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Abstract: Gestational diabetes mellitus (GDM), a common perinatal disease, is related to increased
risks of maternal and neonatal adverse perinatal outcomes. We aimed to establish GDM risk predic-
tion models that can be widely used in the first trimester using four different methods, including
a score-scaled model derived from a meta-analysis using 42 studies, a logistic regression model,
and two machine learning models (decision tree and random forest algorithms). The score-scaled
model (seven variables) was established via a meta-analysis and a stratified cohort of 1075 Chinese
pregnant women from the Northwest Women’s and Children’s Hospital (NWCH) and showed an
area under the curve (AUC) of 0.772. The logistic regression model (seven variables) was established
and validated using the above cohort and showed AUCs of 0.799 and 0.834 for the training and
validation sets, respectively. Another two models were established using the decision tree (DT) and
random forest (RF) algorithms and showed corresponding AUCs of 0.825 and 0.823 for the training
set, and 0.816 and 0.827 for the validation set. The validation of the developed models suggested
good performance in a cohort derived from another period. The score-scaled GDM prediction model,
the logistic regression GDM prediction model, and the two machine learning GDM prediction models
could be employed to identify pregnant women with a high risk of GDM using common clinical
indicators, and interventions can be sought promptly.

Keywords: gestational diabetes mellitus; prediction models; risk factors; early pregnancy

1. Introduction

Gestational diabetes mellitus (GDM) is usually diagnosed in the second and third
trimesters, and these pregnant women have no history of diabetes before pregnancy.
GDM is characterized by hyperglycemia during pregnancy [1], which increases the risk of
developing postpartum type 2 diabetes mellitus (T2DM) among pregnant women [2], along
with premature delivery and clinical neonatal hypoglycemia [3]. However, the fetus of
GDM women exposed to an intrauterine hyperglycemic environment from the beginning of
the second trimester may lead to smaller fetuses [4] and abnormal abdominal circumference
growth rates relative to pregnant women with normal glucose tolerance (NGT) [5].
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The 75 g oral glucose tolerance test (OGTT) during the 24th–28th week of pregnancy is
performed to diagnose GDM [1]. However, the fasting status and strict interval limitation
for gestational age required for screening are unrealistic in some low-income areas in
western China.

Some studies have employed the levels of angiopoietin-like protein 8, plasma fatty acid
binding protein 4, and various adipokines [6–8] to predict GDM at the early stages of preg-
nancy but these have been difficult to popularize in clinical settings. Other common clinical
indicators, including excessive weight gain during pregnancy, increased pre-pregnancy
body mass index (pre-BMI) [9–11], advanced maternal age [12], accepted assisted reproduc-
tive technology (ART) treatment [13], family history of T2DM [14], and young menarche
age are risk factors for GDM [15], which can be used as potential predictors of GDM devel-
opment but show poor predictive powers as validated by our data. We screened several
published GDM prediction models by literature review, and some of these have limited
clinical utility due to the uncommon use of the included variables. Kang and colleagues [16]
developed a model comprising several clinically uncommon variables, including the levels
of HbA1c, IgA, triglycerides, and the percentage of B lymphocytes at the early stages of
pregnancy. The variables from the model of Schoenaker and colleagues [17], including
diet and exercise, are difficult to measure in clinical settings. Finally, the GDM prediction
model of Sweeting and colleagues [18], which targets the Asian population in different
regions, has not been validated in China. Additionally, we validated three published GDM
prediction models [19–21] using data from a cohort obtained in May 2021 from the North-
west Women’s and Children’s Hospital (NWCH), and these showed limited performances
(Supplementary Table S10).

Therefore, we combined these risk factors to establish individualized GDM prediction
models to screen women at a high risk of developing GDM during the early stages of
pregnancy and guide the implementation of prevention strategies.

2. Materials and Methods
2.1. Data Sources

In the beginning, we screened data of 1075 pregnant women from a retrospective
cohort at the Department of Obstetrics at NWCH between November 2019 and March 2020.
To validate the performances of the established models, we collected data from the NWCH
cohort in May 2021. We obtained data from the routine gestational care visit. Women
carrying a full-term fetus and relatively complete pregnancy data were included. Women
with diabetes before pregnancy who met the criterion for OGTT and were diagnosed with
T2DM or other metabolic diseases were excluded. Finally, 1075 pregnant women were
included for further analyses.

2.2. Outcomes

GDM or NGT was diagnosed according to the IADPSG criteria [22] between the 24th and
28th gestational week. All the included pregnant women in this study did not undergo OGTT
in the 1st trimester and showed a corresponding fasting blood glucose (FBG) < 5.1 mmol/L.

2.3. Clinical Measurements and Definitions

We calculated pre-BMI using the recorded weight (maternal weight before and dur-
ing pregnancy were recorded in the electronic medical records) divided by the height
squared (m2) at the 1st gestational care visit and stratified based on pre-BMI using the crite-
ria specific for Chinese adults [23] as follows: ≤23.9 kg/m2 as normal, 24–27.9 kg/m2 as
overweight, and≥28 kg/m2 as obese women. We stratified maternal age into <30 years (yr),
30–34 yr, 35–39 yr, and ≥40 yr categories. The 1st-trimester gestational weight gain (GWG)
was calculated as the maternal weight at the beginning of the 2nd trimester minus the
pre-pregnancy weight, and the “above the recommended GWG” was defined based on the
Institute of Medicine guideline (IOM) recommendations [24]. A weight gain of more than
2 kg in the 1st trimester was considered excessive for all the pre-BMI stratification groups.
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Age at menarche was grouped into <11 yr and ≥11 yr categories, as existing literature sug-
gests that menarche age < 11 yr is a risk factor for metabolic diseases and fetal overgrowth
during pregnancy [25–27]. FBG in the 1st trimester was stratified into two groups using
a 5.0 mmol/L cut-off value as the recommended FBG level during early pregnancy [28].
These stratifications were based on clinical knowledge and practice guidelines. The positive
status of relative thyroid antibodies in this study was defined as the positive status of
TPO-Ab/Tg-Ab in the 1st trimester.

2.4. Data Collection and Detection of Plasma Biochemical Parameters

The questionnaire survey for participants included general information on medical
history, T2DM family history, reproductive history, and age at menarche. All laboratory tests
were performed by standard methods at a certified laboratory. The glucose oxidase method
was used to test FBG levels, with an intra-and inter-assay variation factor of 2.1% and
2.6%, respectively. The enzyme-catalyzed method was employed to obtain the plasma lipid
profiles (triacylglycerol (TG), total cholesterol (CHO), low-density lipoprotein cholesterol
(LDL-C), and high-density lipoprotein cholesterol (HDL-C)). Plasma thyroid function was
tested using commercially available kits (FT3 (R-A-03-01, 1–81 pmol/L), FT4 (R-A-04-01,
3–200 pmol/L), TSH (R-A-05-01, 0–50 uIU/mL), TG-Ab (R-A-07-01, 30–3000 IU/mL), and
TPOAb (R-A-08-01, 10–1000 IU/mL) 3V Bioengineering, Shandong, China). The indexes
of liver function (aspartate aminotransferase (AST), alanine aminotransferase (ALT), total
protein, albumin, and globuli), vitamin B12, and ferritin levels were tested using the
reagents manufactured by Shandong 3V Bioengineering Company, Weifang China, on the
Hitachi 7600 automatic 49 biochemical analyzer platform.

2.5. Derivation Cohort for the Score-Scaled GDM Risk Prediction Model

The meta-analysis for the derived cohort, comprising cohorts from 42 studies
(12 prospective and 30 retrospective cohorts), was performed with a PROSPERO ID
CRD42022302930. We searched for articles that were published in electronic databases,
including MEDLINE, Embase, and Web of Science until the end of 10 July 2021, using a
merged method consisting of MeSH headings search strategy and the following terms:
“Diabetes, Gestational”, “Risk Factors”, and “Cohort Studies.” Pregnant women were
from Asia (China, Iran, Israel, Japan, Korea, and Malaysia), Europe (Finland, Italy, Spain,
Sweden, and the UK), the Americas (U.S. and Peru), and Australia, and three interna-
tional multi-center cohorts were included. Odds ratios (ORs) and corresponding 95% CIs
(confidence intervals) were estimated for the risk factors extracted from these articles. We
used the Newcastle Ottawa Scale to evaluate the quality of the included studies. We used
Endnote to screen the titles and abstracts after removing duplicate reports; WN and GHN
screened independently. In cases of differences, a third investigator (JYY) was involved
for discussion and resolution. Full texts of the screened studies were evaluated by WN
and GHN according to the set criteria, and any disagreement was resolved unanimously
with the participation of the third investigator (JYY). Further, the data were extracted and
checked by WN, GHN, and JYY. Figure 1 presents the flow chart of the research report
selection method. Supplementary Tables S1 and S2 list the keywords, derivative words,
and retrieval strategy.

2.6. Statistical Analysis

Continuous variables showing normal distribution were presented as means ± standard
deviation (SD). Differences between the NGT and GDM groups were compared using the
t-test; the Chi-squared test was utilized for categorical variables.

2.6.1. Meta-Analysis

ORs with 95% CIs of all risk factors for GDM were extracted and analyzed using
random-effects or fixed-effects models based on their heterogeneity. According to the
statistical estimate of the sample size, the inverse of the variance of the OR was the cor-
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responding weight of the study [29]. The heterogeneity of each study was assessed and
measured using I2; when I2 was >50%, the random-effects model was used; otherwise,
the fixed-effects model was chosen [30]. If risk factors showed significant heterogeneity
(I2 > 50%), sensitivity analyses were conducted by omitting a single study to measure the
robustness of the results [31]. Funnel plots were drawn to measure the publication bias.
p-value < 0.05 in a two-sided test suggested statistical significance. We used the Review
Manager software version 5.0 for the meta-analysis.

Figure 1. Flow diagram outlining the literature search and selection based on risk factors of GDM
development in pregnant women at early pregnancy.

2.6.2. Multiple Imputations

Multiple imputations with chained equations were employed to replace the missing
values for vitamin B12, ferritin, CHO, TG, LDL-C, and HDL-C. The number of all missing
values was within 20% of the total. Five estimation models were used based on the sample
size and the capacity of the software (Jupyter Notebook 6.4.5, python 3.9.7).

2.6.3. The Logistic Regression Modeling Strategy

We divide pregnant women into the training (n = 765) and validation (n = 310) sets
randomly. Variables were screened by Lasso regression, and these in the model were
determined by cross-verification Lasso logistic regression (3 folds, seed 123), which, with
the largest lambda for MSPE, are within one standard error (STATA 15.0). The regression
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modeling strategy employed multivariate logistic regression (SPSS 22.0). The nomograph
was constructed and AUCs were measured using STATA (version 15.0).

2.6.4. The Machine Learning (ML) Algorithms

The original data consisted of 722 NGT and 352 GDM women. In order to improve
the performance of the ML, a combination of over-sampling by SMOTE (synthetic minority
oversampling technique) for the minority class and random under-sampling for the majority
class is used to balance the dataset. The DT and RF algorithms were used to establish GDM
prediction models using Jupyter Notebook (Anaconda) 6.4.5. All graphs for ML models
were plotted using Graphviz 2.38.

2.7. Development and Validation of the Models
2.7.1. The Score-Scaled GDM Risk Prediction Model

Considering the practicality and clinical utility of the prediction model, we only ex-
tracted the pooled ORs and their 95% CIs for risk factors with statistically significant
differences and selected the appropriate ORs for sensitivity analyses, based on the criteria
proposed by Sullivan and colleagues [32]. Scores of risk factors were calculated by multi-
plying the β-coefficient by 10 and rounding it off. The total score was the sum of each risk
factor. The data of 1075 pregnant women from November 2019 to March 2020 were used for
the risk stratification, and validation was performed using the data of 210 pregnant women
from the May 2021 cohort. The total score was calculated for each pregnant woman based
on the variables in the model. The occurrence of GDM in the 2nd trimester was the outcome
of assessing the AUC. According to the optimal cut-off value and the median score of the
two intervals [33], pregnant women were divided into 4 groups, namely relatively low,
moderate, high, and very high, to analyze the differences in the proportion of outcomes.

2.7.2. Logistic Regression Analysis for GDM Risk Prediction Model

Variables were screened by Lasso regression analysis, and cross-verification was
performed. Multivariate logistic regression (backward variable selection) was conducted
using the training set. Equations and nomographs were used for the popularization of
the prediction model. The validation set comprised 310 women, and the AUC reflected an
estimate of the average optimal model’s predictive accuracy, which also quantified the level
of agreement between the predicted probabilities and the actual incidence of GDM. The
calibration curve was plotted to evaluate the association between the probability estimated
using the logistic regression model and the observed GDM rate in training/validation sets.
The Hosmer–Lemeshow (H-L) test was conducted to determine the differences between
the predicted and the true values. The decision curve showed the net return from the
model. The model was further validated using data from 210 pregnant women from the
May 2021 cohort.

2.7.3. ML Prediction Models

Two ML algorithms, namely DT and RF, were employed. DT is a tree structure
consisting of a single root node and several internal nodes and leaf nodes. The starting
node is the root and the path from the root to the leaf node represents the classification
processes of DT. CART algorithms based on the Gini coefficients were used. RF is an
integrated algorithm layered on top of multiple DT classifiers. Each DT in the RF is
randomly constructed and controlled by several selected characteristic variables. The
learning process includes bagging and random feature selection.

To achieve a better prediction performance by ML algorithms, we used the Random
Under-Sampling and Synthetic Minority Over-Sampling Technique (SMOTE) to balance
the data. Data were randomly divided into training (70%) and validation (30%) sets for
DT and RF algorithms, respectively. The final classification results mostly contained DTs.
Indicators such as the AUC-ROC curve, precision, recall, Fi-score, accuracy, and specificity
were employed to measure the performance of these ML prediction models.
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3. Results
3.1. The Score-Scaled GDM Risk Prediction Model
3.1.1. Derivation Cohort

The patients in the derivation cohort were from 42 different studies, and the period
ranged from 1 to 19 years. Supplementary Table S3 lists the characteristics of these studies.
The qualities of these studies were measured using the Newcastle-Ottawa scales by SL and
CH independently, and the scores ranged from 6 to 9 (Supplementary Table S4).

Seven reasonable risk factors were selected following the meta-analysis. Pooled ORs
and their corresponding 95% CIs are shown in Figure 2A (the detailed data, forest plots,
sensitivity analyses, and funnel figures of these factors are provided in Supplementary
Table S5 and Supplementary Figures S1–S9). Finally, the GDM risk prediction model was
established with age (<30 yr scores 0, 30–34 yr scores 5.0, 35–39 yr scores 8.0, and ≥40 yr
scored 9.0), BMI (<24.0 kg/m2 scores 0, 24–27.9 kg/m2 scores 4.0, and≥28 kg/m2 scores 5.0),
T2DM family history (no T2DM family history scores 0 and have T2DM family history
scores 6.0), age at menarche (0 if age at menarche > 11 and 3.0 if ≤11 years), acceptance of
ART treatment (0 if no and 2.0 if yes), the positivity of thyroid-related antibodies (0 if no
and 5.0 if yes), and IOM above the recommended GWG in the first trimester (0 if no and
2.0 if yes) (shown in Table 1).

Table 1. The score-scaled GDM risk prediction model.

Risk Factors for GDM Category Scores

Maternal age (years) * <30 0
30–34 5
35–39 8
≥40 9

T2DM family history no 0
yes 6

pre–BMI (kg/m2) ** <24 0
24–27.9 4
≥28 5

Age at menarche (year) >11 0
≤11 3

ART no 0
yes 2

The positive of related thyroid antibodies *** no 0
yes 5

Above IOM recommended GWG at the 1st trimester no 0
yes 2

GDM, gestational diabetes mellites; T2DM, type 2 diabetes mellites; pre-BMI, pregestational body mass index; ART,
assisted reproductive technology; GWG, gestational weight gain. * Pregnant women in derivation and validation
cohorts aged 18–45 years old. ** pre-BMI was categorized as <25.0, 25.0–29.9, and≥30.0 kg/m2 in white patients and
<24.0, 24.0–27.9, and≥28.0 kg/m2 in Asians. *** Thyroid antibodies related to thyroid peroxidase antibodies (TPOAb)
and the anti-thyroid peroxidase antibody (TgAb). p value < 0.05 is considered statistically significant.

3.1.2. Validation Cohort

The clinical and serological indicators in the first trimester in the GDM and NGT
groups are shown in Supplementary Table S6. Compared to the NGT group, women
in the GDM group were older. The higher proportions of pregnant women with T2DM
family history, higher pre-BMI and FBG levels, and larger proportion of women in the
age at menarche ≤ 11 yr, acceptance of ART treatment, the positivity of thyroid-related
antibodies, IOM above the recommended GWG in the first trimester, and a history of
macrosomia were present in the GDM group relative to the NGT group (all p < 0.05). The
model showed an AUC of 0.772 (95% CI 0.742–0.803) (Figure 2B). The optimal cut-off score
was 9.5 with the maximum corresponding Youden index (Supplementary Table S7). Based
on this model, 1075 pregnant women were further classified into four groups based on
risk scores as follows: <5.5 as low (n = 580), 6–9.5 as moderate (n = 203), 10–18.5 as high
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(n = 259), and ≥19 as very high (n = 33) risk levels. The number of included pregnant
women who developed GDM in the second trimester was 93 (15.7%) in the low group,
53 (28.5%) in the moderate group, 178 (67.2%) in the high group, and 28 (88.6%) in the
very high group (Figure 2C). Significant statistical differences were found in the pairwise
comparisons among the four groups (except for the high and the very high-risk groups).
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for risk factors in the score-scaled GDM risk prediction model. Estimates were derived from the
fully adjusted models in each included analysis. Red squares and horizontal bars represent the
overall estimates and 95% CIs, respectively. (B) ROC curve for the validation cohort based on the
score-scaled risk prediction model. (C) Prevalence of GDM in the four groups of the validation cohort.
Pairwise comparisons were adjusted using the Bonferroni correction method. a different relative to
the low-risk group by the Chi-squared test. b different as compared to the moderate risk group by
the Chi-squared test.

3.2. Logistic Regression Analysis for the GDM Risk Prediction Model

Table 2 shows the comparison of clinical characteristics between the training cohort
(n = 765) and validation cohort 1 (n = 310) and validation cohort 2 (n = 210).
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Table 2. The clinical characteristics of training and validation cohorts.

Variables Training Cohort (n = 765) Validation Cohort 1 (n = 310) Validation Cohort 2 (n = 210)

GDM 246 (32.2) 106 (34.2) 39(18.5)
Maternal age 31.77 ± 4.14 31.5 ± 4.03 31.24 ± 4.17

T2DM family history 70 (9.2) 33 (10.6) 15(7.1)
pre-BMI 21.97 ± 3.34 22.07 ± 2.97 21.4 ± 3.12

Age at menarche ≤ 11 yr 66 (8.6) 22 (7.1) 4(1.9)
ART 53 (6.9) 31 (10) 4(1.9)

Thyroid antibodies + (TPOAb/TgAb) 115 (15.0) 53 (17.1) 16(7.6)
Above IOM recommended GWG at the

1st trimester 134 (17.5) 57 (18.4) 34(16.1)

History of macrosomia 28 (3.7) 11 (3.5) 7(3.3)
Parity 1.50 ± 0.60 1.49 ± 0.65 1.22 ± 0.71

Vitamin B12 (pg/mL) 64.33 ± 7.34 65.36 ± 7.72 61.35 ± 6.51
Ferritin (ng/mL) 46.80 ± 5.57 47.03 ± 5.79 42.24 ± 4.63

Total protein (g/L) 69.05 ± 4.13 70.18 ± 3.88 65.43 ± 3.47
Albumin (g/L) 40.15 ± 2.31 40.0 ± 2.56 44.34 ± 3.27
Globulin (g/L) 29.90 ± 3.31 30.18 ± 3.25 31.58 ± 2.64

ALT (U/L) 17.11 ± 10.78 18.81 ± 11.83 17.31 ± 10.81
AST (U/L) 19.40 ± 9.38 18.66 ± 6.62 19.72 ± 7.24

CHO (mmol/L) 4.13 ± 0.73 4.16 ± 0.89 4.61 ± 0.63
TG (mmol/L) 1.51 ± 0.66 1.50 ± 0.75 1.60 ± 0.69

HDL-C (mmol/L) 1.67 ± 0.29 1.62 ± 0.27 1.80 ± 0.31
LDL-C (mmol/L) 2.31 ± 0.60 2.35 ± 0.58 2.43 ± 0.52

FBG (mmol/L) 5.04 ± 0.44 5.01 ± 0.41 4.88 ± 0.49

ALT, glutamic-pyruvic transaminase; AST, glutamic oxalacetic transaminase; CHO, total cholesterol; TG, triglyc-
eride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; FBG, fasting
blood glucose. p value < 0.05 is considered statistically significant. Validation cohort 1: a cohort comprising
pregnant women at NWCH enrolled from Nov. 2019 to Mar. 2020. Validation cohort 2: a cohort of pregnant
women at NWCH enrolled in May 2021.

3.2.1. Training Set

Seven variables were included in the model by cross-validated lasso-logistic regression
(Figure 3A,B). Multivariate logistic regression was used for the calculation and these results
are shown in Table 3. The nomogram was used to predict the incidence of GDM in pregnant
women in the first trimester (Figure 3C). The predicted GDM risk was estimated using the
following equation:

P = 1
1+exp.(−x) , X = −3.417 + 0.492 Maternal Age 30–34y/0.984 Maternal Age 35–39y/1.492 Maternal Age ≥

40y + 0.976 T2DM f amily history + 0.691 pre-BMI 24–27.9 kg/m2/1.382 pre-BMI ≥ 28 kg/m2 + 0.776 ART+

1.381 Thyroid antibodies positive + 1.273 Above IOM recommended GWG at the 1st trimester+

0.753FBG ≥ 5.0 mmol/L

3.2.2. Discriminant Analysis

The AUC of the ROC curve was 0.799 (95% CI 0.763–0.836) in the training set and
0.834 (95% CI 0.785–0.882) in the validation set. The calibration curve of the training
and validation sets, showing the association between the probability of GDM predicted
using the model and the observed GDM rate, suggested consistency between the two.
The decision curves for the training and validation sets suggested a net benefit without
increasing the number of false positives (Figure 4). The p-value for the H-L tests was
0.374 in the training set and 0.530 in the validation set, indicating that the logistic regression
analysis prediction model had high consistency.
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acceptance for ART treatment, pre-BMI stratification, T2DM family history, and age stratification.

Table 3. The multivariable logistic regression analysis in the training cohort.

B S.E. Wald P OR (95%CI)

Age stratification 0.492 0.131 14.202 <0.001 1.636 (1.266–2.113)
T2DM family history 0.976 0.307 10.120 0.001 2.653 (1.454–4.838)
pre-BMI stratification 0.691 0.167 17.153 <0.001 1.996 (1.439–2.769)

ART 0.776 0.381 4.154 0.042 2.173 (1.030–4.585)
Thyroid antibodies + (TPOAb/TgAb) 1.381 0.269 26.423 <0.001 3.979 (2.350–6.737)

Above IOM recommended GWG at the 1st trimester 1.273 0.239 28.470 <0.001 3.573 (2.238–5.703)
FBG stratification 0.753 0.204 13.625 <0.001 2.124 (1.424–3.169)

Constant −3.417 0.356 92.142 <0.001 0.033

p value < 0.05 is considered statistically significant.
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3.3. Comparison of the Two Prediction Models

The Net Reclassification Index (NRI) and Integrated Discrimination Improvement
(IDI) were focused on comparisons of the two prediction models at a certain truncation
value. In this study, we compared the score-scaled GDM risk prediction model (model 1)
with the logistic regression analysis for the GDM risk prediction model (model 2). The
results showed positive improvements in model 2, with an NRI of 0.208 and IDI of 0.045
(Supplementary Table S8), implying that model 2 had better predictive power than model 1.

3.4. ML Models for GDM Prediction

The data of AUC, precision, recall, Fi-score, accuracy, and specificity of training and
validation sets for the DT and RF models are shown in Supplementary Table S9. The ROC
curves, tree structures, and feature importance curves for DT and RF models are illustrated
in Supplementary Figures S10–S13.

3.5. Validation of the Established Models

We used data from the NWCH cohort of May 2021 to further validate the performance
of the developed models, and the results suggested a good performance. The AUC was
0.769 (0.681–0.858) for the score-scaled model, 0.841 (0.736–0.891) for the logistic regression
model, 0.777 (0.726–0.829) for the DT model, and 0.740 (0.684–0.795) for the RF model
(Supplementary Table S10).
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4. Discussion

We established GDM prediction models using meta-analysis, logistic regression, and
two ML algorithms. For the score-scaled model, the following risk factors were screened
for meta-analysis: Maternal age, pre-BMI, GWG in the first trimester, age at menarche, ART,
T2DM family history, and positivity for thyroid-related antibodies (TPOAb and TgAb).
Data for risk stratification was collected from 1075 pregnant women who carried the
fetus to full-term with relatively complete clinical data from NWCH; the AUC was 0.722.
Statistically, differences were present among the four risk groups divided at the cut-off point
of 9.5 (except for the high and very high-risk groups). For the logistic regression analysis
model, the variables included maternal age, pre-BMI, GWG in the first trimester, acceptance
of ART treatment, T2DM family history, the positivity of thyroid-related antibodies, and
FBG. The training and validation sets showed AUCs of 0.799 (95% CI 0.763–0.836) and
0.834 (95% CI 0.785–0.882), respectively. The prediction models developed using two
ML algorithms (DT and RF) comprised all the above-mentioned risk factors and showed
relatively reasonable prediction performances in both the training and validation sets. All
the models were validated using data from the cohort collected in May 2021 at NCWH and
showed good performances.

For the correlation of the risk factors and GDM, a dose–response association from a
meta-analysis [12] showed a linear relationship between the risk of developing GDM and ad-
vanced maternal age, with the same age stratification as in our study. Overweight/obesity
before pregnancy, excess GWG [9–11], and younger menarche age [14] are risk factors
for GDM and may be mediated by the status of insulin resistance. T2DM is a polygenic
inherited disease with overlapping susceptibility genes as in GDM [15]. Elevated FBG
levels in the first trimester were associated with GDM [34]; however, the majority of studies
show inconsistent cut-off values [35,36]. Some particular ART procedures are related to the
increased incidences of GDM [13], which may be caused by advanced maternal age and
underlying maternal subfertility-related diseases. The positivity of thyroid-related anti-
bodies (TPOAb or TgAb) was associated with the risk of developing GDM [37]. Increased
TPOAb/TgAb in the peripheral blood of patients with Hashimoto thyroiditis can interfere
with the homeostasis of β-cells by reducing the number of CD19+CD24hiCD38hi Breg cells
and releasing inflammatory factors in peripheral blood, leading to insulin resistance [38,39].
However, any single clinical indicator is insufficient to predict the incidence of developing
GDM accurately. The integration of published risk factors is more reliable for the early
diagnosis of GDM.

Existing published predictors of GDM including angiopoietin-like protein 8, plasma fatty
acid binding protein 4, and various adipokines are not popular in clinical practice [6–8]. Addi-
tionally, the data of some GDM prediction models [40,41] were from small cross-sectional and
case-control studies, which is not conducive to application in the cohort of pregnant women.
For a GDM prediction model that was developed in a retrospective study comprising 580,000
electronic medical records of Israeli pregnant women, the AUC was 0.85 after including all
GDM-related variables, while the AUC of the questionnaire prediction model using only nine
GDM-related variables was 0.80 [42]. However, the variables in these models were obtained
in the 20th gestational week, and thus, GDM could not be predicted and intervened in the
early stages of pregnancy. Our score-scaled GDM prediction model was developed using a
meta-analysis of 42 high-quality cohort studies, which significantly improved the statistical
performance and ease of calculation. The risk factors in our GDM prediction models are easily
accessible from the clinical work in the first trimester. These advantages make our model more
convenient and easier to use in clinical settings.

To our knowledge, a few published score-scaled GDM risk prediction models have
been previously derived from a meta-analysis, which can be used in the first trimester in
clinical settings. Several GDM-related risk factors, which were published previously, are
not included in our meta-analysis, because of the differential diagnostic criteria for GDM.

The score-scaled GDM risk prediction model has numerous advantages, including
being common across clinical settings and ease of generalization in underdeveloped areas.



Metabolites 2022, 12, 1040 12 of 17

Notably, the model was established based on pregnant women who were >18 years old
and is well-suited to this group. Moreover, two different criteria for the classification of
women’s pre-BMI in the included studies were employed: (1) Among whites, the criteria
were 18.5–24.9 kg/m2 for normal, 25.0–29.9 kg/m2 for overweight, and 30.0 kg/m2 for
obese according to World Health Organization guidelines [43] and (2) in Chinese women,
the criteria was 18.5–23.9 kg/m2 for normal, 24.0–27.9 kg/m2 for overweight, and above
28.0 kg/m2 for obese [44] according to the criteria recommended by the Working Group on
Obesity in China, 2003.

The score-scaled GDM risk prediction model did not include FBG in the first trimester,
owing to the inconsistency in the gestational week for FBG detection and the different
cut-off values. Thus, the results could not be merged in the meta-analysis. However, in
the logistic regression analysis model, the FBG level in the first trimester was a continuous
variable, which enabled its stratification according to a published study [28].

For the logistic regression analysis model, logarithmic equations, a relatively tedious
process, were employed to measure the probability of developing GDM. The corresponding
nomogram could roughly estimate the probability of developing GDM; however, these
results showed limited accuracy. Moreover, it may be unrealistic in some low-income areas,
such as in western China, as it requires pregnant women to visit the hospital in the fasting
state in the first trimester for assessing FBG levels.

Due to the embedded feature selection methods, limited large-scale extrapolation is in-
evitable for published and ML prediction models in this study [42,45]. Therefore, the ML
algorithms in our study, as a method to establish the prediction models, are not recommended
for clinical use. The published ML algorithm models comprise serological indicators, including
HbA1c and TG, which are relatively hard to obtain in the early stages of pregnancy [42,45].

Modifiable risk factors in prediction models are necessary to identify and assess
whether the relationship is causal, particularly important for prevention. In this study,
GWG in the first trimester was identified as the modifiable factor, and thus, our prediction
models can be used to evaluate the remission of incidence for developing GDM after an
early intervention; however, this possibility needs to be tested further.

Our study has some limitations. The data were extracted from a large tertiary institu-
tion, with relatively high-risk GDM incidence as compared to that in community hospitals
or remote mountainous areas. As this was a single-center study, the cohort may not repre-
sent the diverse ethnic populations in China. As it was a retrospective study, we could not
collect records of detailed information on diet and exercise, which may interfere with the
basal metabolic rates and influence GWG, potentially mediating the association between
GWG and GDM. Moreover, the first antenatal care visit of pregnant women is usually in
the 12th gestational week, with potential recall bias in pre-pregnancy weight for calculating
the pre-BMI. Finally, the prediction models included thyroid function indicators during the
first trimester, a characteristic highlight of our study. Although the thyroid function test is
becoming increasingly common in China during a regular prenatal visit, extensive testing
of thyroid function in pregnant women remains difficult to implement in some remote
areas, especially in western China, and a major limiting factor for the application of our
prediction models in clinical settings.

5. Conclusions

We developed and validated GDM prediction models based on a meta-analysis, logistic
regression, and two ML algorithms, which can be used to predict the incidence of GDM
in the first trimester. The calculation method for the score-scaled GDM prediction model
was relatively simple but showed lower prediction accuracy as compared to other models.
The computational formula of the logistic regression GDM model was relatively complex
but showed higher accuracy. The ML models exhibited the highest accuracy, but these are
hard to implement in clinical practice. Clinicians can choose an appropriate prediction
model based on the variables according to local settings. The predictive tools make it easy
to identify women at high risk of developing GDM.
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