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Abstract: The selection of sows that are reproductively fit and produce large litters of piglets is
imperative for success in the pork industry. Currently, low heritability of reproductive and litter-
related traits and unfavourable genetic correlations are slowing the improvement of pig selection
efficiency. The integration of biomarkers as a supplement or alternative to the use of genetic markers
may permit the optimization and increase of selection protocol efficiency. Metabolite biomarkers
are an advantageous class of biomarkers that can facilitate the identification of cellular processes
implicated in reproductive condition. Metabolism and metabolic biomarkers have been previously
implicated in studies of female mammalian fertility, however a systematic analysis across multiple
biofluids in infertile and high reproductive potential phenotypes has not been explored. In the current
study, the serum, urinary and salivary metabolomes of infertile (INF) sows and high reproductive
potential (HRP) sows with a live litter size ≥ 13 piglets were examined using LC-MS/MS techniques,
and a data pipeline was used to highlight possible metabolite reproductive biomarkers discriminating
the reproductive groups. The metabolomes of HRP and INF sows were distinct, including significant
alterations in amino acid, fatty acid, membrane lipid and steroid hormone metabolism. Carnitines
and fatty acid related metabolites were most discriminatory in separating and classifying the HRP
and INF sows based on their biofluid metabolome. It appears that urine is a superior biofluid than
saliva and serum for potentially predicting the reproductive potential level of a given female pig
based on the performance of the resultant biomarker models. This study lays the groundwork
for improving gilt and sow selection protocols using metabolomics as a tool for the prediction of
reproductive potential.

Keywords: metabolomics; infertility; reproductive potential; litter size; serum; urine; saliva; gilt
selection; LC-MS/MS

1. Introduction

The efficient selection of gilts and sows for the breeding herd is a vital step in the pork
farming process, affecting overall production of the operation and economic returns [1,2].
Due to the influence of genetics on pig performance, the examination of maternal lines
for genetically superior sows is commonly integrated into selection protocols [3,4]. This
allows for accurate selection and swift genetic progress in production traits, but when it
comes to reproductive traits related to the litter, methods of selection using solely genetic
markers for selection are not highly efficient [5]. Critical litter related traits, including mean
litter size, number of live-born piglets, number of stillborn piglets and number of piglets
alive at weaning do not have substantial heritability [6,7]. In addition, there are negative
genetic correlations that exist between production traits and reproductive traits, such as age
at 100 kg with number of piglets born alive per litter, resulting in unfavourable selection
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tradeoffs [8]. These genetic roadblocks to selection for reproductive performance leads to
slower genetic progress, the over-selection of gilts to meet production requirements, high
culling rates, and lower economic returns [9]. Moreover, pigs are unique in comparison to
other domestic livestock, suffering from higher rates of pregnancy failure and infertility
due to embryonic mortality, intrauterine growth restriction and neonatal deaths [10–12]. A
more efficient method to supplement the use of genetic markers in gilt and sow selection
protocols to better select for high reproducers would improve welfare by reducing the
number of gilts in the development pool, production by increasing number of piglets born,
and overall economic returns of operations in the pork industry.

Metabolomics is an emerging investigative tool that offers a more efficient alterna-
tive to circumvent the challenges and limitations facing current genetic-based gilt and
sow selection. The state of cellular processes and metabolism reflect specific genomic,
proteomic, physiologic and microenvironmental differences between individuals [13–15].
Metabolomics allows for the identification of these subtle cellular processes and metabolism
differences [16–18]. In studies of human fertility, metabolomics and biomarker identification
is becoming a popular and effective tool, with studies characterizing the metabolic phe-
notypes of reproductive conditions including polycystic ovary syndrome (PCOS) [19–25]
(reviewed in [26]), primary ovary insufficiency (POI) [27], poor oocyte and embryo qual-
ity [28], and uterine conditions including endometriosis, adenomyosis and cancer (re-
viewed in [29]). In the characterization of these phenotypes metabolites involved in amino
acid, fatty acid, lipid and steroid hormone metabolism continuously appear as important
biomarkers [19–29]. Based on the results of these studies, it is possible that the targeting
metabolomic evaluation of fluids isolated from sows for similar metabolic pathways could
provide a more in-depth and comprehensive view of their reproductive state, and provide
biomarker information for making selection decisions.

To date, two studies have been performed in characterizing sows of low oocyte
quality and normal or high oocyte quality using follicular fluid, urine and serum, citing
disruptions in glucose, amino acid, fatty acid and purine metabolism and oxidative stress
in poor oocyte quality [30,31]. However, the comparison of high reproductive potential and
infertile female metabolomes in any mammal has not been reported, and a large sample
size is needed to accurately assess the relevance of biomarkers for selection or identification
of reproductive potential level. The overall objective of the study was to investigate the
possibility of using metabolomics to characterize high reproductive potential and infertile
female pig phenotypes and identify metabolite biomarkers in urine, saliva and serum
biofluids. We also aimed to provide further insight into the amino acid, fatty acid, lipid and
steroid hormone metabolic pathways that have been implicated in fertility, contributing
the understanding surrounding the interactions between metabolism and fertility.

2. Methods
2.1. Animals and Housing

All animal procedures were carried out in accordance to the Canadian Council on Ani-
mal Care (CCAC) guidelines under the Animal Utilization Protocol (AUP) #4037 approved
by Animal Care Services (ACS) at the University of Guelph. A total of 53, 46 and 69 pigs
(purebred Yorkshire and Yorkshire × Landrace crosses) were sampled for urine, saliva and
serum and were distributed in two groups based on their high or infertile reproductive
status. Animals were individually housed in stalls or a group setting with access to wa-
ter and restricted feed at Arkell Research Station (University of Guelph, Guelph, ON) or
Alliance Genetic Canada’s affiliated operations. High reproductive potential (HRP) sows
were defined as pigs with ≥13 piglets born alive (NPBA) on average throughout their
reproductive lifespan immediately prior to sampling. Infertile sows (INF) were defined as
pigs that had failed to conceive after two rounds of back-to-back artificial insemination just
prior to sampling (consecutive estrus cycles).
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2.2. Biofluid Collection

To limit metabolic profile variability stemming from reproductive cycle stage [32],
samples were collected from estrus-synchronized pigs. Sows were sampled four to five days
after weaning which is the time point or commencement of the estrus cycle in sows [32]. To
limit circadian and diurnal variation, samples were collected from pigs in the morning, in
the same two-hour time window.

Saliva was collected using the cable-lock-assisted swab method outlined in
Akhtar et al. [33]. Briefly, Salivette® tubes with plain cotton swabs (Starstedt AG & Co.),
specialized for collection and processing methods were used to ensure the hygienic sam-
pling of saliva. A plain cotton swab was removed from the tube and attached to the end of
a zip-tie and directed towards the buccal cavity of the pig. Pigs were permitted to chew
on the swab for 30 s to ensure sufficient saturation from the salivary glands of the buccal
cavity. The swab was removed from the zip-tie and placed back into the Salivette® tubes.
Tubes were centrifuged at 2000× g and 4 ◦C for 5 min. Saliva was aliquoted and stored at
−80 ◦C until metabolomic analyses.

Urine was obtained using a tampon collection method [34]. Briefly, an unscented
tampon was inserted into the pig’s vestibule and the string was secured to the rump
using waterproof tape. Pigs were monitored for urination. Immediately after urination
and saturation of the tampon, the tampon was removed and urine was sqeezed from the
tampn with clean gloves to a sterile falcon tube. Samples were left undisturbed for 30 min
(allowing for the particulates to settle) and the supernatant was aliquoted and stored at
−80 ◦C until metabolomic analyses.

Blood collection was performed through orbital sinus bleeding as outlined by Dove
and Alworth [35]. Briefly, BD PrecisionGlideTM General Use Sterile Hypodermic Nee-
dles (22-gauge, 3.8 cm) were used to puncture the orbital sinus at the medial canthus.
Blood was collected into sterile falcon tubes and left undisturbed and upright for 1 h at
room temperature to clot. Once clotted, the samples were centrifuged (2000× g, 10 min,
21 ◦C) and the resulting supernatant (serum) was aliquoted and stored at −80 ◦C until
metabolomic analyses.

2.3. Metabolomic Analysis

Targeted quantitative metabolomic analysis of the biofluid samples using direct in-
jection (DI), liquid chromatography (LC) and mass-spectrometry (MS). Analyses were
outsourced to The Metabolomics Innovation Centre (TMIC, University of Alberta, Edmon-
ton, AB, Canada). Mass spectrometric analysis was performed on an API4000 Qtrap®

tandem mass spectrometry instrument (Sciex Canada, Concord, ON, Canada) equipped
with an Agilent 1260 series HPLC system (Agilent Technologies, Palo Alto, CA, USA).
Liquid chromatography coupled with tandem mass spectroscopy (LC-MS/MS) was used
to detect steroid hormones, including cortisol, androstenedione, progesterone, andros-
terone, estrone, testosterone, DHEA, and 17-hydroxyprogesterone. Direct-injection mass
spectroscopy with reverse phase liquid chromatography and tandem mass-spectroscopy
(DI/LC-MS/MS) was used to analyze the samples for up to 135 endogenous metabolites,
including essential and non-essential amino acids, acylcarnitines, biogenic amines and
derivatives, uremic toxins, glycerophospholipids, sphingolipids and sugars.

2.4. Data Pre-Processing and Statistical Analysis

Data processing and statistical analysis was performed using a data pipeline con-
structed in the Python programming language (Python Software Foundation. Python
Language Reference, Version 3.9.7. Available at: https://www.python.org). Metaboanalyst
(Version 5.0, Available at: www.metaboanalyst.ca) was used for construction of the Volcano
plots [36]. Raw LC-MS/MS concentration data was pre-processed using quantile normal-
ization, log transformation and pareto scaling to account for dilution differences between
samples or measurement variation between samples [37]. Pig samples missing more than
70% of values were excluded from the analysis. Metabolite features missing more than

https://www.python.org
www.metaboanalyst.ca
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50% of values were excluded from the analysis, and the missing values of the remaining
features were replaced by 1/5 of the LOD (1/5 of the minimum value of each variable).
Data is presented as mean ± SEM, unless otherwise indicated. Statistical significance was
assumed at p ≤ 0.05. Fold-changes > 2 were deemed significant.

2.5. Variable Selection and Potential Biomarker Identification

Variable or feature selection is a method performed before the application of a data set
to machine learning or classification models [38]. It reduces the dimensionality of datasets
which can pose significant challenges to classification models [38–40]. It is particularly
important when dealing with the ‘curse of dimensionality’ where the number of features
(i.e., metabolites) in a dataset extremely outnumbers the number of records [38]. Feature
selection can improve the accuracy of a model and decrease overfitting, as having irrelevant
variables can decrease classification model accuracy [38,39]. In the present study, feature
selection was completed using a combination of the supervised multivariate method
Partial-Least Squares Discriminant Analysis (PLS-DA) and the feature selection algorithm
Recursive Feature Elimination (RFE). Cross validation to confirm the validity of the PLS-
DA model was performed through the 10-fold repeated cross-validation method, using
R2 to measure the proportion of variance explained and model predictability, and mean
squared error (MSE) as the average difference between the predicted and actual sample
classes. Recursive feature elimination was performed via a Decision Tree Classifier, selecting
50 candidate metabolites and verified with accuracy. Significant (p < 0.05) metabolites with
a Variable Importance in Projection (VIP) score ≥ 1.25 (indicating a measurable contribution
to the separation of reproductive groups based on metabolite level in the PLS-DA model)
that were also features selected in the RFE process, were selected for Receiver Operating
Characteristic (ROC) diagnostic classifier analysis. The choice for the VIP cutoff value
of 1.25 is reviewed in [41]. ROC curves reporting the performance of a Support-Vector
Machine (SVM) classifier via stratified K-fold cross validation plotting true positive rate
(sensitivity) against false positive rate (100-specificity) at various thresholds were used
to analyze the predictive capabilities of the metabolite biomarkers. Area under the curve
(AUC), confusion matrices and permutations were used to evaluate the performance of the
classifiers. A visual representation of this workflow is seen in the Data Analysis Section of
Figure 1.
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Figure 1. Flow of the study. Pigs were sampled for saliva, urine and serum as outlined in the
methods section. After sampling, pigs were classified into their respective group based on their past
reproductive performance. Samples were analyzed with targeted metabolomic quantification using
LC-MS/MS techniques. Raw data from this analysis was appropriately pre-processed and analyzed
using our developed metabolomics protocol. Metabolomics analysis results were then interpreted in
the context of biological relevance of sow reproduction.

3. Results

The flowchart of the study is outlined in Figure 1. After grouping pigs based on repro-
ductive performance and sample availability, a total of 48 serum (HRP n = 22, INF n = 24),
56 urine (HRP n = 41, INF n = 15), and 69 saliva (HRP n = 42, INF n = 27) samples were
included for metabolomics analysis.
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3.1. HRP and INF Sows Have Diverging Metabolic Profiles in Saliva, Urine and Serum

After metabolomic analysis and data pre-processing, 125, 123 and 115 metabolites
were suitable to include in the statistical analysis for serum, urine and saliva, respectively
(Supplementary Tables S1–S3). Multivariate PLS-DA analysis was performed to identify
metabolic separation between HRP and INF sows and begin the feature selection process.
Overall, metabolic separation between the HRP and INF groups was observed in all three
biofluid types (Urine; Figure 2A, Saliva; Figure 2B, Serum; Figure 2C). Urine and saliva
appeared to have the highest degree of separation in the PLS-DA models, with an average
accuracy of 0.89 and 0.90, respectively, moderate predictability (Urine R2 = 0.71, Saliva
R2 = 0.60) and acceptable levels of error (Urine MSE = 0.06, Saliva MSE = 0.10). Serum
had less separation between groups, with an average accuracy of 0.67, lower predictive
ability (R2 = 0.09) and higher error (MSE = 0.23; Figure 2D). Feature selection through
Recursive Feature Elimination (RFE) aligned with the PLS-DA feature selection results,
with the urine selected features having the highest accuracy (0.929 ± 0.098), followed by
the saliva selected features (0.851 ± 0.108) and the serum selected features (0.758 ± 0.204).
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Figure 2. Distinct metabolic separation between HRP and INF pigs based on concentration of
analyzed metabolites. PLS-DA plots clearly separated the HRP and INF groups using metabolite
concentrations evaluated in urine (A), saliva (B), and serum (C). Cross validation and performance
measures (D) of the PLS-DA models suggest that urine and saliva perform better than serum in the
metabolic separation of the HRP and INF groups.
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3.2. Amino Acid, Fatty-Acid, Lipid and Steroid Hormone Metabolites Are Altered between HRP
and INF Sows

Univariate and fold-change analysis of all metabolites revealed significant metabolic
differences in urine (Figure 3A), saliva (Figure 3B), and serum (Figure 3C) samples when
comparing HRP and INF sows. Significant metabolite concentration differences were iden-
tified in all metabolite groups targeted, including amino acids/biogenic amines, carnitines,
phospholipids and steroid hormones (Figure 4). Interestingly acetyl-ornithine, acetyl car-
nitine (C0), butrurylcarnitine (C4), two glycerophospholipids (LYSOC 14:0, LYSOC 18:2)
and a phosphatidylcholine (PC38:6AA) were found at significantly different concentrations
between HRP and INF pigs across all three biofluids (Figure 4A–C).
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Figure 3. Volcano plots depicting the significant differences of metabolite concentrations in the urine
(A), saliva (B), and serum (C) of HRP pigs in comparison to INF pigs. Each dot represents a metabolite.
Red metabolites indicate an upregulation of the metabolite in HRP sows in comparison to INF sows,
blue metabolites indicate a downregulation of the metabolite in HRP sows in comparison to INF sows,
and grey metabolites indicate no change between HRP and INF sows. Fold-Change threshold = 2,
p-value threshold = 0.05. A full list of p-values and FC values can be found in Supplementary
Tables S4–S6.

Of the amino acids and biogenic amine derivatives (Figure 3A), 15 metabolites were
increased and two amino acids were decreased in HRP urine in comparison to INF pigs.
Saliva displayed a somewhat opposite pattern, with 14 metabolites decreased and three
amino acids increased in HRP pigs in comparison to INF pigs. Serum appeared to have a
more variable pattern in comparison to saliva and urine, with 3 amino acids or derivatives
increased and 6 decreased in HRP in comparison to INF.

Of the fatty-acid oxidation-related carnitine metabolites (Figure 4B), acetyl carnitine
(C0) was significantly increased in HRP pigs across all three biofluids, and acetyl-L-carnitine
(C2) was increased in HRP urine in comparison to the INF group. In urine, the significant
short-chain derivatives (C3-C5) were all increased in HRP sows. Similarly, the majority of
significant medium-chain (C6-C12) and long-chain (C14-C20) derivatives in were increased
in HRP urine in comparison to INF urine. In saliva, the pattern was less clear with
approximately equal short chain, medium chain and long chain derivatives increased
and decreased in HRP sows incomparison to INF sows. In serum, the three significant
short-chain derivatives were increased and one was decreased in HRP serum and the
significant medium-chain derivative C6 and long-chain derivative C18:1 were decreased in
HRP serum in comparison to INF.

Of the phospholipids, all glycerophospholipids (LYSOC) and phosphatidylcholines
(PC) (Figure 4C) were present at higher concentrations in HRP pig serum in comparison to
INF pigs. In saliva, all significant glycerophospholipids and phosphatidylcholines, besides
PC38:6AA, were higher in HRP pigs in comparison to INF pigs. In urine, the majority
(9) of glycerophospholipid and phosphatidylcholine were increased in HRP pigs, with the
exception of PC38:6AA and PC30:0AA which were decreased in HRP pigs in comparison
to INF pigs. Sphingomyelin (SM) phospholipids increased in HRP pig urine and decreased
in HRP saliva compared to INF pigs.
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Figure 4. Comparison of the metabolite changes of amino acid (A), fatty acid oxidation (B), lipid
membrane (C) and steroid hormone (D) metabolite groups in serum, urine and saliva between HRP
and INF pigs. Red metabolites indicate a decrease in the concentration of the metabolite in HRP
compared to INF, green metabolites indicate an increase in the concentration of the metabolite in
HRP compared to INF, and blue metabolites indicate metabolites that have variable changes in the
metabolite across more than one biofluid, with the direction of their changes indicated by the arrow
and corresponding biofluid underneath.

Of the steroid hormones (Figure 4D), no differences between HRP and INF pigs were
observed in serum. Cortisol and testosterone were significantly increased and proges-
terone significantly decreased in both HRP urine and saliva. Androsterone, cortisone,
17-hydroxyprogesterone and dehydroepiandrosterone were higher in HRP urine in com-
parison to INF. Androstenedione and estrone were lower in HRP saliva in comparison
to INF.

3.3. Biomarker Selection and Model Performance

Significant metabolites (p < 0.05) that had a VIP ≥ 1.25 from the PLS-DA models and
were selected in RFE were chosen as potential biomarker candidates and used in the ROC
curve modelling of each biofluid (Figure 5). The selected serum biomarkers appeared
to favor metabolites related to amino acid and fatty acid oxidation, with six amino acids
and two carnitines selected. Selected urine and saliva biomarkers appeared to favour
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metabolites related to membrane lipid metabolism and fatty acid oxidation, with urine
including three phospholipids and six carnitines and saliva including seven phospholipids
and six medium- and long-chain carnitine derivatives. Interestingly, the short-chain acyl
carnitine derivative C4 was included in both urine and serum diagnostic models and the
long-chain acyl carnitine derivative C14:2 was included in both urine and saliva diagnostic
models. ROC-AUC models were used to evaluate the diagnostic ability of the potential
biomarker candidates separating the metabolic profiles of HRP and INF reproductive
groups. Urine had an average accuracy of 98% based on 100 cross-validations using the
AUC as the performance measure (Figure 6A). Saliva and serum followed, with average
accuracies of 93% and 88%, respectively (Figure 6B,C).
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4. Discussion

This study demonstrates that HRP and INF sows have diverging amino acid, fatty
acid oxidation, and membrane lipid metabolic profiles in urine, saliva and serum. This
supports that metabolism is widely implicated in sow fertility, and its changes can be
clearly reflected in urine, saliva and serum biofluids. The urine and saliva PLS-DAs in this
study have stronger metabolic separation of HRP and INF groups and higher replicability
in comparison to the serum PLS-DA. This pattern is also reflected in the RFE selection of
50 features, with urine and saliva features out-preforming serum features. This is supported
by urine and saliva’s superior accuracy in RFE, and superior accuracy and cross validation
performance in PLS-DA, demonstrating high R2 performance measures and lower error
measures in comparison to serum’s performance.

The urine metabolite model appeared to be the most discriminatory followed by the
serum and saliva metabolite models. Overall, it appears that all three biofluids could
be used for predictive modelling of reproductive state between pigs to determine their
reproductive potential, with urine having a slight advantage over saliva and serum. The
panel of candidate biomarkers identified across the three biofluids examined in this study
suggests that fatty acid oxidation metabolism, speficially carnitines, is involved in the
cross-talk between metabolism and reproductive potential in sows and could be very useful
in predicting the reproductive potential level of a female pig, specifically in saliva, urine
and serum biofluids. Additionally, amino acid metabolism in serum and membrane lipid
metabolism in saliva and urine had metabolites appear as candidate biomarkers, also
suggesting that they could be useful for prediction purposes. Future research examining
the predictive ability of these selected candidate biomarkers in an independent population
of sows and gilts would need to be performed to further validate this finding and thereby
classify these metabolites as diagnostic biomarkers of sow fertility.

Urine and saliva had the most significant metabolic changes between HRP and INF
groups (69 and 66 significant metabolites, respectively) followed by serum (21 significant
metabolites). It appeared that saliva had the most variable results across metabolite groups,
whereas urine and serum had more distinct trends. The variable saliva metabolite patterns
may be explained by the instability and variability in saliva metabolites of cellular origin
and cellular debris [42,43]. However, saliva has an advantage over serum and urine it is
more reflective of functional levels or “bioavailable” steroid hormones in the body [44,45].
A large proportion of steroid hormones are strongly bound by specific globulins in the
blood but are inactive in this bound state. Saliva levels of steroid hormones are thought to
reflect the unbound state, therefore better reflecting the bioavailable levels [44,45]. Urine
is considered a metabolic waste product, accumulating over a prolonged period and is
mainly free of interfering proteins and lipids, shedding light on the endogenous waste
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metabolites of an organism [14]. Serum is under greater homeostatic control than saliva
and urine, making it more reflective of the metabolic condition as it subject to less exter-
nal variability [18], and in the context of female reproduction, its metabolic content can
reflect the content of follicular fluid, and thus, the metabolite concentration surrounding
the oocytes [46,47]. However, there are disadvantages to using serum in the context of
metabolomics and biomarker discovery; serum provides a “snapshot” of the individual
at a specific time-point, inviting increased variability between individual samples based
on time of sampling and providing more limited metabolic information. Taken together,
due to the inherent properties of the sampled biofluids, the higher prevalence of urine
and saliva significance but not serum may be attributed to accumulation of endogenous
metabolic “waste” products in urine and the systemic reflection of bio-available hormones
in saliva, magnifying and better reflecting even the slightest metabolic differences between
the HRP and INF groups.

Taking the feature selection, diagnostic performance and nature of the biofluids to-
gether, urine and saliva may be better suited biofluid candidates for the diagnostic pre-
diction of reproductive potential level in female pigs using metabolomics. Serum pro-
vides some diagnostic ability and could be used as a support to the urine and serum
biomarkers, however further work needs to be done to improve the predictive ability of
serum biomarkers.

4.1. Reduced Amino Acid Pool in INF Pigs

The sufficient uptake, metabolism and transport of amino acids is essential for proper
mammalian embryo development, oocyte quality and uterine environment. Amino acids
are highly prevalent in the reproductive tract, highlighting their importance [48,49]. The
available endogenous pool of embryonic amino acids turns over every 72 h, and this
turnover has been used as a measure of mammalian oocyte and embryo viability [50,51].
Additionally, many conditions of female infertility, including endometriosis [52], PCOS [25],
and recurrent miscarriage [53], implicate aberrant amino acid metabolism. The decreased
levels of amino acid metabolites present INF urine may suggest overall insufficient amino
acid sources or less active amino acid metabolism in INF pigs, possibly contributing to
poor oocyte quality, embryo quality or uterine environment, contributing to their infertile
phenotype as outlined above.

Chen et al. [30] examined the metabolomics of oocyte quality in low reproductive
potential and normal reproductive potential sow follicular fluid, urine and serum, re-
porting that amino acids involved in glycine/serine/threonine, tryptophan, and aspartic
acid metabolism were aberrant in lower reproductive performers with poor oocyte qual-
ity. These results are consistent with the findings in the present study. Our analysis
also identified altered concentrations of the derivatives of the pathways highlighted by
Chen et al. [30], and these results are consistent with their physiological roles in female
mammalian reproduction.

Many early mammalian reproductive failures are related to derangements of one-
carbon metabolism (methylation), which modulates DNA methylation by controlling
methyl availability [54,55]. Mammalian oocytes and embryos go through dynamic alter-
ations in their DNA methylation for maturation and development [56]. In the present
study, amino acid metabolites involved in the transport or excretion of methyl groups were
increased in HRP urine and/or serum, including betaine, taurine, glycine and methionine
(reviewed in [57]). Asymmetric and total dimethyl arginine are also increased in HRP
urine; this excretion is important to activate endothelial nitric oxide synthase [58] allow-
ing for regulation of vascularization in embryo development and implantation [59–61].
These results indicate that HRP pigs could have higher levels of methyl group excretion in
comparison to INF pigs. Due to the importance of the modulation of DNA methylation
in oocyte and embryo development, aberrant DNA methylation in INF pigs could lead
to impaired oocyte maturation and embryo development. Further research should aim
to explore the DNA methylation state of oocytes or embryos from infertile and highly
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reproducing pigs to explore how one-carbon metabolism and methylation could result in
the studied phenotypes.

4.2. L-Carnitine and Acetyl-L-Carnitine Increased for Fatty Acid Oxidation and ROS Protection in
HRP Pigs

L-carnitine (C0) and acetyl-L-carnitine (C2) play an essential physiological role in the
transportation of long-chain fatty acids from the cytosol to the mitochondria where they
are oxidized for energy production [62]. Fatty acid oxidation by the cumulus oocyte com-
plex (COC) is vital for oocyte and embryo maturation, quality and competence (reviewed
in [63]) as well as early embryo development, making L-carnitine and acetyl-L-carnitine
essential cofactors for competent development [64]. Porcine oocytes, in comparison to
other domestic animals, such as cattle and sheep, are extremely lipid rich [65] and rely
heavily on fatty acid oxidation for developmental competence [66]. During the in vitro
maturation of porcine oocytes, a clear benefit of L-carnitine has been highlighted in numer-
ous studies [67–70], with its supplementation significantly increasing oocyte mitochondrial
activity [68] (reviewed in [71]). In addition to these beneficial roles, L-carnitine (C0) and
acetyl-L-carnitine (C2) work as antioxidants to regulate and protect the metabolic status
of the female reproductive tract and associated tissues, neutralizing and ridding of the
damaging free radicals and damaging intermediary molecules [5,72], which are implicated
in female mammalian infertility [73,74]. In practice, antioxidant application to gestating
sows can increase litter size [75], and L-carnitine was found to reduce ROS levels in porcine
oocytes during in vitro maturation [70], highlighting the importance of the regulation of
ROS in infertility. The increase of C0 and C2 in HRP sow biofluids in the present study may
reflect an increase of fatty acid oxidation capacity and ROS protection. This state would
promote HRP oocyte development and embryo viability, leading to better reproductive out-
comes. Additioally, in fatty acid oxidation, L-carnitine and acetyl-L-carnitine are converted
to short-chain (C3-C5) medium chain (C6-C12) and long-chain (C14-C20) acylcarnitine
derivatives [62]. The increased levels of short chain acylcarnitine derivatives (C3-C5) found
in HRP urine and serum and altered levels of medium- (C6-C12) and long-chain (C14-C20)
derivatives in saliva urine and serum support the notion that HRP sows better exploit
carnitines for fatty acid oxidation in comparison to INF sows.

4.3. Disrupted Membrane Lipid Metabolism in INF Pigs

Phospholipids contribute significantly to mammalian cellular membranes, control-
ling diffusion and transportation of molecules in and out of the cell, regulation of signal
transduction, cell communication, and complex functioning [76,77]. The permeability and
quality of the oocyte’s plasma membrane contributes significantly to early development and
fertilization potential, and have been suggested as determinants of successful fertilization
of oocytes in vitro [78]. Additionally, positive pregnancy outcomes have been associated
with active membrane lipid metabolism with an overall decrease in triacylglycerol levels
and a shift to increases in all membrane lipids, including glycosphingolipids, lysophos-
pholipids, and sphingomyelins in follicular fluid [79]. Consistent with this notion, the
majority of significant phospholipids were present at a higher concentration in HRP sow
saliva, urine and serum in comparison to INF sows. Interestingly, four of these discriminant
lipids, SM16:0, LYSOC18:0, LYSOC18:1, and LYSOC18:2, have been previously identified
as possible predictors for successful pregnancy in follicular fluid, [79]. It is possible that
the INF sows, due to disruption of overall phospholipid synthesis and/or membrane lipid
metabolism, have poor quality oocytes with increased permeability, lending to unsuccess-
ful fertilization in vivo. Accordingly, membrane lipid metabolism is highly disturbed in
unexplained infertility with increased triacylglycerol levels, decreased phospholipids and
sphingomyelin in follicular fluid [80], and in PCOS with decreased glycerophospholipids
and sphingomyelin in follicular fluid [81], decreased lysophosphatidylcholines in serum
and increased lysophosphatidylcholines in urine samples [82]. Overall, the significant
differences in phospholipid concentrations between HRP and INF sow biofluids imply
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their involvement in female mammalian fertility. In the future, triacylglycerides, precursors
to membrane lipids, should be examined to get a more accurate overview of the state of
membrane lipid metabolism.

4.4. Beneficial Levels of Steroid Hormones HRP Pigs

Androgens and estrogens are important in the regulation of the mechanisms involved
in oocyte maturation and ovulation in follicle development and maintenance of embryo
quality (reviewed in [83]). Free androgen index has been found to positively correlate
with ovarian follicle count [84], serum testosterone levels have been found to positively
correlate with number of oocytes and available embryos [85,86], and embryo implantation
rate [87], suggesting that lower levels of testosterone and androgens are associated with
poor oocyte and embryo quality. Accordingly in pigs, the number of corpus lutea per
follicle and ovulation rate of gilts increased after testosterone injection [88,89]. The positive
roles of testosterone in female mammalian fertility supports the idea that HRP pigs are in
better reproductive condition than the INF pigs due to relatively higher androgen levels in
the form of testosterone, androsterone and DHEA. Estrogens play a role in the development
and maturation of oocytes, corpus luteum formation, embryo development and implanta-
tion [90,91]. In the present study, estradiol concentrations were not measured in saliva and
urine, but reduced levels of estrone were found in HRP pig saliva. It is suggested that the
decreased concentration of estrone in HRP saliva is due to increased conversion to estradiol
via the enzyme 17 beta-hydroxysteroid dehydrogenase (HSD-17β) [92]. Increased estradiol
may contribute to the healthy fertile HRP phenotype expected. Future research should
measure the levels of estradiol in HRP and INF phenotypes to support this speculation.

Interestingly, higher levels of glucocorticoids were found in HRP in comparison to INF
pigs saliva and urine. Even though it has been reported that high levels of glucocorticoids
are associated with negative reproductive outcomes related to oocytes [93–95], there is
evidence supporting neutral or positive roles of these hormones in female reproduction.
For example, the exposure of mouse oocytes directly to physiological or stress-induced
concentrations of cortisol [94,96] or corticosterone [97] during in vitro maturation had no
negative effect on nuclear maturation and embryo development and no evidence was
found to support disruption of ovulation, conception, or number of embryos in gilts by
stress or cortisol injection during estrus [98]. Interestingly, a 2-fold higher concentration of
cortisol in the follicular fluid of follicles containing mature oocytes compared to immature
oocyte containing follicles in an IVF trial, suggesting a positive role in maturation of
oocytes [99]. Overall, it remains to be determined exactly how glucocorticoids effect oocyte
and embryo competence in mammals. Neverless, the absence of increased glucocorticoid
detected in serum suggest that their direct influence to the oocyte, and consequently fertility,
is minimal.

5. Conclusions

Our study has characterized the urinary, salivary and serum metabolome simultane-
ously and identified potential candidate biomarkers in high reproductive potential and
infertile sows. We report that amino acid, fatty acid oxidation, membrane lipid components,
and steroid hormones were found to be different between HRP and INF sow biofluids. For
biomarker identification purposes, the present study supports that urine may be a superior
biofluid over saliva and serum for accurate reflection of the female pig’s metabolomic state
and prediction of fertility potential, supported by the univariate, PLS-DA, RFE, and ROC-
AUC analyses. The candidate biomarkers of sow reproductive potential identified in this
study suggest that future studies should focus on fatty acid oxidation related metabolites in
all three biofluids, and amino acid metabolism in serum, and membrane lipids in urine and
saliva. Our results may also provide insight into characterizing metabolic phenotypes that
are favourable or unfavourable for successful reproduction or fertility in other mammalian
species, including humans. It also marks the first study completed with a large sample
size of less-invasive biofluids, in comparison to previous termination studies focusing on
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follicular fluid and ovarian tissue. This work lays the foundation for improving existing gilt
and sow selection protocols, and thus more profitable production in the pork industry. For
real-world application and diagnostic purposes, further studies should focus on testing the
candidate biomarkers identified in the present study in a novel population of pig samples
to measure diagnostic ability.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo12111045/s1, Table S1: Panel of serum metabolites
analyzed after data pre-processing steps (125 metabolites total). Table S2: Panel of urine metabolites
analyzed after data pre-processing steps (123 metabolites total). Table S3: Panel of saliva metabolites
analyzed after data pre-processing steps (155 metabolites total). Table S4: Urine metabolites found
at significantly different (p < 0.05) concentrations between HRP and INF sows. Table S5: Saliva
metabolites found at significantly different (p < 0.05) concentrations between HRP and INF sows.
Table S6: Serum metabolites found at significantly different (p < 0.05) concentrations between HRP
and INF sows.
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