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Abstract: The COVID-19 pandemic boosted the development of diagnostic tests to meet patient needs
and provide accurate, sensitive, and fast disease detection. Despite rapid advancements, limitations
related to turnaround time, varying performance metrics due to different sampling sites, illness
duration, co-infections, and the need for particular reagents still exist. As an alternative diagnostic
test, we present urine analysis through flow-injection–tandem mass spectrometry (FIA-MS/MS) as a
powerful approach for COVID-19 diagnosis, targeting the detection of amino acids and acylcarnitines.
We adapted a method that is widely used for newborn screening tests on dried blood for urine
samples in order to detect metabolites related to COVID-19 infection. We analyzed samples from
246 volunteers with diagnostic confirmation via PCR. Urine samples were self-collected, diluted,
and analyzed with a run time of 4 min. A Lasso statistical classifier was built using 75/25% data for
training/validation sets and achieved high diagnostic performances: 97/90% sensitivity, 95/100%
specificity, and 95/97.2% accuracy. Additionally, we predicted on two withheld sets composed
of suspected hospitalized/symptomatic COVID-19-PCR negative patients and patients out of the
optimal time-frame collection for PCR diagnosis, with promising results. Altogether, we show that
the benchmarked FIA-MS/MS method is promising for COVID-19 screening and diagnosis, and is
also potentially useful after the peak viral load has passed.

Keywords: amino acids; COVID-19; diagnostic; metabolomics; urine

1. Introduction

SARS-CoV-2 caused the worst pandemic in the last 100 years. Modern-day laboratory
medicine was highly impacted by: the need for the implementation of new technologies;
the shortage of the workforce and of supplies, equipment overload, and regulatory changes;
this being in addition to the emergence of new mutations [1–3]. Considering the incessant
demand for fast and accurate diagnosis, the critical role of clinical laboratory tests in human
health has become apparent [4,5]. The increasing need for patient testing motivated many
clinical laboratories to explore different methods for the collection [6–10], handling [11–13],
and analysis [14–19] of samples, along with different specimen types [20,21].
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The most commonly implemented methods for COVID-19 diagnosis rely on molecular-
based tests for viral RNA detection [22,23]—which are quantitative antigen tests based on
enzyme immunoassays for saliva or nasopharyngeal swabs [24]—or serological tests for
the purposes of anti-SARS-CoV-2 immunoglobulin detection [25]. Although the COVID-19
pandemic has accelerated the microbial diagnostics field, accurate and fast diagnosis of
SARS-CoV-2 still has several limitations. Some drawbacks are the slow turnaround time,
the varying performance of the tests according to sample site, illness duration, the presence
of co-infections [26], and the need for particular reagents.

With the expected endemic circulation of the virus, finding new tools for COVID-19
diagnosis remains necessary as virus surveillance may require tests in routine situations
such as going to work, school, or large gatherings. The constant threat of new pathogens is
an additional motivation for new diagnostic strategies [27]. Moreover, while most tests rely
on analyzing nasopharyngeal swabs (NPS), using other biological samples, particularly non-
invasive samples, is appealing to facilitate sample collection. Although NPS is a relatively
well-tolerated technique, the discomfort level of its collection may vary according to the
patient’s age and sex [28,29]. Training and anatomical knowledge are also necessary for
NPS collection, as it strongly impacts test sensitivity [30]. Moreover, the implementation of
more comfortable and less invasive samples may lead to a higher adherence of individuals
to routine testing [31,32].

Urine samples can be self-collected and are acquired noninvasively, representing an
attractive alternative for non-stressful disease monitoring. Previous studies have explored
using urine analysis for COVID-19 diagnosis. For example, in a study by Li et al. using
LC-MS—i.e., 25 lipids representing important molecular signatures—were comparatively
evaluated across urine and plasma samples, along the course of infection, for the prediction
of severity in 30 patients with COVID-19, resulting in a prediction power of 0.904 and 0.988,
based on the area under the curve (AUC), for urine and plasma, respectively [20,33]. In a
separate study by Bi et al., also using LC-MS, the urinary metabolome was used to confirm
altered cytokines and their receptors that are correlated with SARS-CoV-2 replication [34].
Altered urinary metabolomes were also found in COVID-19-infected patients suffering
from acute kidney injury (AKI) when compared to healthy controls in 46 subjects. Dewulf
et al. compared urine from patients hospitalized with COVID-19 with different degrees
of severity against healthy controls using LC-MS and found a significant increase in the
levels of tryptophan metabolites [35]. Based on these promising studies, we explored the
detection of urinary amino acids and acylcarnitines by flow-injection analysis–tandem
mass spectrometry (FIA-MS/MS) as a method for COVID-19 diagnosis [21,36–50]. FIA-
MS/MS is a method that is widely used to analyze dried blood spots (DBS) and to detect
innate errors of metabolism in newborn screenings [51]. The metabolites targeted in this
study, amino acids and acylcarnitines, and their relation with COVID-19 infection have
also been investigated with MS in different matrices such as plasma [21,36–42], serum
[39,40,43–45,47–49], and feces [50]. Although FIA-MS/MS is one of the most popular
and successful clinical applications of MS, it has not been used for COVID-19 testing, as
the totality of the mentioned studies employed chromatographic separation prior to MS
detection.

Here, we demonstrate that urinary amino acids and acylcarnitines are helpful in
diagnosing COVID-19 patients based on a cohort of 246 subjects using FIA-MS/MS. We
also show that statistical classifiers generated from the metabolic information allow for the
diagnosis of COVID-19 with an agreement with PCR of 95%, indicating the utility of this
widespread method to be considered as a new screening tool for COVID-19.

2. Materials and Methods
2.1. Chemicals

Unlabeled amino acid standards and labeled isovaleryl-DL-carnitine-(N,N,N-trimethyl-
d9) hydrochloride were purchased from Merck (Merck KGaA, Darmstadt, Germany). Ace-
tonitrile and methanol HPLC–MS grade solvents were from J.T. Baker.
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2.2. Subjects

Self-collected urine samples from 246 volunteers were prospectively obtained from July
to October 2020 at three medical centers in Bragança Paulista (SP, Brazil); Santa Casa and
Bragantino Hospitals; and at the Integrated Unit of Pharmacology and Gastroenterology
(UNIFAG). No fasting guidelines were given to the volunteers prior to sample collection.
In a convenience sampling, we also recruited healthy volunteers and patients hospitalized
with moderate or severe [52] symptoms after being admitted to the medical center. Patients
older than 18 years old with suspicion of COVID-19 were recruited according to the
following eligibility criteria: patients hospitalized in the medical center, non-pregnant,
without mechanical ventilation or indwelling catheter; further, patients who were facing
imminent death were excluded. Healthy non-pregnant volunteers older than 18 were
selected if they declared no previous contamination by COVID-19 or close contact with
infected people.

Institutional Review Board (IRB) approval was received for the study (protocol number
31573020.9.0000.5514, approved on 29 May 2020). Samples were collected from healthy
volunteers (n = 104) and hospitalized volunteers when they possessed symptoms similar to
those found in COVID-19 infections (n = 142). All the healthy and symptomatic volunteers
had their diagnoses confirmed via an analysis of nasopharyngeal swab samples through
an RT-PCR, which were used for the purposes of recruitment into the study or as part of
their clinical care, using Brazilian-certified analysis services. RT-PCR was performed using
a TaqPath COVID-19 RT-PCR IVD Kit (Thermo Fisher), and the results were interpreted
using the COVID-19 Interpretative Software, according to the manufacturer’s instructions,
with a cycle threshold (Ct) value of <37. Positive SARS-CoV-2 infection was confirmed for
99 hospitalized volunteers and discarded for 43. Table 1 provides the patient demographic
and clinical information. Patients or volunteers with inconclusive RT-PCR results were
resampled or excluded.

Table 1. Clinic and demographic information of individuals recruited for the study, including SARS-
CoV-2-negative non-hospitalized subjects (Neg-NH) and SARS-CoV-2-positive hospitalized subjects
(Pos-H), used for model building and evaluation. Withheld Sets 1 and 2 containing symptomatic
SARS-CoV-2-negative hospitalized subjects (Neg-H) are also shown.

Classifier a

(Training + Validation) Withheld Set 1 Withheld Set 2

Neg-NH Pos-H Neg-H Pos-H Neg-H

Total = 246 104 n (%) 42 n (%) 24 n (%) 57 n (%) 19 n (%)

Age—mean (min–max) b 38.2 (20–89) 56.2 (21–86) 58.8 (26–81) 56.3 (26–77) 59.8 (30–83)

Female c 61 (58.7) 13 (31.0) 11 (45.8) 23 (40.4) 10 (52.6)
Male c 43 (41.3) 29 (69.0) 13 (54.2) 34 (59.6) 9 (47.4)

Symptoms

Fever 0 (0.0) 23 (54.8) 11 (45.8) 36 (63.2) 10 (52.6)
Cough 0 (0.0) 30 (71.4) 14 (58.3) 35 (61.4) 11 (57.9)

Myalgia 0 (0.0) 8 (19.0) 2 (8.3) 13 (22.8) 3 (15.8)
Sore throat 1 (1.0) 7 (16.7) 8 (33.3) 8 (14.0) 2 (10.5)
Headache 3 (2.9) 12 (28.6) 2 (8.3) 7 (12.3) 5 (26.3)

Coryza 0 (0.0) 5 (11.9) 3 (12.5) 6 (10.5) 2 (10.5)
Dyspnea 0 (0.0) 29 (69.0) 16 (66.7) 29 (50.9) 12 (63.2)

Oxygen saturation < 95% 0 (0.0) 17 (40.5) 10 (41.7) 19 (33.3) 3 (15.8)
Tiredness/fatigue 0 (0.0) 3 (7.1) 2 (8.3) 7 (12.3) 3 (15.8)

Loss of smell or taste 0 (0.0) 8 (19.0) 9 (37.5) 12 (21.1) 5 (26.3)
Vomiting or nausea 0 (0.0) 2 (4.8) 3 (12.5) 9 (15.8) 1 (5.3)

Diarrhea 0 (0.0) 11 (26.2) 2 (8.3) 12 (21.1) 3 (15.8)
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Table 1. Cont.

Classifier a

(Training + Validation) Withheld Set 1 Withheld Set 2

Neg-NH Pos-H Neg-H Pos-H Neg-H

Comorbidity

SAH d 16 (15.4) 21 (50.0) 10 (41.7) 29 (50.9) 8 (42.1)
Cardiovascular disease 2 (1.9) 7 (16.7) 4 (16.7) 10 (17.5) 4 (21.1)

Obesity 12 (11.5) 9 (21.4) 1 (4.2) 13 (22.8) 4 (21.1)
Diabetes mellitus 3 (2.9) 17 (40.5) 2 (8.3) 18 (31.6) 4 (21.1)

Neoplasia 0 (0.0) 3 (7.1) 0 (0.0) 1 (1.8) 1 (5.3)
Lung disease 8 (7.7) 3 (7.1) 6 (25.0) 5 (8.8) 4 (21.1)

COPD e 1 (1.0) 1 (2.4) 2 (8.3) 3 (5.3) 2 (10.5)
Smoker or ex-smoker 6 (5.8) 3 (7.1) 4 (16.7) 3 (5.3) 3 (15.8)

Asthma 2 (1.9) 2 (4.8) 2 (8.3) 2 (3.5) 1 (5.3)
Kidney disease 0 (0.0) 2 (4.8) 0 (0.0) 1 (1.8) 1 (5.3)

Tomography Findings

Ground glass opacity 0 (0.0) 40 (95.2) 19 (79.2) 54 (94.7) 16 (84.2)
Consolidations 0 (0.0) 20 (47.6) 13 (54.2) 32 (56.1) 8 (42.1)

Crazy-paving appearance 0 (0.0) 19 (45.2) 10 (41.7) 22 (38.6) 8 (42.1)
reticular pattern 0 (0.0) 6 (14.3) 6 (25.0) 16 (28.1) 2 (10.5)

Pulmonary commitment degree 0 (0.0) 35 (83.3) 16 (66.7) 49 (86.0) 12 (63.2)
Suggestive of viral infection 0 (0.0) 40 (95.2) 19 (79.2) 54 (94.7) 16 (84.2)

a: Estimated statistical power of 99.2% (alfa = 0.05, Cohen, 1988); b: p-value for the age is 2.7 × 10−6 for the
classifier, and 0.31 for the Withheld Set 2 (Mann–Whitney–Wilcoxon test); c: p-value for the sex is 4.4 × 10−3 and
0.35 (Xi-square test) for these groups, respectively; d: SAH: systemic arterial hypertension; and e: COPD: chronic
obstructive pulmonary disease.

2.3. Sample Preparation

Urine samples were heat-inactivated after collection (65 ◦C, 30 min) [53] in a Class
II biological safety cabinet before being aliquoted and frozen until extraction. All the
samples were thawed at room temperature. A pooled sample was prepared from equal
parts (10 µL) of each sample and then aliquoted in different quality control (QC) samples,
which were extracted and distributed every ten injections for instrumental monitoring.
This resulted in 10 QC samples for system suitability and 28 samples QC for intra-batch
monitoring. Samples (300 µL) were randomized and centrifuged (12,000 rpm, 4 ◦C, 10 min).
Next, the supernatant (150 µL) was collected, following the addition of water (120 µL),
acetonitrile (15 µL), and internal standard (IS) solution (15 µL of isovaleryl-DL-carnitine-
(N,N,N-trimethyl-d9) hydrochloride solution at 11.1 ng mL−1 in methanol). Blank samples
were prepared using ultrapure water instead of urine.

2.4. Flow Injection–Tandem MS Analysis

Data acquisition was performed on a Waters® Xevo TQD triple quadrupole mass
spectrometer equipped with a Shimadzu® SCL-10A controller, a Shimadzu® LC-20AD
pump controller, and a Shimadzu® SIL-20A automatic sampler injector. The methodol-
ogy employed Flow Injection Analysis (FIA) without chromatographic separation, and
10 µL was used as injection volume. Further, the mobile phase was composed of wa-
ter:acetonitrile:formic acid (80:20:0.1 v/v/v). A flow gradient was used, starting with a
zeroed flow until 0.5 min. We initially zeroed the flow rate to allow the integration of the
entire peak, with no cuts due to the proximity to the y-axis. Afterward, the flow ranged
from 0 to 0.5 mL min−1 from 0.5 to 0.51 min, at which point it was maintained until 3.50 min,
and was then decreased to 0.1 mL min−1, with a total runtime of 4 min. Multiple reaction
monitoring (MRM) transitions were optimized for each compound by analyzing labeled
and unlabeled standards, as described in Supplementary Table S1 (ST1). The acquisition
was controlled by the Target Lynx software (Waters).
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2.5. Data Analysis and Statistical Classifiers

The ratio of the peak areas of the analytes and the IS was considered and processed
using Metaboanalyst 5.0 (http://www.metaboanalyst.ca) [54]. Calculations were made
based on the relative peak area ratios of each analyte/IS through the different groups.
Missing values were replaced by 1/5 of the minimal positive values of their corresponding
variables. Relative standard deviation (RSD) was calculated for the intra-batch QC samples,
and those analytes found with RSD > 25% were not considered for statistical modeling.
Interquartile range filtering was applied in order to remove variables with near-constant
values. Data normalization was performed by sum, followed by generalized logarithm
transformation [55], while the Pareto scaling method was applied. The resulting dataset was
used for statistical analysis using the least absolute shrinkage and selection operator (Lasso).

As hospitalized patients had their urine samples collected in a time lapse from
0 to 95 days from the swab collection to RT-PCR diagnosis, we, therefore, used a time
frame to select patients in order to build the statistical classifier. For this purpose, we
considered time-qualified samples, such as those from volunteers with a time interval
of two days between urine and swab collections and the onset of symptoms of 14 days
or less from the urine collection. The classifier was built using 75% of data from healthy
non-hospitalized COVID-19 PCR-negative (n = 78, Neg-NH) and hospitalized COVID-19
PCR-positive (n = 32, Pos-H) patients. We validated the model with the remaining 25%
of the data composed of Pos-H (n = 10) and Neg-NH (n= 26) volunteers. Additionally,
we tested the ability of this model to predict on a withheld sample set (Withheld Set
1) composed of suspected hospitalized/symptomatic COVID-19 PCR-negative (n = 24,
Neg-H) patients. We also tested this classifier’s prediction on samples that were excluded
because they did not meet the selected time interval criteria for swab collection/symptoms
onset. This sample set (Withheld Set 2) was composed of Pos-H (n = 57) and suspected
hospitalized/symptomatic Neg-H (n = 19) patients. Cutoff values for positivity definition
were selected based on the receiver operator characteristics (ROC) curve for training and
validation sets. We evaluated the model’s performance for the validation and test sets by
measuring the predictive accuracy, sensitivity, specificity, negative predictive value (NPV),
and positive predictive value (PPV), which were all calculated based on the agreement
with PCR diagnosis.

Univariate analysis was performed after data normalization using the Kruskal–Wallis
test for the three groups (Pos-H, Neg-NH, and Neg-H), followed by Dunn’s post hoc test, us-
ing the Benjamini–Hochberg (BH) correction for the p-value. Afterward, the Mann–Whitney
test was used to examine differences between Pos-H vs. Neg-NH, Pos-H vs. Neg-H, and
Neg-NH vs. Neg-H (25), followed by the BH correction of the p-value. The stability of the an-
alytes to the heat-inactivation process was evaluated using RSD (Supplementary Table S2).
Calculations were performed in R version 3.6.3 (R Foundation for Statistical Computing).
Discriminant metabolic markers found by Lasso analysis were interrogated for the pur-
poses of pathway enrichment analysis by using the metabolite set enrichment analysis
(MSEA) via over-representation analysis from the Metaboanalyst web platform [56]. Two
metabolomics databases were interrogated, i.e., Kegg and the MSEA’s disease-associated
metabolite sets using urine as a reference (Supplementary Figure S1) [56,57].

3. Results

Detection of 19 amino acids, such as alanine, leucine, glutamine, tryptophan, and
15 acylcarnitines—such as free-carnitine, malonyl-carnitine, octadecanoyl-carnitine—were
achieved from urine analysis, as presented in the Supplementary Table S1 along with the
relative standard deviation (RSD) measured for the QC samples (Supplementary Table S2).
Although asparagine and aspartate were detected in our method, they were excluded
from statistical analyses due to the higher variability measured in their peak area ratios
(RSD > 25%, n = 28, ST2). Monitoring the labeled internal standard signal along the QC
samples resulted in 3.3% of RSD (N = 28 QC samples, Supplementary Table S2), show-
casing the analytical stability of the method. Note that the heat inactivation process did

http://www.metaboanalyst.ca
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not appear to alter the peak area of the analytes, as the RSD measured between heat-
inactivated and non-inactivated samples was lower than 15% for the entire set of analytes
(Supplementary Table S2). Twenty-nine metabolites were detected with metrics above
thresholds established for RSD and thermal stability (Supplementary Table S3); further,
these were then used for statistical analysis.

Figure 1 shows that high diagnostic performances were achieved using statistical
analysis for the training and validation sample sets. Only 1 out of 32 Pos-H samples in
the training set and 1 out of 10 Pos-H samples from the validation set were erroneously
classified as negative, resulting in high sensitivity (97% and 90%) and negative predictive
values (NPV) of 99.0% and 96.3% for the training and validation sets, respectively. Amongst
negative samples, 4 out of 78 were misclassified in the training set. In contrast, none of
the 26 samples were misclassified as positive in the validation set, resulting in positive
predictive values (PPV) of 89.0% and 100.0% for the test and validation sets, respectively;
further, specificities of 95% and 100% were noted for these sets. The overall agreement
to PCR was 95.0% and 97.2% for the test and validation sets, respectively. The cutoff
value for classification was 0.181. The influence of age on the classifier’s predictive per-
formance was evaluated and was noted to have minimally improved the classification
metrics (Supplementary Table S4). However, we opted not to take this variable into ac-
count with the goal of building a model that is independent of age; this is because we
expect to adapt the model to different populations in the future. We observed that other
studies also reported age and sex disparities in their sample sets, which is one of the
disadvantages of using convenience sampling approaches. Dewulf et al. investigated a
targeted urinary metabolic panel in 56 patients who were hospitalized with COVID-19
(26 non-critical and 30 critical); further, they also utilized 16 healthy controls and 3 con-
trols with proximal tubule dysfunction unrelated to SARS-CoV-2 [35]. Their control set
comprised 31% men, while their positive set comprised 69–83% men. Thomas et al. also
reported a divergence in age and sex when evaluating serum metabolites of patients with
COVID-19 (n = 33, which was diagnosed by nucleic acid testing), compared with COVID-
19–negative controls (n = 16). They reported 76% of subjects in the disease group as male,
aged 56.5 ± 18.1 years old (mean ± standard deviation), and a control group comprising
38% of men, aged 37.8 ± 11.6 years old [46]. Ling Yan et al. used the serum peptidome as
the diagnostic matrix for COVID-19 [58]. The group infected by COVID-19 had an average
age of 46.6 ± 14.9 and 47.2 ± 15.4 (training and validation sets), whereas the control group
had an average age of 32.4 ± 11.4 and 29.6 ± 10.2, for training and validation sets.

When the statistical classifier was used to predict the Withheld Set 1 (Supplementary
Table S6A)—which was composed of time-framed hospitalized/symptomatic COVID-19
PCR-negative patients (Neg-H)—22 of the 24 Neg-H samples were classified as positive.
Interestingly, when inspecting the clinical data from these patients, 17 (77%) of them
presented chest computed tomography (CT) scans with suggestive signals of viral infection,
such as ground-glass opacity (GGO), consolidation, and pulmonary commitment [59],
despite the negative PCR result. Our model’s two remaining patients, classified as negative,
presented a viral infection suggestive chest CT scan.

When inspecting the results for Withheld Set 2, the time lapse between urine sample
collection and the RT-PCR test, or days from symptom onset, did not strongly impact the
model’s performance as 50 (87.7%) out of 57 Pos-H samples were correctly classified as
being positive. Neg-H samples were not considered when calculating, which means the
classifier’s performance since the diagnosis for the patients were not conclusive based
on their clinical attributes. Nonetheless, 14 of 19 Neg-H samples in Withheld Set 2 were
classified according to their chest CT scan findings. To view detailed clinical information of
the patients from the Withheld Set 2, see Supplementary Table S6B in the Data Supplement.
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Figure 1. The statistical classifier’s experimental design and performance when identifying healthy
non-hospitalized COVID-19 PCR-negative (Neg-NH) volunteers or hospitalized COVID-19 PCR-
positive (Pos-H) patients. The Withheld Set 1 was composed of suspected hospitalized/symptomatic
COVID-19 PCR-negative (Neg-H) patients. In contrast, the Withheld Set 2 was composed of Pos-H
and Neg-H patients who did not meet the time frame criteria.

The statistical classifier, built using the Lasso algorithms, was based on 14 predictive
metabolites, which were given associated mathematical weights according to their relevance
to each classifier class, as described in Figure 2. Some variables, which were Lasso selected,
also have significant values for the purposes of univariate statistical analysis, such as fold
change and adjusted p-value, as presented in Supplementary Table S5A. To visualize the
changes in metabolite abundance—which are also in the Neg-H group—not accounted
for when using the binary Lasso model, we additionally performed a univariate analysis
based on the Kruskal–Wallis test (Figure 3 and Supplementary Table S5B). We could not
find any significant metabolic alteration when comparing Neg-H and Pos-H groups, which
is in agreement with their similar clinical states. On the other hand, 13 of 14 metabolites
indicated by the Lasso analysis were also altered between Neg-NH and Neg-H, evidencing
how the metabolites are affected by hospitalization and clinical symptoms.
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Figure 2. Metabolites selected by Lasso analysis, the multiple reaction monitoring (MRM) transitions
of detection (precursor > fragment), relative standard deviation (RSD) for quality control (QC)
samples, and their weights for the Lasso model. * Acylcarnitines are expressed by the number of
carbons on the chain.

To investigate the biological significance of the metabolites selected by our model and
evaluate if the changes observed in the chemical patterns were correlated to biological
processes involved in infections, we performed a metabolite enrichment analysis of the
discriminatory analytes. This analysis resulted in seven significantly altered pathways
(FDR < 0.05), as shown in Figure 4.
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Figure 3. Box plots for the analytes found as discriminatory by the Lasso model and their abun-
dance between the three classes of volunteers: healthy non-hospitalized COVID-19 PCR-negative
(Neg-NH) volunteers, hospitalized COVID-19 PCR-positive (Pos-H) patients and suspected hospital-
ized/symptomatic COVID-19 PCR-negative (Neg-H) patients. Univariate analysis was performed
using the Kruskal–Wallis test. If a p-value is less than 0.05, it is flagged with one star (*). If a p-value
is less than 0.01, it is flagged with 2 stars (**). If a p-value is less than 0.001, it is flagged with three
stars (***). If a p-value is less than 0.0001, it is flagged with four stars (****).
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Figure 4. Metabolite enrichment analysis via over representation analysis for the discriminatory
analytes found by Lasso analysis. A set of human metabolites from the KEGG library was used, and
the p-adjusted values for the pathways are presented by the color bar, with the significant ones (FDR
< 0.05) displayed numerically.

4. Discussion

The method we developed for COVID-19 diagnosis is an adaptation of the well-
known and worldwide established newborn screening methodology based on selective
MS/MS detection. Utilizing a cohort of 246 RT-PCR validated samples, we opted to build a
classifier using samples selected based on rigorous criteria that ensured maximum viral
load based on the proximity of the onset of symptoms and RT-PCR collection date. Using
this approach, we showed that a panel of amino acids and acylcarnitine could be used to
develop classification models that are highly sensitive (>90%), specific (>95%), and accurate
(>95%) for COVID-19 screening (Figure 1).

The reported performances of serological or antigen tests for diagnosis or confirmation
of SARS-CoV-2 infection present sensitivities ranging from 21.8 to 97.9% (serological) and
34.1 to 96% (antigen), as recently revised by Bastos et al. [25], and Dinnes et al. [60]. These
authors revised 104 studies, including 38 serological tests and 16 antigen tests applied to
symptomatic volunteers, finding specificities ranging from 80.6 to 100% for serological
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tests and 34.1 to 96% for antigen tests. Böger et al. reviewed the performance of RT-PCR
of nasopharyngeal specimens in four different studies and found 73.3% for sensitivity
and 100% for specificity [61]. The method we introduced here presented a simple sample
workup consisting of dilution and centrifugation. We developed the method to provide
a short processing time, with a run time of 4 min, with no chromatographic separation.
Good sensitivities and specificity rates were found, as well as also the ability to detect
COVID-19 infection outside the “optimal detection window”, as presented in Figure 1.
Altogether, these results showcase the potential of FIA-MS/MS to be used as a screening
technique or for time course follow-up. However, further studies for clinical validation
should include the evaluation of contamination with other viruses, such as influenza, and
including positive asymptomatic people and other virus variants.

The classification results obtained for the Withheld Set 1, composed of samples from
suspect Neg-H patients, suggest that our classifier mainly reflects patient infection status,
given the agreement with chest CT scan results (Figure 1). The chest CT scan is a fundamen-
tal tool for COVID-19 diagnosing and monitoring. However, it cannot differentiate between
an active or previous viral infection or, indeed, indicate the viral pathogen—resulting in
lower specificity than RT-PCR for COVID-19 diagnosis [62–66]. For patients from Withheld
Set 1, the negative result from the RT-PCR test was in disagreement with their clinical
profile and chest CT scan findings for most cases (19 out of 24). From 19 Neg-H patients
with viral suggestive chest CT, our model classified 17 as being positive for COVID-19. For
example, patient #34 (see Supplementary Table S6A in Data Supplement), a 76-year-old
male, received a negative result for RT-PCR, while he was classified as positive by our
classifier. The patient presented a chest CT scan that was suggestive of viral infection
with ground-glass opacity, consolidations, and pulmonary commitment (50%). The patient
was in the intensive care unit (ICU) for 13 days, 11 of which required the use of mechan-
ical ventilation, until death. As recognized by many studies [62–65], repeated PCR tests
should be used for patients with an inconclusive diagnosis in order to more accurately
diagnose COVID-19, although repeated PCR tests were not performed for the patients in
our study as this could have resulted in a false-negative diagnosis. The disagreement of
RT-PCR and chest CT scan results for the Neg-H volunteers, assumed to be the absence
of a second-tier or confirmatory test for these individuals, motivated their exclusion from
the training/validation sets and also in the option to keep them predicted within Withheld
Set 1. The effect of the time lapse between symptoms onset and sample collection day
was interrogated by analyzing the Withheld Set 2, which showed similar results to those
acquired for training and validation sets. The results suggests that the detected metabolic
alterations enabled sample classification for patients who were assessed more than 14 days
from symptoms onset and after two days from RT-PCR detection.

Based on the unveiled altered pathways, the selected molecular panel appears to
correlate with systemic molecular changes that are associated with COVID-19 infection (as
shown in Figure 4). The altered amino acids were related to alterations in pathways enrolled
in processes such as cellular bioenergetics [67–69], immune regulation [70–72], metabolic
changes [73–75], oxidative stress [76–78], and protein regulation [79–81]. Many metabolic
alterations were also found to be correlated with amino acid alterations, specifically during
COVID-19 infection [67–81]. To better correlate our findings to known alterations in
the related pathways, we organized Table 2. This table summarizes the altered amino
acids, the MSEA-impacted pathway, other related biological processes, and how these
pathways and processes might be impacted during COVID-19 infection, according to
the literature. For example, glycine urinary levels were decreased in infected volunteers
(p < 2.2 × 10−16). According to MSEA, this alteration significantly impacted pathways
such as aminoacyl-tRNA biosynthesis; glyoxylate and dicarboxylate metabolism; and
glutathione metabolism. Glycine acts on the regulation of pro-inflammatory cytokines that
control immune response [82,83], and an increased level of this amino acid may be related
to a decrease in oxidative stress and inflammatory processes [83,84], as these processes were
reported during COVID-19 infection [70–72,76–78]. Another altered amino acid, valine, is a
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precursor of the cofactor CoA and acts on mitochondria protein transporters [85], which
will ultimately impact the release of acylcarnitines.

Table 2. Amino acids and pathways significantly altered according to the metabolic set enrichment
analysis (MSEA), as well as other related biological processes and their reported biological function
when considering COVID-19 infection.

Amino Acids Impacted Pathway (MSEA) Related Pathway Impact in COVID-19

Glycine
(Gly)

Aminoacyl-tRNA biosynthesis
Glyoxylate and dicarboxylate

metabolism
Glutathione metabolism

Immune regulation [82,83]
Oxidative stress [83,84] [70–72,76–78]

Valine
(Val)

Aminoacyl-tRNA biosynthesis
Pantothenate and CoA biosynthesis

Immune
regulation [86] [70–72]

Cysteine
(Cys)

Aminoacyl-tRNA biosynthesis
Pantothenate and CoA biosynthesis

Oxidative stress [82,85,87];
Protein regulation [85,88] [76–81]

Tryptophan (Try) Aminoacyl-tRNA biosynthesis Immune regulation
[35,41,46,74,89,90] [70–72]

Phenylalanine (Phe) Aminoacyl-tRNA biosynthesis
Bioenergetics [41,46];
Immune regulation

[35,74,89,90]
[67–72]

Glutamine
(Gln)

Aminoacyl-tRNA biosynthesis
D-Glutamine and D-glutamate

metabolism
Nitrogen metabolism

Glyoxylate and dicarboxylate
metabolism

Arginine biosynthesis

Immune regulation [74,91,92];
Metabolic changes [46,93];

Oxidative stress [94,95]
[70–78]

Glutamate
(Glu)

(glutamic acid)

Aminoacyl-tRNA biosynthesis
D-Glutamine and D-glutamate

metabolism
Nitrogen metabolism

Glyoxylate and dicarboxylate
metabolism

Arginine biosynthesis

Metabolic changes [39,49,93];
Oxidative stress [39,46] [73–78]

The Lasso analysis also ranked acylcarnitines as important markers for COVID-19
infection (Figure 2). These molecules act mainly inside the mitochondria during the beta-
oxidation process and act as an active acyl-group buffer [96,97], which plays an essential
role in cellular bioenergetics [98]. Outside the mitochondrial membrane, the acyl-CoA is
formed and enzymatically converted to acyl-carnitine, which passes through the outer
mitochondrial membrane; next, it then passes through the inner mitochondrial membrane
by the Carnitine:Acylcarnitine Carrier (CAC) antiport protein [96,99,100]. Changes in
plasmatic acylcarnitine profiles are directly related to cardiovascular and metabolic syn-
drome [94,101–103], the main comorbidities associated with our sampling set (Table 1, sec-
tion Comorbidity), and with COVID-19 itself [104–106], reflecting the worst outcomes [107].
Long-chain acylcarnitines (C12-C20) accumulate at the air–fluid interface of the lungs in
response to stress, such as influenza infection [108]. The fine control and clearance of these
metabolites are assigned to the kidneys [96], which could explain their detection in urine.

5. Conclusions

In conclusion, we showed that urine analysis, using an adaptation of the known
method for newborn screening by FIA-MS/MS, is a promising methodology for COVID-19
screening and diagnosis, with the potential to be used even after the peak viral load passes.
The non-invasive sample collection, the lack of need for specific primers, and the possibility
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of using existing laboratory resources in order to implement the methodology demonstrate
the technique’s feasibility to be fully validated. This includes multi-center trials, as well
as occurrences for newborn screening programs. Our method also revealed substantial
changes in the metabolome of infected patients and pointed out the relation of COVID-19
to other diseases, providing insights into the physiopathology of the disease. Importantly,
our method uses urine, a non-invasive and self-collectible sample that would ease the
collection procedure without overburdening medical staff. Urine has also been shown to
contain dense and consistent biological information regarding COVID-19 infection.

Further advancements should focus on measuring the specificity of the method for
samples that are obtained from patients presenting multiple pathogens, as well as its ability
to detect COVID-19 in asymptomatic infected people or to distinguish COVID-19 infection
from other critical diseases. Longitudinal experiments following the time course of the
infection would also be valuable to better understand the metabolic changes in urine during
different phases of the infection. The challenges faced in developing new alternatives for
COVID-19 screening underscore the need to provide new methodological insights ahead of
the next health security crisis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12111056/s1. Table S1: Amino acids and acylcarnitines
investigated in urine from COVID-19 patients and their experimental detection parameters. Table
S2: Relative standard deviation of metabolites and internal standard for QC samples during batch
analysis and after the heat inactivation test. Table S3: Amino acids and acylcarntines selected after
RSD and IQR filtering processes performed in MetaboAnalyst. Table S4: The effect of age and sex
on the model’s performance. Table S5A: Comparison of analytes between the groups (Pos-H and
Neg-NH) of patients using the Mann–Whitney test. Table S5B: Comparison analytes between the
groups (Pos-H, Neg-NH, and Neg-H) of patients using the Kruskal–Wallis test and Dunn’s Test
as a post hoc measure. Table S6A: Classification of the Withheld Set 1 patients and their clinical
characteristics. S6B: Classification of the Withheld Set 2 patients and their clinical characteristics.
Supporting Figure S1: Metabolite enrichment analysis for the discriminatory analytes found by Lasso
analysis; Supporting Figure S2: Metabolite enrichment analysis by over representation analysis for
the discriminatory analytes found by Lasso analysis.
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