J.R. Normalization of cardiac substrate 

utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc. Res. 2016, 110, 

249–257. https://doi.org/10.1093/cvr/cvw051. 

9. Hu, J.R.; Coresh, J.; Inker, L.A.; Levey, A.S.; Zheng, Z.; Rebholz, C.M.; Tin, A.; Appel, L.J.; Chen, J.; Sarnak, M.J.; et al. Serum 

metabolites are associated with all-cause mortality in chronic kidney disease. Kidney Int. 2018, 94, 381–389. 

https://doi.org/10.1016/j.kint.2018.03.008. 

10. Barderas, M.G.; Laborde, C.M.; Posada, M.; de la Cuesta, F.; Zubiri, I.; Vivanco, F.; Alvarez-Llamas, G. Metabolomic profiling 

for identification of novel potential biomarkers in cardiovascular diseases. J. Biomed. Biotechnol. 2011, 2011, 790132. 

https://doi.org/10.1155/2011/790132. 

11. Nemet, I.; Saha, P.P.; Gupta, N.; Zhu, W.; Romano, K.A.; Skye, S.M.; Cajka, T.; Mohan, M.L.; Li, L.; Wu, Y.; et al. A Cardiovascular 

Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell 2020, 180, 862–877 e822. 

https://doi.org/10.1016/j.cell.2020.02.016. 

12. Cui, H.; Shu, S.; Li, Y.; Yan, X.; Chen, X.; Chen, Z.; Hu, Y.; Chang, Y.; Hu, Z.; Wang, X.; et al. Plasma Metabolites-Based Prediction 

in Cardiac Surgery-Associated Acute Kidney Injury. J. Am. Heart Assoc. 2021, 10, e021825. 

https://doi.org/10.1161/JAHA.121.021825. 

13. Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of Kombucha Obtained from Green, Oolong, and Black Teas on 

Inhibition of Pathogenic Bacteria, Antioxidation, and Toxicity on Colorectal Cancer Cell Line. Microorganisms 2019, 7, 700. 

https://doi.org/10.3390/microorganisms7120700. 

14. Castle, A.L.; Fiehn, O.; Kaddurah-Daouk, R.; Lindon, J.C. Metabolomics Standards Workshop and the development of 

international standards for reporting metabolomics experimental results. Brief Bioinform 2006, 7, 159-165, 

doi:10.1093/bib/bbl008. 

15. Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and 

identification in metabolomic studies. Gigascience 2013, 2, 13, doi:10.1186/2047-217X-2-13. 

16. Abraham, W.T.; Smith, S.A. Devices in the management of advanced, chronic heart failure. Nat. Rev. Cardiol. 2013, 10, 98–110. 

https://doi.org/10.1038/nrcardio.2012.178. 

17. Ammirati, E.; Oliva, F.G.; Colombo, T.; Russo, C.F.; Cipriani, M.G.; Garascia, A.; Guida, V.; Colombo, G.; Verde, A.; Perna, E.; 

et al. Mid-term survival after continuous-flow left ventricular assist device versus heart transplantation. Heart Vessel. 2016, 31, 

722–733. https://doi.org/10.1007/s00380-015-0654-4. 

18. Bedi, K.C., Jr.; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, 

K.B.; et al. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in 

Advanced Human Heart Failure. Circulation 2016, 133, 706–716. https://doi.org/10.1161/CIRCULATIONAHA.115.017545. 

19. Chen, L.; Song, J.; Hu, S. Metabolic remodeling of substrate utilization during heart failure progression. Heart Fail Rev. 2019, 24, 

143–154. https://doi.org/10.1007/s10741-018-9713-0. 

20. Zhabyeyev, P.; Gandhi, M.; Mori, J.; Basu, R.; Kassiri, Z.; Clanachan, A.; Lopaschuk, G.D.; Oudit, G.Y. Pressure-overload-

induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc. Res. 2013, 97, 676–

685. https://doi.org/10.1093/cvr/cvs424. 

21. Amorim, P.A.; Nguyen, T.D.; Shingu, Y.; Schwarzer, M.; Mohr, F.W.; Schrepper, A.; Doenst, T. Myocardial infarction in rats 

causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. 

J. Thorac. Cardiovasc. Surg. 2010, 140, 1160–1167. https://doi.org/10.1016/j.jtcvs.2010.08.003. 

22. Doenst, T.; Pytel, G.; Schrepper, A.; Amorim, P.; Farber, G.; Shingu, Y.; Mohr, F.W.; Schwarzer, M. Decreased rates of substrate 

oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc. Res. 

2010, 86, 461–470. https://doi.org/10.1093/cvr/cvp414. 

23. Bayes-Genis, A.; Liu, P.P.; Lanfear, D.E.; de Boer, R.A.; Gonzalez, A.; Thum, T.; Emdin, M.; Januzzi, J.L. Omics phenotyping in 

heart failure: The next frontier. Eur. Heart J. 2020, 41, 3477–3484. https://doi.org/10.1093/eurheartj/ehaa270. 



Metabolites 2022, 12, 1068 13 of 13 
 

 

24. Sirieix, D.; Delayance, S.; Paris, M.; Massonnet-Castel, S.; Carpentier, A.; Baron, J.F. Tris-hydroxymethyl aminomethane and 

sodium bicarbonate to buffer metabolic acidosis in an isolated heart model. Am. J. Respir. Crit. Care Med. 1997, 155, 957–963. 

https://doi.org/10.1164/ajrccm.155.3.9117032. 

25. Mattiazzi, A.; Vittone, L.; Mundina-Weilenmann, C. Ca2+/calmodulin-dependent protein kinase: A key component in the 

contractile recovery from acidosis. Cardiovasc. Res. 2007, 73, 648–656. https://doi.org/10.1016/j.cardiores.2006.12.002. 

26. Feng, J.; Wu, J.; Gao, J.; Xia, Z.; Deng, Z.; He, X. Biosynthesis of the beta-methylarginine residue of peptidyl nucleoside 

arginomycin in Streptomyces arginensis NRRL 15941. Appl. Environ. Microbiol. 2014, 80, 5021–5027. 

https://doi.org/10.1128/AEM.01172-14. 

27. Guridi, J.; Borgatello, C.; Scremin, O.U. Arginine NO-dependent and NO-independent effects on hemodynamics. Eur. J. 

Pharmacol. 2014, 729, 138–143. https://doi.org/10.1016/j.ejphar.2014.01.070. 

 


