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Abstract: Pneumonia is a common cause of morbidity and mortality and is most often caused by bacterial
pathogens. COVID-19 is characterized by lung infection with potential progressive organ failure. The
systemic consequences of both disease on the systemic blood metabolome are not fully understood.
The aim of this study was to compare the blood metabolome of both diseases and we hypothesize that
plasma metabolomics may help to identify the systemic effects of these diseases. Therefore, we profiled
the plasma metabolome of 43 cases of COVID-19 pneumonia, 23 cases of non-COVID-19 pneumonia,
and 26 controls using a non-targeted approach. Metabolic alterations differentiating the three groups
were detected, with specific metabolic changes distinguishing the two types of pneumonia groups. A
comparison of venous and arterial blood plasma samples from the same subjects revealed the distinct
metabolic effects of pulmonary pneumonia. In addition, a machine learning signature of four metabolites
was predictive of the disease outcome of COVID-19 subjects with an area under the curve (AUC) of
86 ± 10%. Overall, the results of this study uncover systemic metabolic changes that could be linked to
the etiology of COVID-19 pneumonia and non-COVID-19 pneumonia.

Keywords: COVID-19; non-COVID-19 pneumonia; metabolomics; metabolic profiling; multivariate
statistics; machine learning; plasma; mass spectrometry; community-acquired pneumonia; system
biology

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has been the primary health
concern affecting millions of human lives worldwide in the last two years. The illness,
which began with a series of pneumonia cases of unknown etiology, was soon confirmed to
cause severe acute respiratory syndrome [1–3]. COVID-19 primarily affects the respiratory
system and can progress into a life-threatening systemic illness with organ failure [4]. The
majority of COVID-19 cases are either asymptomatic or with minor symptoms, while 14%
develop severe symptoms, including pneumonia and acute respiratory distress syndrome
(ARDS), of which 5% of critical cases lead to 2.3% fatality [5]. The primary clinical man-
ifestation of a COVID-19 infection is pneumonia, a common acute respiratory infection
involving the alveolar and distal bronchi of the lungs [6]. Community-acquired pneumonia
(non-COVID-19 pneumonia) is an important disease entity, which is frequently caused by
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bacterial pathogens and results in significant morbidity and mortality [7,8]. Ever since the
onset of COVID-19, attempts have been made to compare the clinical features of COVID-19
pneumonia with non-COVID-19 pneumonia, which could help in distinguishing COVID-19
pneumonia from other respiratory diseases [9–12].

It is now known that COVID-19 has different radiological features than non-COVID-19
pneumonia [13–15]. However, limited information is available concerning other clinical
characteristics of COVID-19 disease [9,10,12]. As inflammation caused by pneumonia
affects pulmonary blood circulation, biochemical changes might also be detectable in
the blood. Details on the disease mechanisms of COVID-19 have been uncovered using
genomic, transcriptomic, and proteomic approaches [16–27]. However, limited studies
have investigated metabolomic changes with a particular emphasis on COVID-19 disease
and non-COVID-19 pneumonia [28–30]. Metabolomics offers a unique advantage for the
characterization of biochemical events influenced by COVID-19 disease. Some studies have
indeed characterized the COVID-19-metabolome within the context of clinical features,
cytokine levels, and disease severity [31,32]. However, the impact of pulmonary patho-
physiology on the plasma metabolome has not yet been investigated in detail. Additionally,
the blood concentrations of inflammatory mediators are altered in COVID-19 and linked to
pathomechanisms and clinical outcomes [33,34].

The aim of this study was to characterize the blood metabolome of patients with
severe COVID-19 pneumonia and non-COVID-19 pneumonia. We report the metabolic
investigation of plasma samples in subjects with COVID-19 disease, pneumonia, and
controls. We also compare venous and arterial plasma samples from the lung artery and
the lung vein to elucidate the metabolic differences that may result from lung inflammation.
Furthermore, we compare transpulmonary gradients of different inflammatory cytokines
between the three patient groups. Finally, we correlate metabolic changes with measured
cytokine levels in these subjects and identify potential markers for disease severity.

2. Materials and Methods
2.1. Subject Recruitment and Sampling

The present work used the baseline data and follow-up data of the COVID-19 cohort
CORSAAR (n = 43) and its control cohort PULMOHOM, which are multi-center studies
focusing on pathomechanisms and the role of risk factors in COVID-19 and other inflamma-
tory lung diseases. Within the PULMOHOM cohort study, 23 patients with non-COVID-19
pneumonia and 26 control patients undergoing elective non-pulmonary surgery have been
included. The inclusion criteria for this non-pulmonary, surgical cohort were planned
surgery, no known pulmonary disease, male sex, central venous line (CVC), and peripheral
arterial line (PAL) placement during surgery. We chose patients undergoing surgery be-
cause a central venous catheter and an arterial catheter were placed as routine measures
and allow for obtaining blood without further invasive procedure. Patients for the COVID-
19 cohort were included within 3 days of admittance to the hospital and recruited at the
Saarland University Hospital Homburg, the Caritas Hospital Saarbrücken (St. Theresia
and St. Josef), the Hospital Saarbrücken (Winterberg), and the SHG-Hospital Völklingen.
The studies have been approved by the ethics committee of the Medical Council of the
Saarland (Ethikkommission der Ärztekammer des Saarlandes, 62/20), and all patients
or their legal representatives gave their informed consent. Basic and anthropomorphic
characteristics and vital parameters were assessed based on measurements, questionnaires,
and standardized interviews; basic data are shown in Table 1. There were no differences
in age and BMI between the groups (ANOVA testing with Bonferroni post-hoc testing),
only the COVID-19 group included female patients. The COVID-19 group comprised
33 hospitalized patients on normal care units, 8 ventilated patients on the ICU, and one
outpatient. From the hospitalized patients, 10 patients died in the course of the disease.
All COVID-19 patients were recruited during the first wave of COVID and therefore were
infected most likely by the alpha variant (B.1.1.7). Information regarding comorbidities
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of the study cohort is included in Supplementary Table S1. Detailed characteristics of all
COVID-19 patients is included in Supplementary Table S2.

Table 1. Distribution of age, sex, and BMI between the study groups.

Item Control Non-COVID-19
Pneumonia

COVID-19
Pneumonia

Patient number 26 23 43
Sex, % male 100 100 65

Age 62.54 (11.39) 65.57 (14.88) 55.98 (27.44)
BMI 26.37 (5.34) 27.27 (9.67) 27.22 (6.07)

Data are mean (SD) and n (%).

Approximately 20 mL of blood was drawn from CVC and PAL: 2 EDTA (ethylenedi-
aminetetraacetic acid) tubes with 5 mL, 2 serum tubes with 10 mL, and 2 RNA-PAX gene®

tubes with 5 mL. We then centrifuged the samples from the EDTA and serum tubes in the
Beckmann Coulter type Allegra X-30R Centrifuge. The EDTA samples were centrifuged
at 2500 g for 20 min at 20 ◦C. The serum tubes had to be allowed to clot for 30 min before
centrifugation and the samples could then be centrifuged at 1300 g for 10 min at 20 ◦C.
EDTA and serum were pipetted off immediately after centrifugation. In the case of the
EDTA samples, the supernatant and the serum were frozen at −80 ◦C and stored. Only
the supernatant of the serum samples was frozen. The subsequent sample transport to the
biomaterial bank took place on dry ice.

2.2. Measurements of the Blood Concentration of the Cytokines

The samples were evaluated using the multiplex cytokine array from Myriad (City,
USA). Until the test was carried out, all samples were stored under −70 ◦C. A part (aliquot)
of each sample was added to individual multiplexes of the selected MAP (multi-analyte
profile) and to a blocker. Different assays were used for the different cytokines. The Human
Inflammation MAP® v 1.1 was used for the inflammatory biomarker and was therefore
used for the evaluation of most of the cytokines in our study.

In addition, special Custom Maps® were created in order to test individual cytokines
that would otherwise be distributed over several multiplexes. These included the cytokines
AXL, HCC-4, FAS, HGF, TRAIL-R3, AFP, CA-125, CA-19-9, CEA, hCG, NSE, MMP-1,
MMP-7, MMP-9 total, ANG -1, CA-9, Decorin, IL-18bp, PECAM-1, and SP-D.

2.3. Metabolite Extraction

The plasma samples were thawed on the ice for 30 min prior to extraction. Plasma sample
containing 11 µL was mixed with 100 µL of an ice-cold extraction solvent (methanol/water,
8/1, −20 ◦C) that contained 2 µg/mL of D6-glutaric acid and U13C-ribitol as internal stan-
dards. Subsequently, the mixture was vortexed at (1400 rpm, 4 ◦C, 10 min) and centrifuged
at (13,000 g, 4 ◦C, 10 min) to precipitate proteins and extract metabolites. The supernatants
(90 µL) were transferred to glass vials, evaporated to dryness at 4 ◦C using speed-vac, and
stored at −20 ◦C until gas chromatography-mass spectrometry (GC-MS) measurement.
Pooled quality control samples were prepared by mixing 10 µL of plasma from each sample
and sample pools were extracted using the aforementioned steps.

2.4. GC-MS Measurements

Before GC-MS measurement, dried metabolite extracts were derivatized using an
automated derivatization robot (Gerstel MPS). The first derivatization was performed by
adding 15 µL of (20 mg/mL) methoxyamine hydrochloride in pyridine (Sigma-Aldrich),
shaken for 90 min at 40 ◦C. The second derivatization was performed by adding an equal
volume of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) (Macherey-Nagel) under
continuous shaking for 30 min at 40 ◦C. The sample (1 µL) was injected into an SSL injector
at 270 ◦C in spitless mode. GC-MS analysis was performed using an Agilent 7890A GC
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equipped with a 30 m DB-35MS + 5 m Duraguard capillary column (0.25 mm inner diameter,
0.25 µm film thickness). Helium was used as the carrier gas at a flow rate of 1.0 mL/min.
The GC oven temperature was held at 80 ◦C for 6 min, subsequently increased to 300 ◦C at
6 ◦C/min, and held at that temperature for 10 min. The temperature was increased to 325 ◦C
at 10 ◦C/min and held for an additional 4 min, resulting in a total run time of 60 min per
sample. The GC was connected to an Agilent 5977B MSD. The transfer line temperature was
set to 280 ◦C, and the MSD was operating under electron ionization at 70 eV. The MS source
was held at 230 ◦C and the quadrupole at 150 ◦C. Full scan mass spectra were acquired from
m/z 70 to m/z 800 at a scan rate of 5.2 scans/s. Pooled samples were measured after every
eighth GC-MS measurement for quality control and data correction [35].

2.5. Data Processing

Deconvolution of mass spectra, peak picking, integration, and retention index calibra-
tion was performed using our in-house software [36]. Compounds were identified using
an in-house mass spectral library by spectral and retention index similarity. The following
deconvolution settings were applied to scan data: peak threshold: 5; minimum peak height: 5;
bins per scan: 10; deconvolution width: 7; no baseline adjustment; minimum 15 peaks per
spectrum; no minimum required base peak intensity. Retention index calibration was based
on a C10–C40 even n-alkane mixture (68281, Sigma-Aldrich, Munich, Germany). Relative
quantification was carried out using the batch quantification function of our in-house soft-
ware [36]. Data were normalized to quality control pool measurement and intensity of the
internal standard (D6-Glutaric acid).

2.6. Statistical Analysis

Metabolomics data were further processed using Metaboanalyst 5.0 [37]. Cube root
transformation and range scaling methods were applied to obtain Gaussian distribution.
Principal component analysis (PCA) was performed to identify intrinsic clustering. Super-
vised clustering was performed using partial least squares discriminant analysis (PLS-DA).
Further, the model accuracy was tested using cross-validation by 100 permutations to avoid
over-fitting. R2 and Q2 values were used to assess the goodness of the fit and predictive
ability of the PLS-DA model. The groups’ (COVID-19 disease, non-COVID-19 pneumonia,
and controls) significant metabolic differences were identified using ANOVA (p < 0.05)
adjusted for multiple hypothesis testing using FDR correction. A post-hoc analysis using
Tukey’s HSD was performed to identify within groups’ (COVID-19 disease against controls
and non-COVID-19 pneumonia against controls) significance. Arterial and venous sample
differences from the same individuals were identified by performing repeated measures
ANOVA in r [38]. Box-and-whisker plots and ROC curve analysis plots were plotted
using r packages. Heat maps of differentially expressed metabolites were created using
Metaboanaylst 5.0. Significant metabolites were further submitted for pathway analysis
using a pathway analysis tool (MetPA) in Metaboanalyst 5.0 [37].

To analyze the transpulmonary gradients of cytokine concentrations, we determined
the difference between the concentrations obtained from samples from the peripheral arterial
catheter and the central venous catheter (CVC) (∆-concentration). These ∆-concentrations
were compared between the three patient groups (ANOVA test). Furthermore, the signifi-
cant difference between the venous and arterial concentration of each cytokine within each
group was analyzed with paired t-test. A significance value of p ≤ 0.05 was applied to all
tests, and SPSS V27 (IMB) was used for analysis.

2.7. Machine Learning Approaches

Machine learning approaches such as support vector machines (SVM) were employed
to identify the predictive marker metabolites for disease outcomes. In brief, the synthetic
minority oversampling technique (SMOTE) was used to fit imbalances for the training
set [39]. SMOTE takes the minority class data points and creates new data points which lie
between any two nearest data points joined by a straight line. Hyperparameter tuning was
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performed on the SVM classifier with training data. SVM-recursive feature elimination
(RFE) was used to select features (metabolites) for the classification algorithm [40]. Essen-
tially, this method trains the model on the original number of features, and importance is
given to each feature. The least important features are taken out, and then the process is
repeated to a specified number of features. Finally, cross-validation was used to determine
an optimal number of features. For each iteration of splitting the data into test and hold-out
set, different features were selected by SVM-RFE. Only those features selected by SVM-RFE
in each iteration were used for the training of the SVM classifier. The SVM classifier was
trained on the 10 train datasets to evaluate variability handling with the classifier.

3. Results
3.1. Exploratory Statistical Analysis of Plasma Metabolites

We performed metabolic profiling of plasma samples collected from 43 COVID-19 pneu-
monia, 23 non-COVID-19 pneumonia, and 26 control subjects. Data processing using our in-
house software resulted in the detection of 157 metabolites detectable across all samples [36], of
which the structural identity of 67 metabolites was confirmed by using an in-house metabolic
reference library. Metabolite levels were normalized to the internal standard and pooled
quality control samples. In addition, the data matrix was log-transformed and Pareto scaled
for further statistical analysis. Principal component analysis (PCA) revealed inherent clusters
among the sample groups of COVID-19 pneumonia, non-COVID-19 pneumonia, and controls
based on the metabolic profile (Figure S1). Moreover, a partial least square discriminant
analysis (PLS-DA) revealed clear discrimination among the three groups (Figure 1a). A cross-
validation analysis using 100 randomly permutated models indicated a good predictive ability
of the original PLS-DA model with cumulative R2 and Q2 values of the model 0.87 and 0.53,
respectively (Figure 1b). Q2 represents the predictive ability of the model and is calculated by
comparing the predicted data with the original data.
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Figure 1. Exploratory multivariate statistical analysis. (a) Partial least square discriminant anal-
ysis (PLS-DA) score plot depicting clustering of COVID-19 pneumonia (CovP), control, and non-
COVID-19 pneumonia (CAP) samples. (b) Plot obtained after performing a random permutation
test with 100 permutations on PLS-DA model. The red asterisk indicates the best classifier (R2 = 0.87,
Q2 = 0.53), R2 is the explained variance, and Q2 is the predictive ability of the model. Q2 represents
the model’s predictive ability and is calculated by comparing the predicted data with the original
data. The calculated prediction error (Predicted Residual Sum of Squares or PRESS) is divided by
the initial sum of squares and subtracted from 1. High R2 and Q2 values represent the model’s good
predictive ability and confirm our PLS-DA model’s validity. The inset table summarizes Q2, R2, and
the accuracy of the best model. Comps mean the number of components.
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3.2. Significant Metabolic Alterations

Metabolic alterations among the groups were identified using ANOVA (p-value < 0.05),
adjusted for multiple hypotheses testing by false discovery rate (FDR). Metabolites, dis-
criminating all three groups, were selected using post-hoc analysis. Overall, 66 metabolites
showed significant alterations among COVID-19 pneumonia, non-COVID-19 pneumonia,
and controls (Supplementary Table S3). These include amino acids, fatty acids, amino
sugar derivatives, and organic acids. Unknown metabolites that were not matched with the
in-house library are annotated using their retention indices. An overview of the top 40 dif-
ferentially altered metabolites among COVID-19 pneumonia, non-COVID-19 pneumonia,
and controls are depicted in Figure 2. Further post-hoc analysis (Tukey’s HSD) uncovered
the specific differences between the groups (Supplementary Table S3). Significant differ-
ences in the levels of 29 metabolites were observed in COVID-19 pneumonia compared to
the control subjects. Levels of aspartic acid, galactose, glycine, lactic acid, lyxose, maltose,
ornithine, phenylalanine, pyroglutamic acid, ribose, serine, and taurine were increased
while fumaric acid levels were decreased in COVID-19 pneumonia patients (Figure S2).
In the non-COVID-19 pneumonia compared to the control subjects’ group comparison,
37 metabolites were identified as significant. Wherein, we observed increased levels of
erythrose 4-phosphate, fructose, gluconolactone, gluconic acid, glucuronic acid, isoleucine,
meso-erythritol, methionine, threonic acid, tyrosine, urea, and xylitol in non-COVID-19
pneumonia patients (Figure S3).
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3.3. Pathway Analysis

Metabolites selected as significant from the post-hoc analysis between the two groups,
COVID-19 pneumonia and non-COVID-19 pneumonia, were further subjected to pathway
analysis. Interestingly, pathway analysis revealed distinct metabolic responses in the
COVID-19 pneumonia and non-COVID-19 pneumonia group. The top five pathways that
were enriched in the COVID-19 pneumonia group were arginine biosynthesis, glutathione
metabolism, aminoacyl-tRNA biosynthesis, pyruvate metabolism, and alanine, aspartate,
and glutamate metabolism (Figure 3a). In comparison, the top five pathways altered in
the non-COVID-19 pneumonia group were the pentose phosphate pathway, aminoacyl-
tRNA biosynthesis, pentose and glucuronate interconversions, phenylalanine, tyrosine and
tryptophan metabolism, and valine, leucine and isoleucine metabolism (Figure 3b).
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Figure 3. Topology map of altered metabolic pathways describing the impact of metabolites selected
from comparative post-hoc analysis (Tukey’s HSD). (a) The top five altered metabolic pathways
in the COVID-19 pneumonia (CovP) group. 1. Arginine biosynthesis, 2. Glutathione metabolism,
3. Aminoacyl-tRNA biosynthesis, 4. Pyruvate metabolism, 5. Alanine, aspartate, and glutamate
metabolism. (b) The top five altered metabolic pathways in the non-COVID-19 pneumonia (CAP)
group. 1. Pentose phosphate pathway, 2. Aminoacyl-tRNA biosynthesis, 3. Pentose and glucuronate
interconversions, 4. Phenylalanine, tyrosine, and tryptophan metabolism, 5. Valine, leucine and
isoleucine metabolism.

3.4. Machine Learning Signature to Predict Disease Outcome

Next, we applied a machine learning approach based on a support vector machine
(SVM) to disclose the metabolic signature that can predict the COVID-19 outcome (recovered
vs. deceased). Among the 43 COVID-19 patients recruited for this study, 32 recovered and
10 deceased. At first, we applied the synthetic minority oversampling technique (SMOTE)
to fit imbalances in the training dataset. Hyperparameter tuning was performed using
repeated randomized cross-validation on the SVM classifier with training data. Subsequently,
SVM-recursive feature elimination (RFE) was applied to select metabolite features for the
classification algorithm. RFE aims to select features by recursively considering smaller and
smaller sets of features. Finally, cross-validation was employed to determine an optimal
number of features. The SVM classifier was trained on the 10 training datasets to evaluate
variability handling with the classifier. We applied receiver operating characteristic (ROC) to
evaluate our classification model. The classifier correctly predicted outcomes (recovered vs.
deceased) of the COVID-19 subjects with an area under the ROC curve (AUC) of 86 ± 10%
(Figure 4a). Box-whisker plots of the concluding four marker metabolites (threonine, RI1532.53,
RI1557.73, and RI1150.81) predictive of disease fatality (recovered vs. deceased) in COVID-19



Metabolites 2022, 12, 1058 8 of 17

individuals are presented in Figure 4b. In addition, the predictive power of the final model
was evaluated via a precision–recall curve. Precision is the ratio of the number of true positives
divided by the sum of true positives and false positives, which characterizes the ability of the
model to predict the positive samples correctly. It is complemented by the recall metric, which
is the ratio of true positives to the actual positives of the data. A perfect model will have a
precision and recall of 1 for every chosen threshold. The information of the precision–recall
curve is summarized via the AUC metric (Figure S4).
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3.5. Effect of Pneumonia on the Plasma Metabolome and Cytokines

We then set out to elucidate the plasma metabolic effects of pneumonia specific
for COVID-19 and non-COVID-19 pneumonia. Accordingly, we compared the plasma
metabolome of systemic venous (pre-lung) and arterial (post-lung) blood samples from
the same individuals. To identify significant metabolic differences in arterial vs. venous
samples, we performed a repeated-measures ANOVA. As a result, significant differences
in nine metabolite levels were revealed across arterial and venous samples specific for
COVID-19 pneumonia (Figure 5a). We observed increased levels of octadecanoic acid,
RI1501.16, RI1028.76, RI2473.8, RI3150.76, RI1021.65, RI3150.76, and RI1021.65 in the arterial
samples, reflecting the contribution from lung metabolism. Contrarily, in arterial vs. venous
samples from non-COVID-19 pneumonia patients’ levels of two metabolites (RI2960.53 and
RI2350.12) were significantly lower (Figure 5b).
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Figure 5. Significant metabolite differences in venous and arterial samples revealed by repeated-
measures ANOVA. (a) Box-and-whisker plots of COVID-19 pneumonia (CovP) specific significant
metabolic differences in venous (green box) and arterial samples (red box). (b) Box-and-whisker plots
of non-COVID-19 pneumonia (CAP) specific significant metabolic differences in venous (green box)
and arterial samples (red box). (Asterisk indicates p ≤ 0.05).

Next, we compared the differences between venous and arterial blood samples (“∆-
concentrations”) between the groups. Here, cytokines IgM, EN-RAGE, IL1-RA, and ICAM-1
showed significantly different ∆-concentrations between COVID-19 pneumonia and the con-
trol group (Figure 7a). While cytokine PAI-1showed significant differences in ∆-concentrations
between non-COVID-19 pneumonia and control groups (Figure 7b). Overall, these data re-
vealed that the composition of the blood metabolome and cytokine pattern within the lung is
disease-specific and differs between COVID-19 and non-COVID-19 pneumonia.
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Figure 6. Significant cytokines differences in venous and arterial samples. (a) Box-and-whisker plots
of COVID-19 pneumonia (CovP) specific significant cytokine differences. (b) Box-and-whisker plots
of both non-COVID-19 pneumonia (CAP) and COVID-19 specific significant cytokine differences;
(c) Box-and-whisker plots of both non-COVID-19 pneumonia (CAP) specific significant cytokine
differences. (Venous (green box), arterial samples (red box), an asterisk indicates p-value ≤ 0.05).

Next, we investigated whether the blood concentrations of cytokines were changed
after the passage of the pulmonary circulation (Supplementary Table S4). A paired t-test
was employed to compare venous (pre-lung) and arterial (post-lung) samples. Significant
differences in Factor VII, IgA, IgM, IL-1beta, and TGB were observed in the COVID-19
group (Figure 6a), while EN-RAGE and IL-1RA showed significant alteration in both
COVID-19 and non-COVID-19 pneumonia groups (Figure 6b). PAI-1 levels were significant
in the non-COVID-19 pneumonia group (Figure 6c).
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4. Discussion

In this study, we employed a non-targeted plasma metabolomics approach to identify
group-specific differences among COVID-19 pneumonia, non-COVID-19 pneumonia, and
control groups (Supplementary Table S3). Disease-specific metabolic alterations were
detected in COVID-19 pneumonia and non-COVID-19 pneumonia groups (compared
to controls unless otherwise specified) and can be used to develop biomarker patterns
predictive of disease fatality. A transpulmonary gradient of metabolites and cytokines
was found for several metabolites and cytokines highlighting the role of the lung in the
modulation of systemic disease consequences.

Plasma concentrations of amino acids were specifically altered in the COVID-19
pneumonia group such as aspartic acid, glycine, and serine (Figure S2). An increase in the
levels of glycine has previously been linked with COVID-19 infection [41]; an increase in
glycine activates porphyrin metabolism, which is a key step for disease progression [41].
Notably, taurine levels were specifically increased in the COVID-19 pneumonia group
while these levels were slightly decreased in the non-COVID-19 pneumonia group. In
humans, leucocytes have been described to have the highest levels of taurine [42], where
it acts as an antioxidant affecting immune function [43]. Alternately, taurine metabolism
has also been shown to influence sepsis by altering the release of important inflammatory
mediators [44], indicating a similar response in COVID-19 pneumonia. In line with this,
lactic acid levels were significantly increased in the COVID-19 pneumonia group. Lactic
acid has been shown to affect immune functions via the regulation of immune cell-specific
signaling pathways [45,46]; lactic acidosis contributes to the inflammatory response through
dysregulation of cytokines and macrophage activation [47]. Lactic acid is also strongly
associated with sepsis, which can be attributed to mitochondrial dysfunction [48–50]. Thus,
increased lactic acid levels in the plasma of COVID-19 pneumonia patients are indicative
of a sepsis-induced inflammatory response [51].
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Significant changes in the levels of the essential amino acids viz. methionine, tyrosine,
and isoleucine were observed in the non-COVID-19 pneumonia group (Figure S3). An in-
crease in the levels of methionine and tyrosine could be related to bacterial infection as these
are amino acids that are typical for pathogen metabolism [52]. Isoleucine, a branched-chain
amino acid, acts as a transcriptional regulator in bacterial pathogenesis [53]. It functions as
a host metabolic signal that regulates virulence gene expression in certain bacteria, includ-
ing a common pneumonia-causing bacteria Staphylococcus aureus [53]. We also observed
higher urea levels in non-COVID-19 pneumonia individuals, which corroborates with
previous reports [54]. In non-COVID-19 pneumonia subjects, pneumonia is often followed
by dehydration which results in increased reabsorption of urea by the kidney. Earlier
studies have also reported an association of urea levels with mortality and the severity of
non-COVID-19 pneumonia [55].

Interestingly, our pathway analysis revealed distinct metabolic responses in COVID-19
pneumonia patients (Figure 3a). Arginine metabolism plays a vital role in the immune
response [56]. Arginine is the direct precursor in nitric oxide (NO) synthesis, a key signaling
molecule [57]. Altered arginine metabolism is also indicative of the oxidative response
and can contribute to endothelial dysfunction observed in COVID-19 pneumonia [58].
Altered arginine metabolism has also been reported in previous COVID-19 studies [59,60].
Glutathione metabolism is extremely important for the regulation of cellular ROS and
the function of the immune system [61]. Moreover, it has been shown that COVID-19
pneumonia affects redox cellular homeostasis, a key step in the cytopathic effects of viral
infections [62]. Notably, viral infections including COVID-19 induce increased glycolytic
flux along with an increased pyruvate metabolism [63,64]. Viral infections primarily
target glycolysis by modulating glucose transporters, which are important for the host
cell response and immune activation [65]. Moreover, alterations in alanine-, aspartate-,
and glutamate- metabolism were also observed in COVID-19 pneumonia patients. This
pathway is essential in the generation of GABA, a signaling molecule with omnipresent
receptors on various immune cells [66]. GABA has been shown to modulate inflammation
and clearance of alveolar fluid in acute lung injury [67].

In comparison, impacted pathways in non-COVID-19 pneumonia patients revealed
different metabolic responses (Figure 3b). The pentose phosphate pathway is important
for polyamine metabolism and suggestive of an oxidative stress response to infection due
to its NADPH supply [68]. Aminoacyl-tRNA synthesis is vital for protein synthesis and
is indicative of response to infection by regulating transcription, translation, and various
signaling pathways [69]. Pentose and glucuronate interconversions pathways lay a pivotal
role in the clearance of toxic substances [70]. Toxic substances are cleared by conjugation
with other compounds to mask the toxic groups. D-glucuronic acid is a key molecule that
binds to toxic substances assisting their clearance through the pentose and glucuronate
interconversions pathway, which is increased in the non-COVID-19 pneumonia group [70].
Phenylalanine, tyrosine, and tryptophan biosynthesis could be explained by the catabolism
of muscle protein as a response to infection; leading to the release of phenylalanine, which
is used for the synthesis of inflammatory molecules [71]. Valine, leucine, and isoleucine
(BCAA) metabolism stipulate aggressive glucose consumption and subsequent amino acid
synthesis, which corroborates with earlier reports as well [72].

In addition, we identified a panel of four metabolites that could predict the outcome
(recovered vs. deceased) of the COVID-19 individuals. Among three unknown metabolites,
the structural identity of threonine was confirmed by our in-house library. This particular
amino acid has been shown to be one of the direct indicators of inflammatory diseases such
as sepsis [73]. As demonstrated in rats, a decrease in threonine levels was directly correlated
with an increased synthesis of both mucins and gut epithelial proteins during sepsis [73].
The reduced levels of threonine in the plasma of deceased COVID-19 pneumonia subjects
could be indicative of the severity of sepsis and may serve as a good marker to predict
the disease outcome [74]. Moreover, the strong correlation of these four metabolites in
predicting disease outcomes for COVID-19 warrants future targeted investigation.
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Since COVID-19 pneumonia is a heterogeneous disease distinguished by thrombo-
sis, pulmonary embolism, and inflammatory cell infiltration [75,76], we expected strong
modulations of plasma metabolites and inflammatory cytokines in the lung. Pinpointing
differences in the blood composition of the lung artery and vein could provide a snapshot
of biochemical and inflammatory activities happening during pneumonia. We revealed
significant concentration changes between venous and arterial blood in nine metabolites
in COVID-19 pneumonia and in two metabolites in non-COVID-19 pneumonia (Figure 5).
Interestingly, the fatty acid octadecanoic acid (stearic acid) was significantly altered in the
venous and arterial comparison of the COVID-19 pneumonia group. Octadecanoic acid
has previously been reported to be altered in bronchoalveolar lavage fluid of COVID-19
subjects [77]. Octadecanoic acid has been shown to decrease nuclear factor-kB activity
and inflammatory cell accumulation [78]. Octadecanoic acid may exert some regulatory
effect on fibrogenesis by suppressing myofibroblast differentiation [79]. Additionally, the
accumulation of saturated fatty acids such as octadecanoic acid is an indicator of disruption
of the structural and functional characteristics of the cells inducing cell death mediated
by apoptosis or necrosis [80]. Other metabolic entities identified as transpulmonary activ-
ities need further structural confirmation, concerning their role in lung pathogenesis of
COVID-19 pneumonia and non-COVID-19 pneumonia. Several cytokines have significant
transpulmonary gradients within non-COVID-19 pneumonia and COVID-19 disease, more
prominent in the COVID-19 group. As expected, no differences were observed within the
control group. The venous concentration of cytokines correlated with disease severity and
outcome in an earlier study [34].

Overall, our study provides unique insights into the pathophysiology of pneumonia
in COVID-19 and non-COVID-19 pneumonia using metabolic differences. The study has
limitations and strengths. The patient sample includes more men than women, which might
cause a bias. We initially included only male patients to account for cyclic changes of the
blood metabolome in female individuals. With the beginning of the COVID-19-pandemics,
we decided to also include female patients to address this novel disease. Moreover, we
did not correct for several underlying factors such as diet or medication. The strength of
the study is based on the unique patient collection that allowed for various biosamples to
study the transpulmonary gradient of cytokines and metabolites. Threonine along with three
other metabolites could serve as predictive biomarkers for COVID-19 disease severity. We
observed systematic changes in transpulmonary levels of octadecanoic acid along with six
other metabolites in COVID-19 subjects that could be indicative of fibrogenesis. Similarly,
prominent changes in transpulmonary levels of cytokines were also observed in COVID-19
subjects. These data highlight the role of the lung in the modulation of systemic inflammation
and might also help to understand how lung infection caused dysfunction in other organs.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo12111058/s1, Figure S1: Principal component anal-
ysis score plot depicting clustering of COVID-19 pneumonia (CovP) (red), control subjects (Controls)
(Green), and non-COVID-19 pneumonia (CAP) (Blue); Figure S2: Box-and-whisker plots of COVID-
19 pneumonia (CovP) specific significant metabolic differences as compared to controls obtained
after Tukey’s HSD and illustrated as normalized peak area differences; Figure S3: Box-and-whisker
plots of non-COVID-19 pneumonia (CAP) specific significant metabolic differences as compared to
controls obtained after Tukey’s HSD and illustrated as normalized peak area differences; Figure S4:
Precision recall curve; Table S1: Summary of the comorbidities of the study cohort; Table S2: Detailed
characteristics of all COVID-19 patients; Table S3: Significant metabolic differences among COVID-19
pneumonia (CovP), Control subjects, and non-COVID-19 pneumonia (CAP) revealed after ANOVA;
Table S4: List of all cytokines with their means of delta values, standard deviation and median.
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